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Overview

A high-level summary of various aspects of machine learning in LHC data 
reconstruction, mostly based on CMS examples.

A short summary of a particular use case: ML for combining signals across 
detector subsystems with particle flow.

This talk is in personal capacity (not representing CMS or CERN), representing 
my biased views.

You can find a great and fairly complete overview of ML papers in HEP at 
https://iml-wg.github.io/HEPML-LivingReview/.

https://iml-wg.github.io/HEPML-LivingReview/
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“The primary goal of the experiments at the CERN Large Hadron Collider 
(LHC) is to answer fundamental questions in particle physics.”
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LHC schedule

��



How do particles acquire mass?
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Higgsdependence (2012) Higgs couplings (2019)

Higgs self-interaction (~2030)

The first and so far only observed 
spinless elementary particle!
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General purpose detectors

credit: ATLAScredit: CMS
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The cylindrical onion
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Particles in detector layers



Reconstruction, simplified
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Charged particle tracking

credit

Combining detector subsystems

Photons

Jets
Energy clustering

http://cds.cern.ch/record/2036483?ln=en


Jet formation
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Jets are an emergent phenomenon!

Evolution from femtoscale to meter-scale, 15 
orders of magnitude!

The jet structure encodes information about 
the underlying physics: particle origins, 
energies, coupling strengths.

https://www.ericmetodiev.com/post/jetformation/


Jet origins
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https://www.quantumdiaries.org/tag/top-quark/


Observing jets
The solid blue curved lines are:
A. Neutral particles: e.g. neutrons, photons
B. Charged particles: e.g. pions, electrons
C. Unstable particles: e.g. Higgs bosons, W 

bosons

The dashed blue straight lines are:
A. Neutral particles
B. Charged particles
C. Unstable particles

The green blocks are:
A. Tracker hits
B. Calorimeter hits
C. Missing transverse energy

13What is the originating particle of the jet?
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Simulated datasets

We can use the full Standard 
Model predictive machinery to 
simulate millions of examples with 
full detector interactions! https://github.com/jpata/gnn-hep-lecture/blob/main/intro-to-gnns.ipynb 

https://github.com/jpata/gnn-hep-lecture/blob/main/intro-to-gnns.ipynb


Discriminating with observables

credit
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Compared to a light quark jet, a jet 
from a b-quark has

A. On average, lower absolute values 
of the impact parameter

B. On average, higher absolute 
values of the impact parameter 

C. On average, comparable values of 
the impact parameter

Construct observables based on theory or 
prior physics knowledge.

Things get complicated in the real world: 
systematics, irreducible backgrounds.

Always need to validate and calibrate on real 
data!

https://www.researchgate.net/figure/The-transverse-impact-parameter-a-and-its-significance-b-are-shown-for-tracks_fig2_288020461
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Dataset Loss Model Optimizer 

Supervised ML ≃ fitting nonlinear models on large datasets



B-jet identification: multivariate 
classification
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Combine individual observables 
nonlinearly, classify examples using a 
decision boundary.



Observation of Higgs to b quarks: energy regression
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1709.07497

https://arxiv.org/pdf/1709.07497.pdf


Neural networks
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Multivariate, nonlinear, highly over-parameterized functions.

https://www.researchgate.net/figure/Number-of-parameters-ie-weights-in-recent-landmark-neural-networks1-2-31-43_fig1_349044689


Neural network models for various data types

Feedforward networks ~ simple feature vectors

Convolutional neural networks ~ 2D/3D images

Recurrent neural networks / LSTM ~ ordered sequences

Graph neural networks ~ sets, graphs

Transformers ~ ordered sequences, sets

20



Jets as images
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https://indico.cern.ch/event/714134/contributions/2970784/attachments/1641370/2621282/Kagan_MIT_2018.pdf


Encoding symmetries
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Process the image with learnable 
translation-invariant filters: 
Convolutional Neural Networks



Tau identification with CNNs
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https://indico.cern.ch/event/868940/contributions/3813676/attachments/2081474/3496242/AndreaCardini-ICHEP2020-DeepTau.pdf


The computing challenge
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LHC is compute-limited, we fight for every CPU cycle and kilobyte.



