
The Fock Pseudomonad: Groupoidifying Second
Quantization

(Based on work with Jamie Vicary)

Jeffrey C. Morton

SUNY Buffalo State College

TQFT Club Seminar, Lisbon, January 2022



Outline

� The Heisenberg Algebra and the Fock Monad

� Groupoidification and the Span Construction

� The Fock Pseudomonad

� The Categorified Heisenberg Algebra

� 2-Hilbert Spaces and Representations of Span2(Gpd)



Fock Representation of Heisenberg Algebra

The one-variable Heisenberg algebra is an algebra H given by
two generators a (“annihilation”) and a† “creation”), satisfying the
canonical commutation relation:

[a, a†] = aa† − a†a = 1

The general Heisenberg algebra has generators ai and a†i for each
i = 1, . . . , n, . . . .
There is only one nontrivial, irreducible representation (which is
faithful) of the algbera, on Fock space, H �→ Aut(F), where:

F = C[[z ]]

(The space of (formal) power series in z).



In this representation, the algebra is generated by:

af (z) = ∂z f (z)

and
a†f (z) = zf (z)

The commutation relation holds for a and a†, since:

∂z(zf (z)) = z∂z f (z) + f (z)

If we define an inner product on F where {zn} is an orthogonal
basis such that

�zn, zn� = 1

n!

then a† is the (linear) adjoint of a.



Fock Construction

Jamie Vicary has analyzed this representation construction in the
general context (C, †,⊗,⊕) of a category C with a †-structure
(adjoint/dual arrows), tensors (a symmetric monoidal product),
and direct sums (biproducts). (The usual setting is Hilb.)
It turns out the “Fock Space” construction relies on the existence
of an adjunction:

C CMon(C)

Q

R

⊥

Here, CMon(C) is the category of commutative monoid objects in
C, and R is the associated forgetful functor. The left-adjoint Q the
“free commutative monoid object” functor.



Adjunctions induce monads on their underlying categories, so we
have

F = RQ : C → C

It acts on objects by:

FC(X ) =
�

n

X⊗sn

where X⊗sn is the symmetric n-fold tensor product. This is built
from X ⊗s X , the equalizer L in the diagram:

L X ⊗ X X ⊗ X
s

τX ,X

idX⊗X

When C = Hilb, this is just the symmetric part of the tensor
product.



A graphical calculus for 1-cells in C can be extended to represent
the Fock construction: an image under F is drawn as ‘contained’
within a pair of grey lines. The following image represents the
1-cell F (f ) : F (X ) → F (Y ):

f f
F



The creation and annihilation operators a and a† are constructed
using two facts:

� F is a monad, and has a unit η : IdC ⇒ F and counit
� : F ⇒ IdC (which represent the “inclusion of the 1-particle
state” into Fock space and projection onto it)

� F is symmetric monoidal relating biproduct and tensor
product, so that

F (X ⊕ Y ) ∼= F (X )⊗ F (Y )

a a



Categorification

We want a categorification of this construction. This means:

� an analogous structure replacing set-based structures with
category-based structures

� not systematic: any inverse to some decategorification
process, such as:
� Degroupoidification (Baez-Dolan): a functor

D : Span1(Gpd) → Hilb
� Khovanov-Lauda: C �→ K0(C ), the Grothendieck ring (used for

algebraic categorification of quantum groups)

In fact, we can find both - and show how they’re related.



Groupoidification

Definition
There is a 2-category Gpd, with:

� Objects: Groupoids (as categories, possibly internal to
spaces, with all morphisms invertible)

� Morphisms: Functors (internal)

� 2-Morphisms: Natural Transformations (internal)

Facts: Gpd has a number of properties which make the
construction which follows possible:

� Gpd has products, coproducts, and a terminal object

� Gpd has (homotopy) pullbacks



Definition

The monoidal category Span1(Gpd) has:

� Objects: (“tame”) groupoids.

� Morphisms are isomorphism classes of (“tame”) spans of
groupoids, so that A

F−→ B is a span of the form:

X

B A

t s

up to isomorphism of spans

� Monoidal (tensor) Product: Disjoint union of groupoids
(and spans).

(Note: the “Span Construction” taking a category C to Span(C)
amounts to freely adjoining adjoints for all morphisms.)



Definition - cont’d

Composition of spans is given by a pseudo-pullback (a.k.a.
homotopy pullback) groupoid (J ↓ G ):

Y

C B A

X

(J ↓ G )

FGJK

PY PX

α
�

K ◦ PY F ◦ PX



Based on the universal property described above, a standard
construction for (J ↓ G ) is the following groupoid:

� Objects are triples
�
x ∈ Ob(X), y ∈ Ob(Y),G (x)

f−→ J(y)
�
.

