
Why things don’t work
–

On the extended Smale’s 9th and 18th
problems (the limits of AI) and

methodological barriers

Anders C. Hansen (Cambridge, UiO)

Joint work with:

A. Bastounis (Edinburgh) V. Vlacic (ETH)

Lisbon, January 2022

1 / 51

The impact of deep learning is unprecedented

The New Yorker quotes Geoffrey Hinton (April 2017):

”They should stop training radiologists now.”

2 / 51

How do we determine the foundations of DL?

Google’s Ali Rahimi, winner of the Test-of-Time award 2017
(NIPS), “Machine learning has become alchemy. ... I would like to
live in a society whose systems are built on top of verifiable,
rigorous, thorough knowledge, and not on alchemy.”

3 / 51

The Achilles heel of modern AI/DL: it is

universally unstable

4 / 51

Instabilities in classification/decision problems

5 / 51

Instabilities in classification/decision problems

6 / 51

AI techniques replace doctors

7 / 51

Concern expressed in Science Magazine

8 / 51

Deep Fool

Deep Fool was established at EPFL in order to study the stability of
neural networks.

9 / 51

Deep Fool: Universal perturbations

10 / 51

Deep Fool: Examples

11 / 51

DL is unstable in inverse problems

12 / 51

The press reports on instabilities

13 / 51

Why has the instability problem in DL not

been solved?

14 / 51

Hilbert’s program on the foundations of mathematics

Hilbert’s 10th problem:

Find an algorithm to determine whether a given polyno-
mial Diophantine equation with integer coefficients has an
integer solution.

(Source: Wikipedia)
15 / 51

Hilbert’s program on the foundations of mathematics

Gödel and Turing turned Hilbert’s optimism upside down by showing
how there are true statements in mathematics that cannot be
proven and that there are problems that cannot be computed by an
algorithm.

Hilbert’s 10th problem (Solution): No algorithm exists!

16 / 51

Program on the foundations of DL and AI

Smale’s 18th problem:

What are the limits of artificial intelligence?

A program determining the foundations/limits of DL and AI is
needed.

We need to understand the methodological boundaries.

17 / 51

Neural networks

Let NNN,L,d , with N = (NL,NL−1, . . . ,N1,N0 = d) denote the set
of all L-layer neural networks. That is, all mappings φ : Rd → RNLof
the form

φ(x) = WL(ρ(WL−1(ρ(. . . ρ(W1(x)))))), x ∈ Rd .

Wjy = Ajy − bj , Aj ∈ RNj×Nj−1 , bj ∈ RNj

ρ : R→ R

is some non-linear function that acts pointwise on a vector.

18 / 51

Classification Problems

Consider
f : [0, 1]d → {0, 1}. (1)

We assume that the cost function R is an element of

CF r = {R : Rr × Rr → R+ ∪ {∞} |R(v ,w) = 0 iff v = w}. (2)

As we will discuss the stability of neural networks, we introduce the
idea of well-separated and stable sets. Specifically, we define the
family of well-separated and stable sets S fδ as follows:

S fδ =
{
{x1, . . . , xm} ⊂ [0, 1]d |m ∈ N,

min
x i 6=x j

‖x i − x j‖∞ ≥ 2δ, f (x j + y) = f (x j) for ‖y‖∞ < δ
}
.

19 / 51

Why DL is unstable in classification

Theorem 1 (Bastounis, H, Vlacic)
There is an uncountable collection C1 of classification functions f : [0, 1]d → {0, 1}, – with fixed d ≥ 2 –
and a constant C > 0 such that the following holds. For every f ∈ C1, any norm ‖ · ‖ and every ε > 0,
there is an uncountable family C2 of probability distributions on [0, 1]d so that for any D ∈ C2, any neural
network dimensions N = (NL = 1,NL−1, . . . ,N1,N0 = d) with L ≥ 2, any p ∈ (0, 1), any positive integers
q, r , s with

r + s ≥ C max
{
p−3, q3/2[(N1 + 1) · · · (NL−1 + 1)

]3/2}
, (3)

any training data T = {x1, . . . , x r} and validation data V = {y 1, . . . , y s}, where the x j and y j are drawn
independently at random from D, the following happens with probability exceeding 1− p.

