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Our Amazing Team (December 2019, pre-COVID)

André Martins (IST) Sparse Communication MPLP Seminar 2022 2 / 61



DeepSPIN

ERC starting grant (2018–23)
Goal: put together deep learning and structured prediction for natural
language processing
More details: https://deep-spin.github.io

André Martins (IST) Sparse Communication MPLP Seminar 2022 3 / 61

https://deep-spin.github.io


From Sparse Modeling ...

Mostly used with linear models, lots of work in the 2000s
Main idea: embed a sparse regularizer (e.g. `1-norm) in the learning
objective
Irrelevant features get zero weight and can be discarded
Extensions to structured sparsity (group-lasso, fused-lasso, etc.)

... to Sparse Communication:

Mostly used with neural networks, most work after 2015
Main idea: sparse neuron activations (biological plausibility)
Predictions are triggered by a few neurons only (input-dependent)
Example: ReLUs, dropout, sparse attention mechanisms

André Martins (IST) Sparse Communication MPLP Seminar 2022 4 / 61



This Talk
An inventory of transformations that capture sparsity and structure:

All differentiable (efficient forward and backward propagation)
Can be used at hidden (attention) or output layers (loss)
Can make a bridge between the continuous and discrete worlds
Effective in several natural language processing tasks.

Building block:

z p

Sparse transformations from the Euclidean space to the simplex4.
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∑
vs.
∫

Commonly we have to opt between discrete or continuous models:

Language is symbolic and discrete
Neural networks use (and learn) continuous representations

We should look at what happens in-between!

Sparsity might help with this, but...

... sparse probabilities are understudied and often excluded from theory:

Hammersley-Clifford theorem in graphical models
Pitman-Koopman-Darmois theorem (sufficient statistics and
exponential families)
Log-likelihood is −∞ if estimated probability is 0.
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Motivating Example: John’s Life

John splits his day as follows: he works 8h/day, and stays home 16h/day.

He is in transit 1h/day to commute to work and back.

Is John’s location a discrete or continuous random variable?
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Motivating Example: John’s Life

John splits his day as follows: he works 8h/day, and stays home 15h/day.

He is in transit 1h/day to commute to work and back.

Is John’s location a discrete or continuous random variable?
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Motivating Example: John’s Life

John splits his day as follows: he works 8h/day, and stays home 15h/day.

He is in transit 1h/day to commute to work and back.

Is John’s location a discrete or continuous random variable? It’s mixed.
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Outline

1 Sparse Transformations

2 Fenchel-Young Losses

3 Mixed Distributions

4 Conclusions
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Recap: Softmax and Argmax

Softmax exponentiates and normalizes:

softmax(z) =
exp(z)∑K

k=1 exp(zk)

Fully dense: softmax(z) > 0, ∀z
Used both as a loss function (cross-entropy) and for attention.

Argmax can be written as:

argmax(z) := arg max
p∈4

z>p

= lim
τ→0+

softmax(z/τ) (temperature trick)

Retrieves a one-hot vector for the highest scored index.
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softmax(z)
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(Same z = [1.0716,−1.1221,−0.3288, 0.3368, 0.0425])

Argmax is an extreme case of sparsity, but it is discontinuous.
Is there a sparse and differentiable alternative?
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Sparsemax (Martins and Astudillo, 2016, ICML)

Euclidean projection of z onto the probability simplex4:

sparsemax(z) := arg min
p∈4
‖p − z‖2

= arg max
p∈4

z>p − 1
2
‖p‖2.

Likely to hit the boundary of the simplex, in which case sparsemax(z)
becomes sparse (hence the name)
End-to-end differentiable
Forward pass: O(K logK ) or O(K ), (almost) as fast as softmax
Backprop: sublinear, better than softmax!
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Sparsemax in 2D and 3D
(Martins and Astudillo, 2016, ICML)

− 3 − 2 − 1 0 1 2 3
t
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1.0 softmax1([t,0])
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Sparsemax is piecewise linear, but asymptotically similar to softmax.