� Morphisms (x1, y1, f1) → (x2, y2, f2) are pairs of morphisms
x1

a−→ x2 and y1
b−→ y2 satisfying the following commuting

diagram:

G (x1) J(y1)

G (x2) J(y2)

G (a)

f2

f1

J(b)



Representation in Hilb

The category Span1(Gpd) has a representation into Hilbert spaces
(alternatively: inner product spaces) which is the basis of
Groupoidification:

Definition
The degroupoidification functor D : Span1(Gpd)) → Hilb takes:

� Objects: D(A) goes to CA, the space of invariant (and, if
relevant, L2) functions on objects of A, with the inner product
where

�δa, δb� = δa,b#(Aut(a))

� Morphisms: The morphism A
F−→ B above goes to t� ◦ s�, the

pullback along s followed by the adjoint of the pullback aloing
t

This functor is †-monoidal: it preserves the (free!) adjoints and the
monoidal product.



Groupoidification of the Fock Representation

Baez and Dolan introduced a groupoidification of the Fock space
representation of H. The correspondence is:

� Representation Space: C[[z ]] is represented by the groupoid
FinSet0 of finite setse and bijections

� (State) Vectors: A vector in C[[z ]] corresponds to a “stuff
type”, i.e. a span 1 ← G → FinSet0

� Generators: The operators a and a† are dual spans:

FinSet0

FinSet0 FinSet0

+1 Id

The functor +1 is the “disjoint union with a one-element set”
functor.



The Fock monad F can be defined in any †-monoidal category
with †-biproducts, including both Hilb and Span1(Gpd). Denoting
these by FS and FH respectively, we have:

Theorem
The following diagram commutes up to natural equivalence:

Span1(Gpd) Hilb

Span1(Gpd) Hilb

FS

D

D

FH

Indeed: the Fock representation of the Heisenberg algebra in Hilb
is the degroupoidification of the same construction in Span1(Gpd).



The spans A and A† have interpretations as processes performed on
on “sets with extra structure” (formally, combinatorial species):

� A : “Remove an element from set S” (before defining the
species)

� A†: “Add a new element to set S”

The commutation relation becomes:

A ◦ A† � (A† ◦ A)⊕ idFinSet0 ,

(Where ⊕, the biproduct in Span1(Gpd), is just disjoint union.)

This has an interpretation in terms of combinatorial histories: there
is one more way to add an element to a set S , and then remove an
element than there is to first remove an element from S and then
add an element. This extra way is equivalent to the identity.



Lifting to a 2-category

Since Gpd is a 2-category, the span construction can be extended,
to give 2-morphisms between spans. We can use this extension to
find a 2-categorical analog of constructions in Span1(Gpd).

Definition
The 2-category Span2(Gpd) has:

� Objects: Groupoids

� Morphisms: Spans of groupoids

� 2-Morphisms: Isomorphism classes of spans of spans:

X

Y

ZB A

G F

KJ

S

T

νµ



� For Cartesian C, Span(C) is the universal 2-category
containing C, for which every morphism in C has a
(two-sided) adjoint.

� In fact, Span(C) is a †-monoidal, †-abelian 2-category.
� There is a Fock PSEUDOMONAD for any †-monoidal

†-abelian 2-category
� It is associated to a pseudoadjunction and gives the “free

symmetric pseudomonoid object”:

FC(X ) =
�

n

X⊗sn

This uses the pseudoequalizer, the universal triple (L, s, ντX ,X
):

L X ⊗ X X ⊗ X
s

τX ,X

idX⊗X

ντX ,X



Theorem
The pseudoequalizer in Span2(Gpd) consists of (L, s, ντX ,X

), where:

� L = S2 � X 2, the semidirect product where S2 acts on X 2 by
permutations, so that the morphism (−1, Id) takes (x1, x2) to
(x2, x1)

� s is the span S2 � X 2 i◦Δ← X
Δ→ X 2, where i is the inclusion

map x �→ (1, x)

� ντX ,X
is the identity 2-cell (up to canonical choice of

composite τX ,X ◦ s)



Corollary

The symmetric monoidal product X⊗sn is the groupoid Sn � X n.

this is the “wreath product”, whose objects are n-tuples of
X -objects, and whose morphisms are permutations whose strands
are labelled by X -morphisms:

x1• x2• . . . xn•

x �1• x �2• . . . x �n•

f1
f2 fi fn



Theorem
The free pseudomonoid object

F (G ) =
�

n

Sn � Gn

on an object G ∈ Span(Gpd) is the free symmetric monoidal
category generated by G.