(i) (Success – great generalisability). We have T ,V ∈ S f
ε((r∨s)/p), where ε(n) = (Cn)−4, and, for every

R ∈ CF r , there exists a φ such that

φ ∈ argmin
ϕ∈NNN,L

R
(
{ϕ(x j)}rj=1, {f (x j)}rj=1

)
(4)

and
φ(x) = f (x) ∀x ∈ T ∪ V. (5)

(ii) (Any successful NN in NNN,L – regardless of architecture – becomes universally unstable). Yet,
for any φ̂ ∈ NNN,L (and thus, in particular, for φ̂ = φ) and any monotonic g : R → R, there is a
subset T̃ ⊂ T ∪ V of the combined training and validation set of size |T̃ | ≥ q, such that there exist
uncountably many universal adversarial perturbations η ∈ Rd so that for each x ∈ T̃ we have

|g ◦ φ̂(x + η)− f (x + η)| ≥ 1/2, ‖η‖ < ε, |supp(η)| ≤ 2. (6)

(iii) (Other stable and accurate NNs exist). However, there exists a stable and accurate neural network
ψ that satisfies ψ(x) = f (x) for all x ∈ B∞ε (T ∪ V), when ε ≤ ε((r ∨ s)/p).

20 / 51

Interpreting Theorem 1

(i) No training model where the dimensions of the NNs are fixed
can cure instability.

(ii) Variable dimensions are necessary for stability and accuracy.

(iii) There are accurate and stable NNs, but DL methods do not
find them.

(iv) Why instability? – Unstable correlating features are picked up
by the trained NN.

21 / 51

Mathematics of unstable NNs

22 / 51

Can we make AI trustworthy?

23 / 51

Instabilities in classification/decision problems

24 / 51

EU legal framework for AI

European Commission’s outline for a legal framework for AI:

”In the light of
the recent advances in artificial intelligence (AI),
the serious negative consequences of its use for
EU citizens and organisations have led to multiple
initiatives from the European Commission
to set up the principles of a trustworthy and
secure AI. Among the identified requirements,
the concepts of robustness and explainability
of AI systems have emerged as key elements
for a future regulation of this technology.”

– Europ. Comm. JCR Tech. Rep. (Jan 2020).

”On AI, trust is a must, not a nice to have.
[...] The new AI regulation will make sure that
Europeans can trust what AI has to offer. [...]
High-risk AI systems will be subject to strict obligations before they can be
put on the market: [requiring] High level of robustness, security and accuracy.”

— Europ. Comm. outline for legal AI (April 2021).

25 / 51

Do algorithms fail?

–

... and can we determine when they are

wrong?

26 / 51

The Problems:

We consider two concrete examples: the linear program

min
x∈R2

x1 + x2 subject to x1 + (1− δ)x2 = 1, x1, x2 ≥ 0, (7)

where δ > 0 is a parameter.

27 / 51

Testing MATLAB’s linprog

+3 The solution is feasible with respect to the relative ConstraintTolerance tol-
erance, but is not feasible with respect to the absolute tolerance.

+1 Function converged to a solution x.

0 Number of iterations exceeded options.MaxIterations or solution time in sec-
onds exceeded options.MaxTime.

−2 No feasible point was found.

−3 Problem is unbounded.

−4 NaN value was encountered during execution of the algorithm.

−5 Both primal and dual problems are infeasible.

−7 Search direction became too small. No further progress could be made.

−9 Solver lost feasibility.

Table: The EXITFLAG is used to verify the correctness of the solution.
Possible values for the EXITFLAG output of linprog as well as their
corresponding interpretations are displayed in this table. Note that a value
of 1 indicates the correctness of the solution, whereas other values indicate
various types of failure.

28 / 51

Testing MATLAB’s linprog

‘dual-simplex’ ‘interior-point’ ‘interior-point-legacy’

δ Error EXITFLAG Error EXITFLAG Error EXITFLAG

2−1 0 1 0 1 6.0 · 10−12 1

2−15 0 1 0 1 3.0 · 10−5 1

2−20 0 1 0 1 7.0 · 10−7 1

2−24 0 1 0 1 7.1 · 10−8 1

2−26 1.4 1 1.4 1 1.2 · 10−1 1

2−28 1.4 1 1.4 1 4.6 · 10−1 1

2−30 1.4 1 1.4 1 7.1 · 10−1 1

Table: Testing the output of linprog applied to the problem in (10) for
the three algorithms ‘dual-simplex’, ‘interior-point’ and
‘interior-point-legacy’. The table shows the error ‖x̂ − x̃‖`2 and the value
of EXITFLAG, where x̂ is the true minimiser of (10) and x̃ is the computed
approximate minimiser. Note that machine epsilon is εmach = 2−52.

