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What are we looking for?
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•Dark matter 

•Stability of the universe 

•Grand unifying theories 

•Resolution ~ energy

http://www.ep.ph.bham.ac.uk/DiscoveringParticles/exhibit/credits
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Underlying Model
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•Remarkable theory  
‣ spanning order of magnitude 
‣ precision predictions 

•Stochastic in nature 

•Go deeper: new, more powerful colliders

By Dhatfield - Own work, CC BY-SA 3.0,  
https://commons.wikimedia.org/w/index.php?curid=4279886
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Detect Particles and Processes
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•We measure decay products of the stochastic process 

•Detectors employ parts of or all of the above concepts

ASPERA/G.Toma/A.SaftoiuCosmic ray Collider



Jan Kieseler

Simulation of detector response
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•High fidelity simulation of particles interacting with matter 
•Carefully validated 

•Validity also spans orders of magnitude
http://arxiv.org/abs/2108.02803
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The status quo
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•Very high dimensional parameter space 
•An expert group at each step 
‣ Very well-understood steps 
‣ Use surrogates and short cuts to the final objective (physics result) 
‣ The chain has almost no parts expressed in a differentiable way 

(or code) 
‣ Tuning often by hand and optimisations take a lot of time and 

person power
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Determining multiple parameters
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•Determining multiple parameters ~ fitting a function 

• The optimisation of a detector or a reconstruction chain is 
conceptually the same thing 

• To perform this optimisation we need to know 
∂𝝐/∂𝜗 : how does our photon efficiency change w.r.t. the 
reconstruction parameters 𝜗? 

•Gradients can be calculated 
‣ Numerically: unfeasible for many parameters 
‣ Algorithmically: requires unbroken gradients throughout the whole chain: 

every step needs to be differentiable 
➡Differential programming

𝜗 𝝐
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Interlude: differentiable programming in a 
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•Differentiable programming is used by, but is independent of machine learning. 

•At its core: in any operation, include a way to access its gradient w.r.t. all 
parameters (if it exists): auto differentiation 

•Auto-differentiation is neither pure numeric nor pure symbolic differentiation 
‣ Numerical differentiation is not feasible for large optimisation problems 
‣ Fully symbolic differentiation can easily become not feasible from computational point of view 

• In most cases, back propagation is used 
dL/dA  =   dx/dA     dL/dx  
‣ Calculate the numerical values of b = dL/dx using the analytic gradient of the operation 
‣ Calculate the numerical values of b * dx/dA in the same way 

•Each ‘atomic’ simple operation only needs to be equipped with a simple analytic 
gradient, then evaluated numerically: best of both worlds. 

• This is implemented in one way or another in all modern ML frameworks (TF, torch..) 
•Even expressing non-ML algorithms in differentiable frameworks comes with huge 

advantages w.r.t. the capability of optimising their parameters, and using state-of-
the-art libraries to do so

For a nice overview see Atılım Günes Baydin et al (2018), arXiv:1502.05767v4 

A → x → L
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The MODE Collaboration: Goals
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Use differentiable programming to optimise particle physics detectors given 
a quantification of the physics target(s) and 

the detector cost
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What do we already have
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•Proofs of concept (or more) exist 

•Overarching connection is missing 

•Next: will be going backwards arXiv:1806.04743

∇
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A typical high-energy physics analysis
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Data 
• Includes the full chain up to final state particle reconstruction 

Simulation 
•Simulate different physics processes 
•Simulate detector response and electronics 
•Proceed as for data 
•Calibrate and correct using control samples in data 
•Assign uncertainties on normalisation and shapes 

Analysis 
•Create histograms of data and simulation 
•A contribution of a process or a shape to the data: signal 
•Contributions of other processes: background 

•Perform profile likelihood fit of parameters of interest and parameters representing 
variations w.r.t. uncertainties 

Uncertainties can be (significantly) reduced by choosing good 
observables to fit

CMS, arXiv:1603.02303 

POI

𝜗



Jan Kieseler

Automatising analyses on simulation
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•Standard analysis concept: perform fit to data based on histograms 
‣ Best signal fraction (S/S+B) 
‣ Often use a trained classifier here 
‣ Lowest uncertainties 

•Can take into account uncertainties in to learn not only best S/S+B,  
but also lowest uncertainty: INFERNO [2] 

•Derive “best histogram” and perform a standard profile likelihood fit to extract the physics result

Other methods overview in Bremer, Cranmer et al, arXiv:1911.01429 
[2] P. Castro, T. Dorigo, arxiv:1806.04743v2

✓Concepts for generalisable, differentiable analyses workflows exist
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Reconstruction
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•Determine final state particles and their properties from detector 
hits 

The usual chain 
• Local seeding (pattern recognition) 
• Local clustering (pattern recognition) 
•Software compensation (pattern recognition) 
• Identification (pattern recognition) 
• Linking of individual detector parts  (pattern recognition) 

Always the same patterns 

Many steps cutting / segmenting information: a priori non 
differentiable
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Use DNNs as generic reconstruction
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The usual chain 
• Local seeding (pattern recognition) 
• Local clustering (pattern recognition) 
•Software compensation (pattern recognition) 
• Identification (pattern recognition) 
• Linking of individual detector parts  (pattern recognition) 

•Use ML for the task: CNN structure 

‣Adapts itself to grid-like granularity 
‣Re-optimisation == a few GPU hours vs. months 

of optimisations by hand 

•Compare different segmentations 
‣Saturation effects visible

C. Neubüser, JK, P Lujan, arxiv:2101.08150,  EPJC
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Use known sub detectors in a new way
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• At future very high energy colliders 
‣ Muons will deposit more energy 
‣ Muons will bent less → tracks provide less information 

