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The impact of deep learning is unprecedented

The New Yorker quotes Geoffrey Hinton (April 2017):

"They should stop training radiologists now.”

2/51



How do we determine the foundations of DL?

Google's Ali Rahimi, winner of the Test-of-Time award 2017
(NIPS), "Machine learning has become alchemy. ... | would like to
live in a society whose systems are built on top of verifiable,
rigorous, thorough knowledge, and not on alchemy.”

. Yann LeCun
December 6 at 8:57am - @
My take on Ali Rahimi's "Test of Time" award talk at NIPS.
Ali gave an entertaining and well-delivered talk. But | fundamentally
disagree with the message.
The main message was, in essence, that the current practice in machine

learning is akin to "alchemy" (his word).
It's insulting, yes. But never mind that: It's wrong!

3/51



The Achilles heel of modern Al/DL: it is
universally unstable
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Instabilities in classification/decision problems

Adversarial attacks on medical machine learning

Samuel G. Finlayson', John D. BowersZ, Joichi Ito?, Jonathan L. ZittrainZ, Andrew L. Beam?, Isaac S. Kohane'
+ See all authors and affiliations

Science 22 Mar 2019:
Vol. 363, Issue 6433, pp. 1287-1289
DOI: 10.1126/science.aaw4399

Article Figures & Data Info & Metrics elLetters PDF

With public and academic attention increasingly focused on the new role of machine learning in
the health information economy, an unusual and no-longer-esoteric category of vulnerabilities in
machine-learning systems could prove important. These vulnerabilities allow a small, carefully
designed change in how inputs are presented to a system to completely alter its output, causing it
to confidently arrive at manifestly wrong conclusions. These advanced techniques to subvert
otherwise-reliable machine-learning systems—so-called adversarial attacks—have, to date, been of
interest primarily to computer science researchers (7). However, the landscape of often-competing
interests within health care, and billions of dollars at stake in systems' outputs, implies
considerable problems. We outline motivations that various players in the health care system may
have to use adversarial attacks and begin a discussion of what to do about them. Far from
discouraging continued innovation with medical machine learning, we call for active engagement
of medical, technical, legal, and ethical experts in pursuit of efficient, broadly available, and

effective health care that machine learning will enable. 5/51



Original image
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Dermatoscopic image of a benign
melanocytic nevus, along with the
diagnostic probability computed
by a deep neural network.

Benign
Malignant

Model confidence

Instabilities in classification/decision problems

Adversarial noise Adversarial example

Perturbation computed Combined image of nevus and
by acommon adversarial attack perturbation and the
attack technique. diagnostic probabilities from

See (7) for details.
Benign
Malignant

/\‘ Model confidence

Adversarial
rotation (8)

Diagnosis: Benign Diagnosis: Malignant
The patient has a history of Adversarial The patient has a history of
back pain and chronic alcohol text substitution (9) lumbago and chronic alcohol
abuse and more recently has L and more recently
been seen in several... has been seen in several...

Opioid abuse risk: High Opioid abuse risk: Low
2777 Metabolic syndrome 4010 Benign essential hypertension
429.9 Heart disease, unspecified ~ Adversarial 272.0 Hypercholesterolemia
278,00 Obesity, unspecified coding (13) 272.2 Hyperglyceridemia

-

Reimbursement: Denied

4299 Heart disease, unspecified
278.00 Obesity, unspecified

Reimbursement: Approved

the same deep neural network.
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Al techniques replace doctors

FDA NEWS RELEASE

FDA permits marketing of artificial intelligence-
based device to detect certain diabetes-related
eye problems

f share eet | in Linkedin = &% Email & Print

For Immediate Release:  April 11,2018
Espaiiol

The U.S. Food and Drug Administration today permitted marketing of the first medical
device to use artificial intelligence to detect greater than a mild level of the eye disease
diabetic retinopathy in adults who have diabetes.

Diabetic retinopathy occurs when high levels of blood sugar lead to damage in the blood
vessels of the retina, the light-sensitive tissue in the back of the eye. Diabetic retinopathy is
the most common cause of vision loss among the more than 30 million Americans living
with diabetes and the leading cause of vision impairment and blindness among working-
age adults.
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Concern expressed

companies are beginning to require other
data types such as imaging and text to prove
that claims are valid. As they do so, other
styles of adversarial attacks may be used as
well to try to continue to dodge detection.