29 / 51

Linear Programming

30 / 51

Linear Programming

Let
z ∈ argmin

x
〈x , c〉 such that Ax = y , x ≥ 0,

where A ∈ Rm×N , y ∈ Rm, c ∈ RN .

Input: A, y and c .

Problem: Find an algorithm that computes a minimiser z .

In mathematics of information one wants minimisers, not the
objective function.

31 / 51

Smale’s 9th Problem

”Is there a polynomial time algorithm over the real num-
bers which decides the feasibility of the linear system of
inequalities Ax ≥ y , and if so, outputs such an x?”

— S. Smale (Problem 9 from the list of mathematical
problems for the 21st century)

32 / 51

Discrete vs continuous

”But real number computations and algorithms which work
only in exact arithmetic can offer only limited understand-
ing. Models which process approximate inputs and which
permit round-off computations are called for.”

— S. Smale (from the list of mathematical
problems for the 21st century)

33 / 51

Discrete vs continuous

We must be able to handle inaccurate input as
√

2, cos(3) or e2πi/5

will never be represented exactly.

Also, when running floating point arithmetic even 1/3 is
approximated by a base-2 number.

34 / 51

LP in P (NY Times 1979)

LP in P proved by L. Khachiyan – based on work by N. Shor, D.
Yudin, A. Nemirovski. 35 / 51

Standard Complexity Theory

36 / 51

The Extended Model

Given a domain Ω ⊂ Rn of inputs, the algorithm cannot access
ι ∈ Ω, but rather, for any k ∈ N, it can call the oracle O to obtain
ι̃ = O(ι, k) ∈ Rn satisfying

‖O(ι, k)− ι‖∞ ≤ 2−k , ∀ ι ∈ Ω, ∀k ∈ N, (8)

and the time cost of accessing O(ι, k) is polynomial in k.

The extended model with inexact input is considered in many areas
of mathematics including in the work of E. Bishop; M. Braverman &
S. Cook; F. Cucker & S. Smale; C. Fefferman & B. Klartag; K. Ko
and L. Lovász.

37 / 51

Key Problems in Mathematics of Information (38)

Linear Programming

z ∈ argmin
x
〈x , c〉 such that Ax = y , x ≥ 0,

Semidefinite Programming

Z ∈ argmin
X∈Sn

〈C ,X 〉Sn such that〈Ak ,X 〉Sn = bk , X � 0, k ≤ m

Basis Pursuit

z ∈ argmin
x
J (x) such that ‖Ax − y‖ ≤ δ, δ ≥ 0,

Unconstrained Lasso

z ∈ argmin
x
‖Ax − y‖2

2 + λJ (x), λ > 0,

Constrained Lasso

z ∈ argmin
x
‖Ax − y‖2 such that J (x) ≤ τ, τ > 0

where A ∈ Cm×N , y ∈ Cm and J (x) = ‖x‖1 or J (x) = ‖x‖TV.
38 / 51

Key Papers in Mathematics of Information

L. I. Rudin, S. Osher, and E. Fatemi. ’Nonlinear total variation
based noise removal algorithms’,
Physica D: Nonlinear Phenomena (1992).

R. Tibshirani. ’Regression shrinkage and selection via the lasso’,
Journal of the Royal Statistical Society, Series B (1996).

E. J. Candès, J. Romberg, and T. Tao. ’Robust uncertainty
principles: exact signal reconstruction from highly incomplete
frequency information’,
IEEE Trans. Inform. Theory (2006).

D. L. Donoho. ’Compressed sensing’,
IEEE Trans. Inform. Theory (2006).

These papers are cited all together about 100,000 times.

39 / 51

The Extended Smale’s 9th problem

40 / 51

The Extended Smale’s 9th Problem

Problem 2 (The extended Smale’s 9th problem)

Given any of the problems in (38), represented by the solution map
Ξ mapping a class of inputs Ω into a metric space (M, dM), is
there an algorithm which decides the feasibility of the problem, and
if so, produces an output that is correct up to K digits (where the
error is measured via distM) and whose computational cost is
bounded by a polynomial in K and the number of variables n?