Sets of feature vectors
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Set to graph
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Neural nets on graphs
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Constructing graphs
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All-to-all
Predefined 
neighborhood

Learned feature space



Physics data as graphs

292007.13681

Jet constituents 
(all-to-all)

Particle tracking 
(neighborhood)

Calorimeter clustering 
(learned)

Event identification 
(all-to-all)

https://arxiv.org/pdf/2007.13681.pdf


Graph nets in a nutshell
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J. Leskovec et al [2021]

http://web.stanford.edu/class/cs224w/slides/01-intro.pdf


A concrete case: machine learned particle flow 
reconstruction

31
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https://iml-wg.github.io/HEPML-LivingReview/ 

https://iml-wg.github.io/HEPML-LivingReview/


Particle reconstruction
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The particle flow algorithm aims to identify and reconstruct individually all of 
the particles produced in a collision, through an optimal combination of the 
information from the entire detector.



Particle Flow algorithm
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1808.02094 

https://arxiv.org/pdf/1808.02094.pdf
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Machine learned particle flow reconstruction
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“Efficient machine-learned particle-flow reconstruction using graph neural networks”; 
JP, J. Duarte, J-R Vlimant, M. Pierini, M. Spiropulu; Eur. Phys. J. C (2021) 81: 381



Open benchmark dataset for particle flow reconstruction
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Model implementation
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Scalable graph building
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Avoid a quadratic bottleneck with 
locality-sensitive hashing.

https://ai.googleblog.com/2020/01/reformer-efficient-transformer.html


Learned binning
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Learned graph structure

42



Application in the CMS experiment
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Reconstructed with standard particle flow. Machine-learned particle flow

“Machine Learning for Particle Flow Reconstruction at CMS”, CMS Collaboration, 2021 
[JP on behalf of CMS, ACAT2021, Daejeon, South Korea; CERN CDS]

https://indico.cern.ch/event/855454/contributions/4597457/
https://cds.cern.ch/record/2792320/


Training on simulation
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● Trained on 40k events with pileup + 2.4M single-particle events
● ~5 days on 5 GPUs in the KBFI cluster
● Hyperparameter optimization at the Julich supercomputing center [E. Wulff]

https://indico.cern.ch/event/855454/contributions/4598499/


Particle distributions
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Jets in full reconstruction
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https://twiki.cern.ch/twiki/bin/viewfile/Sandbox/Lecture?rev=1;filename=Philipp_Schieferdeckers_Lecture.pdf


Missing transverse energy
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Validate performance under different physics conditions (=datasets).
We found that we need to augment the training dataset with more high-energy 
neutral hadrons for better generalization to e.g. QCD events.



Interpreting ML models
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“Explaining machine-learned particle-flow reconstruction”; Farouk Mokhtar, Raghav 
Kansal, Daniel C Diaz Javier Duarte, JP, Maurizio Pierini, Jean-Roch Vlimant
NeurIPS 2021, Machine Learning and the Physical Sciences, 2111.12840 
[physics.data-an]

● What inputs are relevant for a 
particular model output?

● Compute layerwise relevance 
scores

● Aggregate along the graph 
structure

https://ml4physicalsciences.github.io/2021/


Speeding up reconstruction

● Besides good physics performance, 
reconstruction needs to be fast and 
computationally efficient

● Neural nets are well-suited for GPUs 
& other parallel processors

● Important to avoid a quadratic 
scaleup with occupancy

● Next steps are to test the MLPF 
algorithm on real data in CMS in 
Run3

● Also looking into extending this for 
FCC reconstruction
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Next steps on MLPF

● Improve the training statistics, additional validation in the tails of distributions
● Improve GPU inference integration in CMS reconstruction software
● LHC Run 3 is an opportunity to test machine-learned particle flow 

reconstruction on real data!
● The algorithm is generic - possible feasibility studies for future detectors
● This dataset for further studies on interpretability
● Integrate with machine-learned tracking and clustering from upstream 

reconstruction
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Summary

● Fundamental physics + ML: a unique combination of large datasets, accurate underlying 
quantitative models and hard physics problems

● The LHC is a rich area for applied ML methods, hundreds of models running in 
production at any given time

● Machine learning is about fitting distributions on data with numerical optimization, can 
augment imperative algorithms

● Data reconstruction at the LHC is a challenging problem, well-suited to differentiable, 
machine-learned algorithms:

○ “Efficient machine-learned particle-flow reconstruction using graph neural networks”; JP, J. 
Duarte, J-R Vlimant, M. Pierini, M. Spiropulu; Eur. Phys. J. C (2021) 81: 381

○ “Machine Learning for Particle Flow Reconstruction at CMS”, CMS Collaboration, 2021 [JP on 
behalf of CMS, ACAT2021, Daejeon, South Korea; CERN CDS]

○ “Explaining machine-learned particle-flow reconstruction”; Farouk Mokhtar, Raghav Kansal, 
Daniel C Diaz Javier Duarte, JP, Maurizio Pierini, Jean-Roch Vlimant; NeurIPS 2021, Machine 
Learning and the Physical Sciences

● Encoding physics priors (=symmetries) can improve the representation power of 
neural networks
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https://indico.cern.ch/event/855454/contributions/4597457/
https://indico.cern.ch/event/855454/contributions/4597457/
https://cds.cern.ch/record/2792320/
https://ml4physicalsciences.github.io/2021/
https://ml4physicalsciences.github.io/2021/


Backup
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Optimization over large datasets
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minibatch

batch

https://kenndanielso.github.io/mlrefined/blog_posts/13_Multilayer_perceptrons/13_6_Stochastic_and_minibatch_gradient_descent.html


Loss surface of ANN-s
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https://www.cs.umd.edu/~tomg/projects/landscapes/


Overfitting

credit 
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https://www.researchgate.net/figure/Example-of-overfitting-in-classification-a-Decision-boundary-that-best-fits-training_fig1_349186066


Train, test and validate

56



Lessons learned

● It’s all about the dataset!
● Set up a simple baseline method and simple performance metrics!
● Decouple the model and how you measure the performance of a model.
● Change one thing at a time.
● Visualize a few predictions, understand where and why they fail.
● Visualize the learning dynamics. What is learnt quickly, what takes time?
● Don’t try fancy methods before you get a simple method to work.
● Try to reuse existing models before inventing your own.
● ML can only attempt to answer to questions that you can pose quantitatively.
● All models are wrong, some models are useful.

57



Top quark / Higgs jets

credit 
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One top jet, one W jet. Credit: CMS.

https://indico.cern.ch/event/745718/contributions/3205082/attachments/1753205/2841505/JetTagging_Overview.pdf
https://cms.cern/news/getting-excited-about-quarks


Jet substructure to jet identification

link

A B C

D E

Which is which?

● q/g
● H->bb
● t->bW->bqq
● b
● W->qq
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https://www.researchgate.net/figure/Pictorial-representation-of-ordinary-quark-and-gluon-jets-top-left-b-jets-top_fig1_336731584


A full event

link

This event has:
A. ~5 jets
B. ~10 jets
C. ~20 jets
D. ~50 jets

We need X numbers to represent this 
event at the level of momentum 
vectors of the jets and leptons:
A. X~10
B. X~50
C. X~500
D. X~5000

60

https://news.fnal.gov/2014/05/what-is-a-jet/


Identifying collision events 

link

Supersymmetry event

Standard model ttbar
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https://www.nature.com/articles/ncomms5308


link 

Statistical discriminator
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https://link.springer.com/chapter/10.1007/978-3-319-62840-0_9


Machine learning: mathematical models optimized on data.
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https://www.researchgate.net/figure/Classification-of-the-most-common-machine-learning-algorithms_fig2_335810150


Classification

credit 
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Input variable

In
pu

t v
ar

ia
bl

e

x1 x2 label Label as 
number

0.5 0.5 blue 0

1.0 0.7 blue 0

1.0 1.0 orange 1

... ... ...

https://scipython.com/blog/plotting-the-decision-boundary-of-a-logistic-regression-model/


Regression
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y x y

0.0 0.1

0.0 0.15

0.2 0.02

... ...