Some special cases are:

F (1) � FinSet0

and
F (n) = nColFinSet0

In each case, we get “creation/annihilation” pairs Ax and A†
x for

each object x .



Khovanov’s Categorification

Khovanov described a categorification of the Heisenberg algebra

Definition
The monoidal category H has:

� Objects: generated by points labelled Q+ (“up”) and Q−
(“down”)

� Morphisms: linear combinations of (string diagrams, agreeing
with orientations at endpoints, taken up to isotopy and certain
local moves):

The monoidal category H� is the Karoubi envelope H = Kar(H�).

(The Karoubi envelope H� makes all idempotents split - i.e. creates
new objects such that idempotent morphisms can be seen as
projections onto them. It includes symmetric and antisymmetric
powers of the objects.)



Local Moves for morphisms of H:

= =

= =+

= 0 =1

Commutation relations become specified isomorphisms, which are
described by such diagrams.



Proposition (Khovanov)

There is a surjective map K0(H
�) → H+ (onto the positive integer

form of the Heisenberg algebra).

(Khovanov conjectured it is an isomorphism.)
This correspondence works by:

� Objects yield generators of the algebra:

Q+ �→ a†

and
Q− �→ a

� Isomorphisms impose equivalence relations on objects

� All other morphisms are ignored



Take Khovanov’s monoidal category H as a bicategory with one
object, •. Compare this to our h ⊂ EndSpan2(Gpd)(FinSet0).

Span2(Gpd) Khovanov

h H
FinSet0 •
A, A† Q−, Q+

IdA, IdA† ↓, ↑
◦ ⊗
η, � ∩, ∪

So Khovanov’s morphisms are 2-morphisms between the
1-morphisms of our earlier string diagrams:



2-Hilbert Spaces

There is a representation of the 2-category Span2(Gpd) into
2-Hilbert spaces, just as there is a degroupoidification of
Span1(Gpd) into Hilbert spaces. More precisely:

Definition
2Hilb is the 2-category of (finitely semisimple) 2-Hilbert spaces,
which consists of:

� Objects: C-linear abelian categories, generated by simple
objects

� Morphisms: 2-linear maps: C-linear (hence abelian) functor.

� 2-Morphisms: Natural transformations

Theorem
There is an ambiadjunction-preserving 2-functor
(“2-linearization”):

Λ : Span2(Gpd) → 2Hilb



Definition
Define the 2-functor Λ as follows:

� Objects: Λ(B) = Rep(B) := Hom(B,Hilb)

� Morphisms Λ(X , s, t) = t∗ ◦ s∗ : Λ(A) −→ Λ(B)

� 2-Morphisms:
Λ(Y ,σ, τ) = �L,τ ◦ N ◦ ηR,σ : (t)∗ ◦ (s)∗ → (t �)∗ ◦ (s �)∗

(The map N is the Nakayama isomorphism between the left and
right adjoints of s∗ or t∗.)
(This is a “pull and push” of functors through the 2-morphism: it
uses adjunctions to add or delete “pull-push” pairs.)



The general construction of the Fock pseudomonad means, as
before, that there are Fock pseudomonads for Span2(Gpd) and
2Hilb, which we again denote FS and FH again. They are
compatible in the following sense:

Theorem
The following diagram commutes up to pseudonatural equivalence:

Span2(Gpd) 2Hilb

Span2(Gpd) 2Hilb

FS

Λ

Λ

FH

Thus, we have a natural analog in 2Hilb of the Fock representation
of the Heisenberg algebra: we call this the categorified quantum
harmonic oscillator.



The 2-vectorial “Fock space” is Λ(FinSet0) ∼=
�

n Rep(Σn). Λ(A)
and Λ(A†) = ⊕n(−⊗ Cn) give representations counting paths in
this lattice:

C
��

�� ��

��
�� �� ��

��
�� �� �� ��

��

��

��
�� �� ��

��
�� �� �� ����

��

��



Prospects and Questions

� Categorification has proved useful in extending TQFT to
higher codimension

� 2-Hilbert spaces can be attached to boundary conditions for
regions in space

� The “2-Fock space” for these 2-Hilbert spaces should be
relevant to extending Quantum Field Theory in general

� The representations of Sn between the totally symmetric
(bosonic) and totally antisymmetric (fermionic)
representations play no role in unextended QFT

� Is this still true in extended QFT?

� What relation do they have to “paraparticle statistics”?