André Martins (IST) Sparse Communication MPLP Seminar 2022 12 / 61



Ω-Regularized Argmax (Niculae and Blondel, 2017, NeurIPS)

For convex Ω, define the Ω-regularized argmax transformation:

argmax Ω(z) := arg max
p∈4

z>p − Ω(p)

Argmax corresponds to no regularization, Ω ≡ 0
Softmax amounts to entropic regularization, Ω(p) =

∑K
i=1 pi logpi

Sparsemax amounts to `2-regularization, Ω(p) = 1
2‖p‖

2

Is there something in-between?
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Entmax (Peters et al., 2019, ACL)

Parametrized by α ≥ 0:

Ωα(p) :=

{
1

α(α−1)

(
1−

∑K
i=1 p

α
i

)
if α 6= 1∑K

i=1 pi logpi if α = 1.

Related to Tsallis generalized entropies (Tsallis, 1988).

Argmax corresponds to α→∞
Softmax amounts to α→ 1
Sparsemax amounts to α = 2.

Key result: always sparse for α > 1, sparsity increases with α

Forward pass for general α can be done with a bissection algorithm
Backward pass runs in sublinear time.
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Entmax in 2D (Peters et al., 2019, ACL)

α = 1.5 is a sweet spot!

Efficient exact algorithm (nearly as fast as softmax), smooth, and good
empirical performance.

Pytorch code: https://github.com/deep-spin/entmax
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Sparse Transformations (Peters et al., 2019, ACL)
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Example: Sparse Attention for Machine Translation
(Peters et al., 2019, ACL)

Selects source words
when generating a target
word (sparse alignments)
Better interpretability
Can also model fertility:
constrained sparsemax
(Malaviya et al., 2018, ACL)

Can also learn α
(adaptively sparse
transformers):
(Correia et al., 2019, EMNLP)
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Example: Sparse Attention for Explainability
(Treviso and Martins, 2020, BlackboxNLP)

Explainer Layperson

ŷ m
ỹ 

Classifier

A classifier makes a prediction
An “explainer” (embedded or not in the classifier) generates a sparse
message that explains the classifier’s decision
The layperson receives the message and tries to guess the classifier’s
prediction (also called simulatability, forward simulation/prediction)
Communication success rate: how often the two predictions match?
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From Sparse Modeling to Sparse Communication
(Treviso and Martins, 2020, BlackboxNLP)

Model interpretability Prediction explainability

Wrappers • Forward selection
• Backward elimination (Kohavi and

John, 1997)

• Input reduction (Feng et al., 2018)
• Erasure (leave-one-out) (Li et al.,

2016b; Serrano and Smith, 2019)
• LIME (Ribeiro et al., 2016)

Filters • PMI (Church and Hanks, 1990)
• recursive feature elimination

(Guyon et al., 2002)

• Input gradient (Li et al., 2016a)
• LRP (Bach et al., 2015)
• top-k softmax attention

Embedded • `1-regularization (Tibshirani, 1996)
• elastic net (Zou and Hastie, 2005)

• Stochastic attention (Xu et al.,
2015; Lei et al., 2016; Bastings et al.,
2019)

• Sparse attention
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Other Related Transformations

Constrained softmax (Martins and Kreutzer, 2017, EMNLP),

Constrained sparsemax (Malaviya et al., 2018, ACL):

Allows placing a budget on how much attention a word can receive
Useful to model fertility in machine translation

Fusedmax (Niculae and Blondel, 2017, NeurIPS):

Can promote structured sparsity (contiguous selection)

(LP-)SparseMAP Niculae et al. (2018, ICML), Niculae and Martins (2020, ICML):

Extends sparsemax to sparse structured prediction.
Can be used as hidden differentiable layer or output layer.
Works with arbitrary factor graph (e.g. logic constraints).
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Sparse and Continuous Attention
(Martins et al., 2020a, NeurIPS)

So far: attention over a finite set (words, pixel regions, etc.)
We generalize attention to arbitrary sets, possibly continuous.