• The pattern of radiation deposits contains information useful to regress the 
true muon energy, opens up new possibilities and impacts detector concepts 

• Based on CNNs

Only tra
cks

Combined

JK, G. Strong, et al., arXiv:2107.02119 
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Irregular Geometries
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•Detectors are not grids of sensors 

• The reconstruction needs to account for that 

•Graph neural networks are a powerful solution 
‣ No sorting required 
‣ No grid 
‣ Sense of connection 
‣ Basic principle: information exchange  

through edges (connections) 

•A typical HEP detector has O(500k) active sensors each event 
• The network needs to fit into the resources

Image from https://news.voyage.auto/an-introduction-to-lidar-the-key-self-driving-car-sensor-a7e405590cff

[1] Y. Wang, et al, arXiv:1801.07829

DGCNN [1]

Multiple 
operations 
scale: 
V x K x F
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GravNet
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•Developed to overcome resource limitation 
•Main ‘trick’: split into low dimensional coordinate and high dimensional feature space 

• Tested on a HEP calorimeter reconstruction task 
•Up to 2 orders of magnitude improvement w.r.t. resources: ~500k hits can be processed
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https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.GravNetConv

GravNet 

in torch_geometric!

Fused kernels
https://github.com/cms-pepr/pytorch_cmspepr

S.R. Qasim, J. K, Y. Iiyama, M Pierini, 
arXiv:1902.07987 
CMS DP-2020/001
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Multi-particle reconstruction
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The usual chain 
• Local seeding (pattern recognition) 
• Local clustering (pattern recognition) 
•Software compensation (pattern recognition) 
• Identification (pattern recognition) 
• Linking of individual detector parts  (pattern recognition) 

Challenges 

•A priori unknown number of particles to reconstruct 

•Particles are not dense objects with clean centres and boundaries 

• The input data is represented by point clouds

N. Wang et al, arXiv:1904.01355 
X. Zhou et al, arXiv:1904.07850 



•Maximum number of objects per  
image/point cloud:  
number of pixels/vertices 

•Learn to move pixels towards the object 
center 
•Map to Gaussian probability 

•Assign seed score 

•Collect (from highest seeds score) around the 
seeds 

•‘Only' performs segmentation 
•Heavily relies on the center of an object 
‣Problematic concept for particles

Jan Kieseler 20

D. Neven et al, arXiv:1906.11109 
B. Zhang, P. Wonka, arXiv:1912.00145
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Object Condensation
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•Merge object property determination and segmentation 
•Create a decoupled ‘clustering’ space 
‣ Created by potentials 
•Assign ‘condensation score’ → charge 
‣ Highest score condensation points carry object properties 
•Push non-differentiable ‘clustering’ step towards the very end 

•Segmentation 

•Reconstruction efficiency and noise 

•Object properties  

➡Generalises to image data
JK, arxiv:2002.03605, EPJC
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High granular calorimeter application
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•Differentiable one-shot reconstruction from hits 
to final state particles 

•Can also be applied to information from 
different sub detectors

The usual chain 
✓Local seeding (pattern recognition) 
✓Local clustering (pattern recognition) 
✓Software compensation (pattern recognition) 
✓Identification (pattern recognition) 
✓Linking of individual detector parts  (pattern 

recognition)
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What do we already have
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Simulation
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•Our simulation is highly complex, stochastic, and not differentiable 

•Some parameters inherently have no gradient: e.g. adding/removing 
a sensor layer, switching positions, … 
‣ There are ideas, and some developments in the direction of solving this 
‣ This is a very interesting conceptual challenge to contribute to! 

•Example: use local surrogates of the gradient (GAN) for optimising 
the SHIP muon shielding
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Sweeping magnet optimisation
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• Local differentiable surrogates can help solve the problem of non-
differentiable simulation

S. Shirobokov, A. Ustyuzhanin, A. Güneş Badyin et al., arXiv:2002.04632
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Writing a differentiable simulator: TOMOPT
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•Atmospheric muons: 1/s/hand area 
• Interact only sparsely with material 
•Are scattered enough to be used for imaging 

applications 

•Detectors: usually panels, with spatial resolution 
and detection efficiency 
•Optimal starting point for a differentiable simulation 

• TOMOPT: package to optimise muon tomography 
detectors (work in progress)

Work in progress; G. Strong et al.

L. Bonechi, R. D'Alessandro, A. Giammanco
arXiv:1906.03934
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MODE
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• The target of MODE is to design and offer to the community a scalable, versatile architecture that can provide end-to-end 
optimisation of particle detectors, proving it on a number of different applications across different domains. 

•Study cases:  
‣ Use known detector concepts in a new way:  

demonstration of muon energy measurement in calorimeter 
‣ Optimise starting from ‘simple’ applications 

Muon tomography detector optimisation in progress 
‣ Rethink decades old paradigms: 

Hybrid calorimeter design integrating tracking layers activity starting 

•Other use cases being considered / about to start include: 
‣ Hadron therapy  
‣ Muon collider detector shielding  

• The developed architectures for optimisation are modular 
‣ recycle part of the work for one application when moving to the next one 
‣ Very happy about any suggestions / contributions 

MODE Collaboration, “Toward Machine Learning Optimization of Experimental Design”, Nuclear Physics News International, 2021.