For example, if an insurance company
requires that an image from a mole be run
through a melanoma classifier before ap-
proving reimbursement for an excision,
fraudsters may at first be inclined to submit
moles from different patients to achieve ap-
proval. If insurance companies then begin
utilizing human audits or technical tests
to try to ensure that the images are com-
ing from the correct patient, the next round
would be to move to full adversarial attacks
with imperceptible alterations, such as in
the top figure. Simpler techniques such as
the rotation in the bottom

in Science Magazine

A PATH FORWARD

An essential question remains: when and how
to intervene. Here, the early history of the in-
ternet offers a lesson. The approach to net-
work architecture introduced at the advent of
the internet was centered around the defer-
ral of problems. In their essential 1984 paper,
Saltzer et al. describe a design ethos whereby
problems are to be solved at the end points
of a network by users rather than preemp-
tively within the architecture of the network
itself (74). There is f ly an ad

original hash to that of the data fed through
a targeted algorithm would allow investi-
gators to determine if that data had been
tampered with or changed after acquisition.
Such an intervention would rely on a health
IT infrastructure capable of supporting the
capture and secure ptorage of these hashes.
But as a strictly regulated field with a focus
on accountability and standards of proce-
dure, health care may be very well suited to
such adaptations.

(in terms of simplicity, flexibility, and scalabil-
ity) to leaving future problems unsolved until
their time has come. Another description for

this is the “procrastination principle” (15).
The procrastination principle frames a dif-
ficult question: Should the adversarial-exam-
ples problem in health care

figure could constitute an “An essentiul systems be addressed now—
ethical gray zone—given . . in the early, uncertain days
that a dermatologist could, questlon Femains:  of medical Al algorithms—or
in theory, hold the camera when ﬂﬂd how later, when algorithms and
at any angle. . ” the protocols governing their

Potential applications of [0 LRLErvene. use have been firmed up? At

advarcarial attanke in tha

hact anting naur aanld amin

The coal of strong motives to
manipulate algorithms and the rapid pro-
liferation of algorithms vulnerable to manip-
ulation makes health care a plausible ground
zero for the emergence of adversarial exam-
ples into real-world practice. As adversarial
examples emerge across a range of domains,
we will have to make choices again and again
about whether and how to intervene early at
the risk of stifling development, and how to
balance the promises of ubiquitous machine
learning against liabilities imposed by these
emerging vulnerabilities. And the stakes
will remain high—autonomous vehicles and

AT Awivan wmanane cvetame wrill ha inet ac
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Deep Fool was established at EPFL in order to study the stability of
neural networks.

DEEP LEARNING FOR VISUAL UNDERSTANDING

Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli,
and Pascal Frossard

The Robustness of Deep Networks

A geometrical perspective
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Deep Fool: Universal perturbations

(e) (f)

FIGURE 3. Universal perturbations computed for different deep neural network architectures. The pixel values are scaled for visibility. (a) CaffeNet,
(b) VGG-F, (c) VGG-16, (d) VGG-19, (e) GoogLeNet, and (f) ResNet-152
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Deep Fool: Examples

(a) Wool (b) Indian Elephant  (c) Indian Elephant (d) African Gray (e) Tabby (f) African Gray
S ]

(g) Common Newt (h) Carousel (i) Gray Fox (j) Macaw (k) Three-Toed Sloth (I) Macaw

FIGURE 4. Examples of natural images perturbed with the universal perturbation and their corresponding estimated labels with GoogLeNet. (a)—-(h) Images
belonging to the ILSVRC 2012 validation set. (i)—(I) Personal images captured by a mobile phone camera. (Figure used courtesy of [22].)
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DL is unstable in inverse problems
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The press reports on instabilities
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Why has the instability problem in DL not
been solved?
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Hilbert’s program on the foundations of mathematics

Hilbert’s 10th problem:

Find an algorithm to determine whether a given polyno-
mial Diophantine equation with integer coefficients has an
integer solution.

(Source: Wikipedia)
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Hilbert’s program on the foundations of mathematics

Godel and Turing turned Hilbert's optimism upside down by showing
how there are true statements in mathematics that cannot be
proven and that there are problems that cannot be computed by an
algorithm.