41 / 51

The extended Smale’s 9th – computing solutions

Theorem 3 (The extended Smale’s 9th – computing solutions)
Let Ξ denote the solution map to any of the problems (38) with the regularisation parameters satisfying
δ ∈ [0, 1], λ ∈ (0, 1/3], and τ ∈ [1/2, 2] (and additionally being rational in the Turing case) and
consider the ‖ · ‖p-norm for measuring the error, for an arbitrary p ∈ [1,∞]. Let K > 2 be an integer.
There exists a class Ω of feasible inputs so that we have the following.

(i) No algorithm can produce K correct digits on each input in Ω. Moreover, for any p > 1
2

, no
randomised algorithm can produce K correct digits with probability greater than or equal to p on
each input in Ω.

(ii) If we allow randomised algorithms with a non-zero probability of not halting (not producing an
output), then, for any p > 2

3
, no such algorithm can produce K correct digits with probability

greater than or equal to p on each input in Ω. However, there does exist such an algorithm that
can produce K correct digits on each input in Ω with probability 2/3.

(iii) There does exist an algorithm (a Turing or a BSS machine) that produces K − 1 correct digits
for all inputs in Ω. However, any such algorithm will need an arbitrarily long time to achieve this.
In particular, for any fixed dimensions m, N, any T > 0, and any algorithm Γ, there exists an
input ι ∈ Ωm,N such that either Γ on input ι does not produce K − 1 correct digits for Ξ(ι) or the
runtime of Γ on ι exceeds T . Moreover, for any randomised algorithm Γran and p < 1/2 there
exists an input ι ∈ Ωm,N such that

P
(
Γran(ι) does not produce K − 1 correct digits for Ξ(ι) or the runtime of Γ on ι exceeds T

)
> p.

(iv) There exists a polynomial pol : R → R, as well as a Turing machine and a BSS machine that
both produce K − 2 correct digits for all inputs in Ω, so that the number of arithmetic operations
for both machines is bounded by pol(n), where n = m + mN is the number of variables, and the
number of digits required from the oracle (8) is bounded by pol(log(n)). Moreover, the space
complexity of the Turing machine is bounded by pol(n).

42 / 51

The theorem is valid with bounded condition
numbers

Condition of a matrix: Cond(A) = ‖A‖‖A−1‖.

Condition of the mapping Ξ : Ω ⊂ Cn → Cm, linear or non-linear, is
often given by

Cond(Ξ) = sup
x∈Ω

lim
ε→0+

sup
x+z∈Ω

0<‖z‖≤ε

dist(Ξ(x + z),Ξ(x))

‖z‖
.

Feasibility condition number. Define

ρ(A, y) = sup{δ | ‖Ã‖, ‖ỹ‖ ≤ δ ⇒ (A + Ã, y + ỹ) ∈ Ω are feasible},

and this yields the Feasibility Primal (FP) condition number

CFP(A, y) :=
max(‖A‖, ‖y‖)

ρ(A, y)
.

The results in the theorem are valid with uniform bounds on the condition
numbers and input.

43 / 51

Can the ‘exit flag’ be computed?

44 / 51

Can the ‘exit flag’ be computed?

Problem 4 (Can the ‘exit flag’ be computed?)

Consider an algorithm designed to compute any of the problems
(38). Suppose that the algorithm should produce K correct digits.
Can we compute the ‘exit flag’ for this algorithm, i.e., the function
taking on the value 1 if the algorithm succeeds in producing K
correct digits, and 0 otherwise?

Given α > 0 and make the following assumption on the algorithm:

distM(Γ(ι),Ξ(Ω)) < α for all ι ∈ Ω. (9)

45 / 51

Impossibility of computing the ’exit flag’

Theorem 5 (Impossibility of computing the ’exit flag’)
Let Ξ denote the solution map to any of the problems (38) with the regularisation parameters
satisfying δ ∈ [0, 1], λ ∈ (0, 1/3], and τ ∈ [1/2, 2] (and additionally being rational in the
Turing case) and consider the ‖ · ‖p-norm for measuring the error, for an arbitrary p ∈ [1,∞].
Let K ∈ N and fix real α and ω so that 0 < α ≤ ω < 10−K . Then, for any fixed dimensions
N > m ≥ 4, there exists a class of inputs Ω for Ξ such that, if Γ is an algorithm satisfying (9)
with parameter α for the computational problem of approximating Ξ with K correct digits,
then we have the following.

(i) No algorithm, even randomised with access to an exact solution oracle of precision ω, can
compute the exit flag of Γ (with probability exceeding p > 1/2 in the randomised case).

