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Motivation: Given a diffeomorphism Φ, a wandering set is an
(open) subset U such that Φk (U) ∩ U = ∅ for all k 6= 0.

If Φ is a Hamiltonian diffeomorphism then wandering sets can
exist only on manifolds of infinite volume.

Wandering sets are disjoint from any invariant tori.

In particular, if H defines an integrable system (with compact
invariant submanifolds) then Φ1

H has no wandering sets.
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Lazarrini, Marco and Sauzin studied perturbations of integrable
systems on T ∗T n, that is, Φ1

H̃
where H̃ is a perturbation of an

H(p1, . . . ,pn).

They obtained upper bounds on the measure of bounded
wandering sets in terms of a distance ‖H̃ − H‖ and also
constructed examples for perturbations of H = p2

1 + · · ·+ p2
n

(which by KAM theory have many invariant tori).

There are open questions about symplectic capacities and
existence of wandering sets in the complements of arbitrary
arrangements of Lagrangian tori. In particular, whether the
invariant tori themselves impose bounds on the size of
wandering sets.
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Work in R4 ≡ C2 with the standard symplectic form
i
2(dz1 ∧ dz1 + dz2 ∧ dz2).

Let L(k , l) := {π|z1|2 = k , π|z2|2 = l} be a product Lagrangian;

B(a) = {π(|z1|2 + |z2|2) < a} is the ball of capacity a.

Recall the Gromov width cG(M, ω) = sup{a|B(a) ↪→ M}.

Problem: Compute cG(C2 \
⋃

k ,l∈N L(k , l)). Is it greater than 2?

4 / 27



5 / 27



Let L =
⋃

k ,l∈N L(k , l).

Theorem

cG(B(R) \ L) =


R, R ≤ 2;
2, 2 ≤ R ≤ 3;
R − 1, 3 ≤ R ≤ 4.

Proof. For the lower bounds it suffices to produce symplectic
embeddings

B(λ) ↪→ B(λ+ 1 + ε) \ L

for 2 < λ < 3.
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Note that the only integral Lagrangian intersecting B(λ) for
2 < λ < 3 is L(1,1), and the only integral Lagrangians inside
B(λ+ 1) are L(1,1) ∪ L(1,2) ∪ L(2,1).

Therefore the goal is to displace B(λ) from L(1,1) (inside
B(λ+ 1 + ε)), in the complement of L(1,2) ∪ L(2,1).

Equivalently we need to displace L(1,1) from B(λ) remaining in
the complement of L(1,2) ∪ L(2,1).
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The ball B(λ) intersects a plane z2 = c with |c| = 1 in the round
disk D(λ− 1) of area λ− 1.

Therefore we can displace L(1,1) from B(λ) where the trace of
the Lagrangian lies in a set

D((λ−1)+1+ε))×∂D(1) = D(λ+ε)×{|z2| = 1} ⊂ B(λ+1+ε).

It suffices to displace L(1,2) and L(2,1) from this trace, and we
will do this in a neighborhood of S = ∂B(3).

Using symplectic polar coordinates Rk = π|zk |2, θk we can
arrange that this trace intersects S in a neighborhood of
R1 = 2,R2 = 1, θ1 = 0.
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Visualize S = ∂B(3) using the symplectic reduction
p : S → Σ = S2(3).

Fibers are the characteristic Reeb circles, and Lagrangians
project to circles in Σ. The product Lagrangians L(a,b) project
to circles bounding disks of areas a and b.

Hamiltonian isotopies of a circle in Σ lift to exact Lagrangian
isotopies in S.
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Note the only intersections occur near {θ1 = 0} on a particular
Reeb orbit, say {θ1 − θ2 = 0}, hence near θ1 = θ2 = 0.

The final step is to apply a Hamiltonian H(θ2) to (the image
under our isotopy of) L(2,1).

Choose H so that H ′ = −1 near θ2 = 0 and small elsewhere.
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To complete the theorem we need an embedding obstruction.

Proposition
If λ > 2 there does not exist a symplectic embedding

B(λ) ↪→ B(λ+ 1) \ L(1,1).

Proof. By a classification due to McDuff, B(λ+ 1) \ B(λ) can
be compactified to the nontrivial S2 bundle over S2 with a
standard symplectic form, namely CP2#CP2.

There are two natural sections, G, the symplectic reduction of
∂B(λ+ 1), and E , the symplectic reduction of ∂B(λ).

Note G has area λ+ 1 and E has area λ.
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For generic J, there is a foliation by holomorphic spheres in the
class of the fiber F = G − E . These spheres have area 1.