Hilbert’s 10th problem (Solution): No algorithm exists!
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Smale’s 18th problem:
What are the limits of artificial intelligence?

A program determining the foundations/limits of DL and Al is
needed.

We need to understand the methodological boundaries.
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Let NN'n,1,q, with N = (Ng, Ni_1,..., N1, No = d) denote the set
of all L-layer neural networks. That is, all mappings ¢ : RY — RNcof
the form

6(x) = Wi(p(We_r(p(- .. p(Wa(x)))))),  x € RY.

Wiy =Ajy —b;, A e RN>Ni-1 o pc RN

p:R—R

is some non-linear function that acts pointwise on a vector.
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Consider
f:[0,1]¢ — {0,1}. (1)

We assume that the cost function R is an element of
CFr={R:R"xR"—= Ry U{oo}|R(v,w)=0iff v =w}. (2)

As we will discuss the stability of neural networks, we introduce the
idea of well-separated and stable sets. Specifically, we define the
family of well-separated and stable sets Séf as follows:

St = {{xl,...,xm}C [0,1]9 | m € N,

min [ =l 2 20, £+ y) = £6) for Il < o}
x'Z#x]
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Theorem 1 (Bastounis, H, Vlacic)

There is an uncountable collection Cy of classification functions f : [0,1]* — {0,1}, — with fixed d > 2 -
and a constant C > 0 such that the following holds. For every f € C1, any norm || - || and every e > 0,
there is an uncountable family Ca of probability distributions on [0, 1]d so that for any D € Ca, any neural
network dimensions N = (Np = 1, N._1,..., N1, No = d) with L > 2, any p € (0,1), any positive integers
q, r, s with

r+s>Cmax{p> q3/2[(N1+1) - (Ne— 1+l)]3/2} 3)

any training data T = {x*,...,x"} and validation data V = {y",...,y*}, where the x/ and y’ are drawn
independently at random from D, the following happens with probability exceeding 1 — p

i) (Success — great generalisability). We have T,V € S , where e(n) = (Cn)™*, and, for every
=((rvs)/p)
R € CF,, there exists a ¢ such that

[oX S Yoagrgmm R({Lp( .)}]'»:h {f(xj)}jrzl) (4)
and
d(x)=f(x) VxeTuUV. (5)

(ii) (Any successful NN in N'A/y,. — regardless of architecture — becomes universally unstable). Yet,
for any qb € NN, (and thus, in particular, for = ¢) and any monotonic g : R — R, there is a
subset T C T UV of the combined training and validation set of size |T| > q, such that there exist
uncountably many universal adversarial perturbations nj € RY so that for each x € T we have

lg o d(x+m) = Flx+m) = 1/2, |l <e, |supp(n)| < 2. (6)

(iii) (Other stable and accurate NNs exist). However, there exists a stable and accurate neural network
¥ that satisfies 1(x) = f(x) for all x € BX(T UV), when e < e((r V s)/p).
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(i) No training model where the dimensions of the NNs are fixed
can cure instability.

(i) Variable dimensions are necessary for stability and accuracy.

(iii) There are accurate and stable NNs, but DL methods do not
find them.

(iv) Why instability? — Unstable correlating features are picked up
by the trained NN.
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Mathematics of unstable NNs

arXiv.org > ¢s > arXiv:2109.06098

Computer Science > Machine Learning
[Submitted on 13 Sep 2021]

The mathematics of adversarial attacks in Al -- Why deep learning is unstable despite the
existence of stable neural networks

Alexander Bastounis, Anders C Hansen, Verner Vlaci¢

' Newsjournal of the Society for Industrial and Applied Mathematics.

sinews.siam.org

SiAIN NBUS

Volume 54/ Tssue 8
October 2021

Deep Learning: What Could Go Wrong?

By Alexander Bastounis, Anders
C. Hansen, Desmond J. Higham,
Ivan Y. Tyukin, and Verner Viacié

T e of msch wher lortims
can misinterpre sop signs as speed imit
signs with the addition of minimal gral-
it 3], many commentators are wondering
whether curent atifical inteligence (A
slutons e iy b, s,
and s How can the research com-
oy Gty and s soch foes?