=⇒
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Example: Visual Question Answering

What is the woman looking at? tv

1E-19

1E-08

1E-01

1E+01

computer

057

9

computer

Is the man wearing a hat? yes

1E-06

1E-01

3E+00

no

0
4

56

no

(original image) (discrete attention) (continuous softmax) (continuous sparsemax)
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Outline

1 Sparse Transformations

2 Fenchel-Young Losses

3 Mixed Distributions

4 Conclusions
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Entmax Losses

Entmax can also be used as a loss in the output layer (to replace
logistic/cross-entropy loss)
However, not expressed as a log-likelihood (which could lead to log(0)
problems due to sparsity)
Instead, we build a entmax loss inspired by Fenchel-Young losses.
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Softmax: Logistic Loss

Softmax gives us the logistic loss (or negative log-likelihood):

Lsoftmax(z ; k) = −log softmaxk(z) = −zk + log
∑

j exp(zj),

Great! Can we do the same to define a loss for sparsemax?
Unfortunately, log-likelihood does not work well with sparsemax:
labels with exactly zero probability would make log-likelihood −∞...
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Sparsemax Loss

A better approach: construct an alternative loss function whose
gradient resembles the gradient of the logistic loss:

∇zLsoftmax(z ; k) = −δk + softmax(z)

Looks a bizarre idea, but we’ll motivate it later!
So, by design, we want Lsparsemax to be differentiable and such that:

∇zLsparsemax(z ; k) = −δk + sparsemax(z)

This property is fulfilled by the following function (sparsemax loss):

Lsparsemax(z ; k) = −zk + z> sparsemax(z)− 1
2
‖ sparsemax(z)‖2 +

1
2
.
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Two Dimensions: Relation to the Huber Loss

In 2D, Lsparsemax reduces to the Huber classification loss known from
robust statistics (Huber, 1964; Zhang, 2004)
Let the correct label be k = 1, and define s = z2 − z1:

Lsparsemax(s) =
0 if s ≤ −1
(s−1)2

4 if −1 < s < 1
s if s ≥ 1
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Recap: Ω-Regularized Argmax (Niculae and Blondel, 2017, NeurIPS)

For convex Ω, define the Ω-regularized argmax transformation:

argmax Ω(z) := arg max
p∈4

z>p − Ω(p)

Argmax corresponds to no regularization, Ω ≡ 0
Softmax amounts to entropic regularization, Ω(p) =

∑K
i=1 pi logpi

Sparsemax amounts to `2-regularization, Ω(p) = 1
2‖p‖

2

All these are particular cases of α-entmax (Peters et al., 2019, ACL).
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Fenchel-Young Losses (Blondel et al., 2020, JMLR)

Assess compatibility between groundtruth q ∈ 4 and scores z ∈ RK

Convex conjugate Ω∗(z) := max
p∈4

z>p − Ω(p)

LΩ(z ,q) := Ω∗(z) + Ω(q)− z>q

Properties:

LΩ(z ,q) ≥ 0 (automatic from Fenchel-Young inequality)
LΩ(z ,q) = 0 iff q = argmax Ω(z)

LΩ is convex and differentiable with∇LΩ(z ,q) = argmax Ω(z)− q

Recovers cross-entropy loss, sparsemax loss, and many other known losses

Also called “mixed-type Bregman divergences” (Amari, 2016).
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Entmax Transformations and Losses
(Blondel et al., 2020, JMLR)

Key result: for all α > 1, all transformations are sparse and lead to
losses with margins!
The margin size is related to the slope of the entropy in the simplex
corners! ( 1

α−1 for entmax losses.)
See paper for details!

Pytorch code: https://github.com/deep-spin/entmax
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Example: Machine Translation
(Peters et al., 2019, ACL) (Peters and Martins, 2021, NAACL)

(Source: “Dies ist ein weiterer Blick auf den Baum des Lebens.”)

Only a few words get non-zero probability at each time step
Auto-completion when several words in a row have probability 1
Useful for predictive translation.
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Entmax Sampling (Martins et al., 2020b, EMNLP)

Use the entmax loss for training language models.
At test time, sample from this sparse distribution.
Better quality with less repetitions than other methods:

1.0 1.5 2.0 2.5 3.0 3.5 4.0
n

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Di
st

in
ct

-n

human
entmax
nucleus
softmax-t
top-k
unlikelihood
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Outline

1 Sparse Transformations

2 Fenchel-Young Losses

3 Mixed Distributions

4 Conclusions
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Mixed Distributions (Farinhas et al., 2022, ICLR)

We saw how to obtain sparse probability distributions.
How can we use them to bridge the gap between discrete and
continuous domains?
We’ll see how next.
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Back to John’s Life

John splits his day as follows: he works 8h/day, and stays home 15h/day.