Supervised learning
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https://indico.cern.ch/event/1023573/contributions/4400335/attachments/2296866/3906358/Kagan_ML_HCPSS_Lecture1.pdf


Optimization
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Which model has a lower overall 
error?
A. Left
B. Right

How many parameters does the 
linear model (blue line) have?
A. One
B. Two
C. Three
D. Undefined

What are the units of the mean 
squared error E?
C. The units of y
D. The units of y2

E. Unitless
Mean squared error

Our model: y = mx + c



Optimization game
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Compute total error

Update m, c

Compute derivatives of dE/dm, dE/dc

https://towardsdatascience.com/linear-regression-using-gradient-descent-97a6c8700931


Batched gradient descent
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minibatch

batch

https://kenndanielso.github.io/mlrefined/blog_posts/13_Multilayer_perceptrons/13_6_Stochastic_and_minibatch_gradient_descent.html


Choosing the right learning rate
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https://cs231n.github.io/neural-networks-3/
https://www.jeremyjordan.me/nn-learning-rate/


Artificial/deep neural network

71

f(x, w, b) = y

How many tunable parameters 
does this model have?
A. km+1
B. km (km + 1)
C. 2 km

In this image, uk, vk, yk are
A. Scalars (single numbers)
B. Vectors (1D lists of numbers)
C. Tensors (nD matrices)

km inputs 1 output
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What would be a suitable 
activation function for binary 
classification, with output values 
from 0...1
A. Sigmoid
B. ReLU
C. Linear

What would be a suitable output 
activation function for 
regression, where the output 
domain is 0...500 (e.g. 
reconstructed mass)
A. Sigmoid
B. ReLU
C. Linear
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The number of nodes in the hidden 
layer p should be
A. Larger than the number of 

inputs n
B. Smaller than the number of 

inputs n
C. Exactly the same as the 

number of inputs n
D. Is not fixed and can be 

chosen as needed

p hidden unitsn inputs 1 output



Representing data
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Collider events contain a variable number of 
particles of various types.

Typical DNNs require a 
fixed size n input.

How to map events → ℝn ?



Categorical variables
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Your MC simulation can contain jets, 
electrons, muons and photons. How 
many bits are required to represent 
objects of all classes?
A. One
B. Two
C. Three
D. Four
E. Five

One-hot encoding.

https://www.kaggle.com/alexisbcook/categorical-variables


Bias vs. variance
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https://www.researchgate.net/figure/Visualizing-bias-and-variance-tradeoff-using-a-bulls-eye-diagram_fig3_318432363
https://stats.stackexchange.com/questions/336433/bias-variance-tradeoff-math


Training and validation datasets
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Regularization

Building robust models with respect to 
fluctuations in the input dataset.

Dropout: randomly disable neural network 
nodes at training time.
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What would happen if the dropout 
was applied not only in training, but 
also during inference?
A. The network output would 

always be zero
B. The network output would be 

even more regularized
C. The network output would be 

more noisy from one 
prediction to the next.

http://primo.ai/index.php?title=Dropout


Regularization with more data
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https://ai.googleblog.com/2017/07/revisiting-unreasonable-effectiveness.html


Example of overfitting and regularization
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https://towardsdatascience.com/preventing-deep-neural-network-from-overfitting-953458db800a
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“Higgs event”

“ttbar event”
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“ttbar event”

on MC simulation + real data

on MC simulation

Recap

https://developer.nvidia.com/blog/inference-next-step-gpu-accelerated-deep-learning/


Tensorflow playground
https://playground.tensorflow.org
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How many hidden neurons required 
to fit the “two blobs” dataset?
A. One
B. Two
C. Three

How many hidden neurons required 
to fit the circle dataset?
D. One
E. Two
F. Three

Two blobs Circle

https://playground.tensorflow.org


Clustering
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Reconstructing particle showers

Hits → clusters → particle 
candidates.

How many clusters do we expect?

What’s the “cost” of incorrectly 
merging/splitting a cluster?

How do you determine the particle 
properties from the cluster?

link
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https://news.fnal.gov/2020/09/the-next-big-thing-the-use-of-graph-neural-networks-to-discover-particles/


Particle tracking

link 
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https://cs.lbl.gov/news-media/news/2018/physicists-and-machine-learning-experts-team-up-to-tackle-the-trackml-challenge/


Reconstruction across different detector systems

link 
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https://cds.cern.ch/record/2750781?ln=en


Generative modelling
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MC generation Detector simulation Comparison with data



Generative modeling with ML

https://openai.com/blog/generative-models/
88



Overparameterization
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https://www.researchgate.net/figure/Number-of-parameters-ie-weights-in-recent-landmark-neural-networks1-2-31-43_fig1_349044689


Semi-supervised methods

901802.00008  

unlabeled

Labeled examples 
(e.g. simulation)

https://arxiv.org/pdf/1802.00008.pdf