Many empirical spproaches investigate
the generation of dversarial attacks: small,
deliberate perturbations (0 an input. thal
cause dramatic changes in @ system’s out-
ot Chnges it el iy
tible o the hums sl predictions
in the i of mage lificaton, whieh
has implications in many high-stakes and
safey.criical setings. The rise of algo-
rithms that consiuct ttacks—and heuristic
techniques thal identify o guard against
them—has ld to & version of conflict
lation wherein atack and defense strtegies
become increasingly ingenious 10},

“These issues concern the conditoning
of the underlying problem and stabilty
of the algorithms in use. Recent rescarch
bt iled mathemates olssoably
from numerical snalysis, applied prob-

abilty, and high-dimensional geometry—
to shed light o this field. However, many
open problems remain.

Inevitability of Attacks
A simple but powerful example helps
illusrate the way in which adverserial
atacks may arie (4], Imagine tat we have
daia ponts < ", which may be pirels
in an image that are stacked into a vector
Suppose that the images come from two.
categories: cas and dogs. Given some fired
vector we R and scalar o, inear clas-
siffer will classiy a new point 2 as a cat or
dog depending upon whether "z s less
than o greaer than . Here, w would be
consimcted according 1o some Sortof bestfit
ecstteon iin et of bk g
£ we pertutb z to 7~ Az, the out

p.u ot o s changes by
Az Suppose that we are abl Lo pestub

ing  perubation with every comporent
Az = eign(u); simlucly

dectease oceurs with Az, ——csigaf1s).
In this way, we can ale the ouput by
el 1f m s the average sce of compo-
s, then a per pielchange of ¢ can

Tead 10 a change of e in the classifier
ouput. The classifer is vulnerzble 1o this
type of attack when the dimension i—the
number of pixels—is arge

“This simple llustration highlights & num-
ber of issues. First, any smooth map can be
welldescribed loally by a firs-onder inear)
Taylor series approximation, meaning thal

this type of atiack is relevant whenever the
attacker has access 10 gradient informa-
tion. In the Black box seting where attack-
ens can only choose inputs and observe
the ding outputs, they could use
fnie difference approximations o build up
the necessary gradient information for the

Sce Deep Learuing n page 3

(D +efl)=ce

W+ el =on
(T +esfil)=cx
(R +e )=

E)mom | oD+ )= (G +ec B0

Figure 1. A psradox of isisbiltes in obop learing, 25 formatied in [2]. Tained nou

nworks (NNs) of ixed dimonsion aro unstable,
dimansion exit. Figurs courtssy of the authors.

table anc accurate NNs of varzble
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Can we make Al trustworthy?
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Original image

+0.04 %

Dermatoscopic image of a benign
melanocytic nevus, along with the
diagnostic probability computed
by a deep neural network.

Benign
Malignant

Model confidence

Instabilities in classification/decision problems

Adversarial noise Adversarial example

Perturbation computed Combined image of nevus and
by acommon adversarial attack perturbation and the
attack technique. diagnostic probabilities from

See (7) for details.
Benign
Malignant

/\‘ Model confidence

Adversarial
rotation (8)

Diagnosis: Benign Diagnosis: Malignant
The patient has a history of Adversarial The patient has a history of
back pain and chronic alcohol text substitution (9) lumbago and chronic alcohol
abuse and more recently has L and more recently
been seen in several... has been seen in several...

Opioid abuse risk: High Opioid abuse risk: Low
2777 Metabolic syndrome 4010 Benign essential hypertension
429.9 Heart disease, unspecified ~ Adversarial 272.0 Hypercholesterolemia
278,00 Obesity, unspecified coding (13) 272.2 Hyperglyceridemia

-

Reimbursement: Denied

4299 Heart disease, unspecified
278.00 Obesity, unspecified

Reimbursement: Approved

the same deep neural network.
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European Commission’s outline for a legal framework for Al:

"In the light of EUROPEAN COMMISSION

. e 1 . Robust ired in high-risk Al
the recent advances in artificial intelligence (Al),  Lighiisk: Al systom idontified 55 high-risk
the serious negative consequences of its use for

include Al technology used in:
« Critical infrastructures (e.g. transport), that
EU citizens and organisations have led to multiple

could put the life and health of citizens at risk;
* Educational or vocational training, that may