(ii) If we allow randomised algorithms with non-zero probability of not halting (producing an
output), then no such algorithm, even with access to an exact solution oracle of precision
ω, can compute the exit flag of Γ with probability exceeding p > 1/2.

(iii) The problem of computing the exit flag of Γ is strictly harder than computing K correct
digits of Ξ in the following sense: if one is given the exit flag as an oracle then it is possible
to construct an algorithm that computes K correct digits of Ξ. However, if one is instead
given an oracle providing a K -digit approximation to Ξ, then it is still not possible to
compute the exit flag of Γ.

(iv) For linear programming and basis pursuit, however, there exists a class of inputs Ω] 6= Ω
such that no algorithm, even randomised with non-zero probability of not halting, can
compute the exit flag of Γ (with probability exceeding p > 1/2 in the randomised case),
yet one can compute the exit flag with a deterministic algorithm with access to an exact
solution oracle of precision ω.

46 / 51

Key Papers

A. Bastounis, A. C. Hansen, and V. Vlacic. ’The extended Smale’s
9th problem – On computational barriers and paradoxes in
estimation, regularisation, computer-assisted proofs and learning’,
Preprint (2021).

A. C. Hansen. ’On the Solvability Complexity Index, the
n-pseudospectrum and Approximations of Spectra of Operators’,
J. Amer. Math. Soc. (2011).

47 / 51

New book on sale

Compressive Imaging: Structure, Sampling, Learning

(Cambridge University Press)

Compressive
Imaging:

BEN ADCOCK
ANDERS C. HANSEN

Structure, Sampling, Learning

Ben Adcock & Anders C. Hansen
48 / 51

The Problems:

We consider two concrete examples: the linear program

min
x∈R2

x1 + x2 subject to x1 + (1− δ)x2 = 1, x1, x2 ≥ 0, (10)

where δ > 0 is a parameter, and the centred and standardised (so that the
columns of the design matrix are normalised) Lasso problem

min
x∈N

1

m
‖AδDδx − y‖2

2 + λ‖x‖1, (11)

where m = 3,N = 2, λ ∈ (0, 1/
√

3],

Aδ =

1√
2
− δ 1√

2

− 1√
2
− δ − 1√

2

2δ 0

 ∈ R3×2, y =
(

1/
√

2 −1/
√

2 0
)T
∈ R3,

(12)
and Dδ is the unique diagonal matrix such that each column of AδDδ has
norm

√
m

49 / 51

Random matrices – Non-computability is not rare

spgl1 on basis pursuit with δ = 0 MATLAB’s lasso on Lasso (λ = 10−2)

0 2 4 6 8 10

104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure: The vertical axis represents the success rate # of successes
of trials . Success

⇔ computed solution is accurate to at least K = 2 digits (‖ · ‖∞ norm).
The horizontal axis shows the dimension N. In all cases, A ∈ R1×N is iid –
according to the distributions U(a, b), Exp(ν) and N (µ, σ2) – in
particular, the uniform distribution on [a, b], the exponential distribution
with parameter ν and the normal distribution with mean µ and variance σ.

50 / 51

Testing MATLAB’s lasso

Default settings ‘RelTol’ = εmach ‘RelTol’ = εmach

‘MaxIter’ = ε−1
mach

δ Error Runtime Warn Error Runtime Warn Error Runtime Warn

2−1 1 · 10−16 < 0.01s 0 1 · 10−16 < 0.01s 0 1 · 10−16 < 0.01s 0

2−7 0.68 < 0.01s 0 2 · 10−16 0.02s 0 2 · 10−16 0.02s 0

2−15 1.17 < 0.01s 0 1.17 0.33s 1 1 · 10−11 1381.5s 0

2−20 1.17 < 0.01s 0 1.17 0.33s 1 no output > 12h 0

2−24 1.17 < 0.01s 0 1.17 0.34s 1 no output > 12h 0

2−26 1.17 < 0.01s 0 1.17 0.34s 1 no output > 12h 0

2−28 1.17 < 0.01s 0 1.17 < 0.01s 0 1.17 < 0.01s 0

2−30 1.17 < 0.01s 0 1.17 < 0.01s 0 1.17 < 0.01s 0

Table: The output of lasso applied to (11) with inputs as in (12) and λ = 0.1. The table shows
the error ‖x̂ − x̃‖`2 (where x̂ is the true minimiser and x̃ is the computed minimiser), the CPU
runtime, and a boolean value indicating whether a Warning was issued.

51 / 51