He is in transit 1h/day to commute to work and back.

That’s a sad life!
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After work, John spends 2h in the pub with friends.

We need a way to represent this probability mass in vertices, edges, face.
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Densities over4K−1

We denote by ri(4K−1) the relative interior of4K−1.

Common densities on the simplex:

Dirichlet distribution
Logistic-Normal (a.k.a. Gaussian-Softmax)
Concrete (a.k.a. Gumbel-Softmax)

None of these place any probability mass on the boundary
4K−1 \ ri(4K−1).
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Dirichlet Distribution

Y ∼ Dirichlet(α) ⇔ pY (y ;α) ∝
K∏

k=1

yαk−1
k , α > 0.
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Logistic Normal (a.k.a. Gaussian-Softmax)
(Atchison and Shen, 1980)

Generative story:

Y ∼ LogisticNormal(z ,Σ) ⇔
N ∼ N(0, I)
Y = softmax(z + Σ

1
2N).
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Concrete (a.k.a. Gumbel-Softmax)
(Maddison et al., 2017; Jang et al., 2017)

Continuous relaxation of a categorical.

Approaches categorical as λ→ 0+ (Luce, 1959; Papandreou and Yuille, 2011).

Generative story:

Y ∼ Concrete(z , λ) ⇔ Gk ∼ Gumbel(0, 1)
Y = softmax(λ−1(z + G )).
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Truncated Densities in the Binary Case (K = 2)

When K = 2, the simplex is isomorphic to unit interval,41 ' [0, 1].

A point in41 can be represented as y = [y , 1− y ].

Truncated densities have been proposed for K = 2:

Binary Hard Concrete
Rectified Gaussian
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Binary Hard Concrete
(Louizos et al., 2018)

Stretches the Concrete and applies a “hard” sigmoid transformation to
place point masses at 0 and 1.
Similar to spike-and-slab (Mitchell and Beauchamp, 1988; Ishwaran et al., 2005).
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Rectified Gaussian
(Hinton and Ghahramani, 1997; Palmer et al., 2017)

Applies a “hard” sigmoid transformation to a univariate Gaussian.

pY (y) = N(y ; z , σ2) +
1− erf

(
z√
2σ

)
2

δ0(y) +
1 + erf

(
z−1√

2σ

)
2

δ1(y).

Extending such distributions to the multivariate case (K > 2) is non-trivial:

Combinatorially many multiple order Diracs would be needed
Dirac deltas have −∞ differential entropy.
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Our Approach: Face Stratification

How to extend these “truncated densities” to K > 2?

Our solution relies on the face lattice of the simplex:

0-faces are vertices, 1-faces are edges, etc.

There is one (K − 1)-face: the simplex4K−1 itself.
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Direct SumMeasure (Farinhas et al., 2022, ICLR)

Let F denote the set of proper faces of4K−1; we have |F| = 2K − 1.

We define a direct sum measure µ⊕ on4K−1 as a sum of Lebesgue
measures on each non-vertex face, and a counting measure on the vertices:

µ⊕(A) =
∑
f ∈F

µf (A ∩ ri(f )), A ⊆ 4K−1.

We define probability densities w.r.t. this base measure.
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Mixed Random Variables (Farinhas et al., 2022, ICLR)

Discrete RVs assign probability only to 0-faces (vertices of4K−1).

Continuous RVs assign probability only to the maximal face (ri(4K−1)).

Mixed RVs generalize both: can assign probability to all faces of4K−1.

They can be defined via:

Their face probability mass function PF (f ) = Pr{y ∈ ri(f )}, f ∈ F.
Their face-conditional densities pY |F (y | f ), for f ∈ F, y ∈ ri(f ).

The probability of a set A ⊆ 4K−1 is given by:

Pr{y ∈ A} =
∑
f ∈F

PF (f )

∫
A∩ri(f )

pY |F (y | f ).
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Extrinsic vs Intrinsic (Farinhas et al., 2022, ICLR)

Two ways of characterizing mixed RVs:

Extrinsic characterizaton: start with a distribution over RK and then
apply a deterministic transformation to project it to4K−1

Intrinsic characterizaton: specify a mixture of distributions directly
over the faces of4K−1, by specifying PF and pY |F for each f ∈ F
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K -D Hard Concrete (Farinhas et al., 2022, ICLR)

Uses an extrinsic characterization, via “stretch-and-project.”