Thitiat: o determine the access to education and
initiatives from the European Commission profestiondl caures of Someane's Ife (6.0,
H scoring of exams);
to set up the principles of a trustworthy and =\ Siret compeneti of proshicta (o/3)Al
secure Al. Among the identified requirements, S 2opllationiin foborgssisted surgery)
the concepts of robustness and explainability e e FanEIl (), Oy
softwan_a for r_ecrultment proc_edures_),
of Al systems have emerged as key elements e ssentialprivaisiand publicseeviceslio]
i X " credit scoring denying citizens opportunity to
for a future regulation of this technology. obtain aloan); ) ;
* Law enforcement that may interfere with
people's fundamental rights (e.g. evaluation of
- EUrOp. Comm. JCR Tech. Rep (Jan 2020) the reliability of evidence);
* Migration, asylum and border control
" . . management (e.g. verification of authenticity
On Al, trust is a must, not a nice to have. of travel documents);
) . « Administration of justice and democratic
[...] The new Al regulation will make sure that processes (e.g. applying the law to a concrete

set of facts).
Europeans can trust what Al has to offer. [...]

High-risk Al systems will be subject to strict obligations before they can be
put on the market: [requiring] High level of robustness, security and accuracy.”

— Europ. Comm. outline for legal Al (April 2021).
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Do algorithms fail?

. and can we determine when they are
wrong?
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The Problems:

We consider two concrete examples: the linear program

min2 x; + xo subjectto x3 + (1 —0)x =1, x1,xp > 0, (7)
xeR

where § > 0 is a parameter.
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+3 | The solution is feasible with respect to the relative ConstraintTolerance tol-
erance, but is not feasible with respect to the absolute tolerance.

+1 | Function converged to a solution x.

0 Number of iterations exceeded options.MaxIterations or solution time in sec-
onds exceeded options.MaxTime.

—2 | No feasible point was found.

—3 | Problem is unbounded.

—4 | NaN value was encountered during execution of the algorithm.

—5 | Both primal and dual problems are infeasible.

—7 | Search direction became too small. No further progress could be made.

—9 | Solver lost feasibility.

Table: The EXITFLAG is used to verify the correctness of the solution.
Possible values for the EXITFLAG output of 1linprog as well as their
corresponding interpretations are displayed in this table. Note that a value
of 1 indicates the correctness of the solution, whereas other values indicate
various types of failure.
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‘dual-simplex’

‘interior-point’

‘interior-point-legacy’

) Error EXITFLAG | Error EXITFLAG Error EXITFLAG
27t 0 1 0 1 6.0-10712 1
2715 0 1 0 1 3.0-107° 1
=% 0 1 0 1 7.0-1077 1
27 0 1 0 1 7.1-1078 1
272 | 1.4 1 1.4 1 1.2-1071 1
2% | 1.4 1 1.4 1 46-1071 1
2730 | 1.4 1 1.4 1 7.1-107¢ 1

Table: Testing the output of linprog applied to the problem in (10) for

the three algorithms ‘dual-simplex’, ‘interior-point’ and

‘interior-point-legacy’. The table shows the error ||X — X||2 and the value
of EXITFLAG, where X is the true minimiser of (10) and X is the computed

approximate minimiser. Note that machine epsilon is €acn = 2722
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Linear Programming
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Linear Programming

Let
z € argmin(x, ¢) such that Ax =y, x>0,

X

where A€ R™N vy e R™ ¢ e RV,

Input: A,y and c.
Problem: Find an algorithm that computes a minimiser z.

In mathematics of information one wants minimisers, not the
objective function.
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Smale’s 9th Problem

"Is there a polynomial time algorithm over the real num-
bers which decides the feasibility of the linear system of
inequalities Ax >y, and if so, outputs such an x?"

— S. Smale (Problem 9 from the list of mathematical
problems for the 21st century)
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Discrete vs continuous

"But real number computations and algorithms which work
only in exact arithmetic can offer only limited understand-
ing. Models which process approximate inputs and which
permit round-off computations are called for.”

— S. Smale (from the list of mathematical
problems for the 21st century)
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We must be able to handle inaccurate input as v/2, cos(3) or e>7//5
will never be represented exactly.