The idea is to stretch the almost complex structure along
L = L(1,1). Certain spheres split along L into two Maslov 2
planes.

Let P be such a plane disjoint from G, and suppose its
boundary lies in a homology class (m,n). Set
e = P • E ∈ {0,1}.

We compute

µ(P) = 2(m + n)− 2e = 2; area(P) = m + n − λe.

Therefore

area = 1 + e − λe = 1− e(λ− 1) > 0

which means e = 0 and area = 1. This is a contradiction as the
other plane must also have positive area.
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When λ > 3 the construction does not apply because B(λ) also
contains L(1,2) and L(2,1). We can displace these by a similar
method but only in a ball of size at least 5.

Question: Is cG(B(R) \ L) = 3 for all 4 ≤ R ≤ 5?

In progress: cG(B(R) \ (L ∪ {z1z2 = 0})) = 3.

Question: What is cG(R4 \ L)? Is it finite? Is there a staircase?
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Another measure of size is the existence of Lagrangian tori with
given area class (Lagrangian capacities).

Question: Which Lagrangian submanifolds exist in a
Lagrangian complement?

Eventually would like a theory about Lagrangian intersections
of disjoint unions (of possibly non Hamiltonian isotopic tori), but
can anyway again see rigidity in a bounded region.

Related work here of Polterovich-Shelukhin and Mak-Smith.
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Definition. Say a Lagrangian is integral if the area class takes
integer values.

Define a cube P(c, c) = {π|z1|2 < c, π|z2|2 < c}.

Theorem (H., Kerman)
Let c ≤ 2. Then any integral L ⊂ P(c, c) intersects L(1,1).

Let c > 2. Then there exists
P(1,1) ↪→ P(c, c) \

⋃
1≤k ,l≤bcc L(k , l).
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Talk about rigidity result. Let LC = L(1,1). Suppose
L ⊂ S2(2)× S2(2) is monotone and L ∩ LC = ∅.

(Work with Opshtein implies that an integral Lagrangian must
be monotone.
In particular, if k ≥ 2 there are no Hamiltonian diffeomorphisms
L(1, k) ↪→ P(2,2).)

Denote S0 = S2 × {0}; S∞ = S2 × {∞}; T0 = {0} × S2;
T∞ = {∞} × S2.

Proposition
Up to Hamiltonian diffeomorphism, we may assume L is disjoint
from S0, S∞, T0, T∞.

Note that S2 × S2 \ {S0 ∪ S∞ ∪ T0 ∪ T∞} can be identified with
a subset of T ∗T 2, say with zero section L(1,1).
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Theorem (Arnold)
Homologically nontrivial Lagrangian tori in T ∗T 2 are
homologous to L(1,1).

Theorem (Dimitroglou-Rizell, Goodman, Ivrii)
Any exact L ⊂ T ∗T 2 is Hamiltonian isotopic to the zero section.

Corollary
Exact L ⊂ T ∗T 2 intersect the zero section.
Homologically nontrivial Lagrangian tori which are monotone in
S2 × S2 intersect the zero section. (See also Cieliebak,
Schwingenheuer.)

But not all monotone Lagrangian tori are Hamiltonian isotopic
to LC (Chekanov) and so not all tori can be displaced from the
axes to become homologically nontrivial.
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The plan is to remove a different configuration of curves.

Example. Suppose G,H ⊂ S2 × S2 holomorphic spheres in
the class (1,d).

They intersect in 2d points; let F1, . . . ,F2d be spheres in the
class (0,1) through these points.

Blow-up the points and let Ĝ, Ĥ, F̂i be the proper transforms.

Inflate Ĝ and Ĥ with capacity d .

Blow down F̂1, . . . , F̂2d .

The result is symplectomorphic to a monotone
S2(2d + 2)× S2(2d + 2) with Ĝ, Ĥ mapping to (1,0) curves.
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Aim to do this keeping L, LC monotone, such that they become
homologically nontrivial in the complement of Ĝ ∪ Ĥ ∪ T0 ∪ T∞.

Finding ‘linking’ spheres seems easier in high degree.
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How to find curves of Type 2 with respect to L and LC?

Fix d + 1 points on LC and d points on L. There exists a unique
J-sphere in class (1,d) through the points. Then stretch the
neck along L ∪ LC .

1. Building is Type 2 with respect to LC . Will see d planes
covering broken leaves along LC .

2. By contradiction, if building is Type 1 for L then see d planes
covering disks in τ . (Otherwise the planes result in 2d zeros
and poles.)

3. Remaining curves have area (2d + 2)− d − d = 2, but have
d total zeros and poles. Can exclude this by monotonicity.
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Thank-you!
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