Generative story:

Y ∼ HardConcrete(z , λ, τ) ⇔ Y ′ ∼ Concrete(z , λ)
Y = sparsemax(τY ′), with τ ≥ 1.

Recovers the binary Hard Concrete for K = 2
The larger τ , the higher the tendency to hit a non-maximal face of the
simplex and induce sparsity.
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Gaussian-Sparsemax (Farinhas et al., 2022, ICLR)

Uses an extrinsic characterization, by sampling from a Gaussian and
projecting.

Generative story:

Y ∼ GaussianSparsemax(z ,Σ) ⇔ N ∼ N(0, I)
Y = sparsemax(z + Σ1/2N).

Sparsemax counterpart of the Logistic-Normal.
Can assign nonzero probability mass to the boundary of the simplex.
When K = 2, we recover the double-sided rectified Gaussian.
For K > 2, an intrinsic representation can be expressed via the orthant
probability of multivariate Gaussians.
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Logistic-Normal vs Gaussian-Sparsemax (Farinhas et al., 2022, ICLR)

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

Logistic-Normal (left) assigns zero probability to all faces but ri(4K−1)

Gaussian-Sparsemax (right) is a mixed distribution: it assigns probability to
the full simplex, including its boundary.
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Mixed Dirichlet (Farinhas et al., 2022, ICLR)

Uses an intrinsic characterization.

Uses two parameters: w ∈ RK and α ∈ RK
>0

First, sample a face f ∼ PF (f ) ∝
∏

k∈f wk , where w ∈ RK

Then, sample Y |F = f ∼ Dir(α|f ), where α|f “masks out” entries of
α not supported by f .
Sampling f can be done in O(K ) with dynamic programming.
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Information Theory of Mixed Random Variables
(Farinhas et al., 2022, ICLR)

“Direct sum” entropy using µ⊕ as the base measure:

H⊕(Y ) := H(F ) + H(Y | F )

= −
∑
f∈F

PF (f )logPF (f )︸ ︷︷ ︸
discrete entropy

+
∑
f∈F

PF (f )

(
−
∫
f

pY |F (y | f )logpY |F (y | f )

)
︸ ︷︷ ︸

differential entropy

.

Average length of the optimal code where f must be encoded
losslessly and where y |f has a predefined bit precision N

Max-ent is written as a generalized Laguerre polynomial (see paper)
e.g. log2(2 + 2N) for K = 2 (vs. log2(2) = 1 in the purely discrete case)

KL divergence and mutual information defined similarly.
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Experiment: Emergent Communication

The first agent needs to communicate a code to the second agent that
represents a given image.

Given the code, the second agent needs to identify the correct image
among 16 possibilities. (Random guess is 1/16 = 6.25%.)

Success average and standard error over 10 runs:

Method Success (%) Nonzeros ↓

Gumbel-Softmax 78.84 ±8.07 256
Gumbel-Softmax ST 49.96 ±9.51 1

K -D Hard Concrete 76.07 ±7.76 21.43 ±17.56
Gaussian-Sparsemax 80.88 ±0.50 1.57 ±0.02

(See paper for more experiments with VAEs on FashionMNIST and MNIST.)
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Outline

1 Sparse Transformations

2 Fenchel-Young Losses

3 Mixed Distributions

4 Conclusions
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Conclusions

Transformations from real numbers to distributions are ubiquitous
We introduced new transformations that handle sparsity, constraints,
and structure
All are differentiable and their gradients are efficient to compute
Can be used as hidden layers or as output layers (Fenchel-Young losses)
Mixed distributions are in-between the discrete and continuous worlds
Examples: Gaussian-Sparsemax, Gumbel-Sparsemax, Mixed Dirichlet
Sparse communication potentially useful as a path for explainability.
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Thank You!

DeepSPIN (“Deep Structured Prediction in NLP”)

ERC starting grant, started in 2018
Topics: deep learning, structured prediction, NLP
More details: https://deep-spin.github.io
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