Also, when running floating point arithmetic even 1/3 is
approximated by a base-2 number.
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LP in P (NY Times 1979)

LP in P proved by L. Khachiyan — based on work by N. Shor, D.
Yudin, A. Nemirovski. 3551



Standard Complexity Theory

Karmarkar's algorithm

From Wikipedia, the free encyclopedia

Karmarkar's algorithm is an algorithm introduced by Narendra Karmarkar in 1984
for solving linear programming problems. It was the first reasonably efficient
algorithm that solves these problems in polynomial time. The ellipsoid method is
also polynomial time but proved to be inefficient in practice.

Denoting m as the number of variables and L as the number of bits of input to the
algorithm, Karmarkar's algorithm requires O(n> ) operations on O(L) digit
numbers, as compared to O(n6 L) such operations for the ellipsoid algorithm. The
runtime of Karmarkar's algorithm is thus

O(n*5L? -log L - loglog L)
using FFT-based multiplication (see Big O notation).

Karmarkar's algorithm falls within the class of interior point methods: the current
guess for the solution does not follow the boundary of the feasible set as in the
simplex method, but it moves through the interior of the feasible region, improving
the approximation of the optimal solution by a definite fraction with every iteration,

and converging to an optimal solution with rational data.!'] 3651



Given a domain  C R” of inputs, the algorithm cannot access
t € Q, but rather, for any k € N, it can call the oracle & to obtain
I = 0(t, k) € R" satisfying

10, k) —t]loo <275, VieQ VkeN, (8)
and the time cost of accessing (¢, k) is polynomial in k.

The extended model with inexact input is considered in many areas
of mathematics including in the work of E. Bishop; M. Braverman &
S. Cook; F. Cucker & S. Smale; C. Fefferman & B. Klartag; K. Ko

and L. Lovasz.
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Key Problems in Mathematics of Information (38)

Linear Programming

z € argmin(x, ¢) such that Ax =y, x>0,
X

Semidefinite Programming

Z € argmin(C, X)g» such that(Ax, X)sn = bx, X =0, k < m
Xesn

Basis Pursuit

z € argmin J (x) such that [|Ax — y|| <, § >0,

X
Unconstrained Lasso

z € argmin ||Ax — y||3 + AT (x), A >0,

Constrained Lasso

z € argmin ||[Ax — y||2 such that 7(x) <7, 7>0

where A€ C™N vy € C™and J(x) = ||x||1 or T(x) = ||x]|Tv.
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Key Papers in Mathematics of Information

L. I. Rudin, S. Osher, and E. Fatemi. 'Nonlinear total variation
based noise removal algorithms’,
Physica D: Nonlinear Phenomena (1992).

R. Tibshirani. 'Regression shrinkage and selection via the lasso’,
Journal of the Royal Statistical Society, Series B (1996).

E. J. Candes, J. Romberg, and T. Tao. 'Robust uncertainty
principles: exact signal reconstruction from highly incomplete
frequency information’,

IEEE Trans. Inform. Theory (2006).

D. L. Donoho. '"Compressed sensing’,
IEEE Trans. Inform. Theory (2006).

These papers are cited all together about 100,000 times.
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The Extended Smale’s 9th problem
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Problem 2 (The extended Smale’s 9th problem)

Given any of the problems in (38), represented by the solution map
= mapping a class of inputs Q into a metric space (M, dn), is
there an algorithm which decides the feasibility of the problem, and
if so, produces an output that is correct up to K digits (where the
error is measured via dist r() and whose computational cost is
bounded by a polynomial in K and the number of variables n?
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Theorem 3 (The extended Smale’s 9th — computing solutions)

Let = denote the solution map to any of the problems (38) with the regularisation parameters satisfying
6 €[0,1], A€ (0,1/3], and 7 € [1/2,2] (and additionally being rational in the Turing case) and
consider the || - ||p-norm for measuring the error, for an arbitrary p € [1,00]. Let K > 2 be an integer.
There exists a class S of feasible inputs so that we have the following.

(i) No algorithm can produce K correct digits on each input in Q. Moreover, for any p > %, no
randomised algorithm can produce K correct digits with probability greater than or equal to p on
each input in Q.

(ii) If we allow randomised algorithms with a non-zero probability of not halting (not producing an
output), then, for any p > % no such algorithm can produce K correct digits with probability
greater than or equal to p on each input in Q. However, there does exist such an algorithm that

can produce K correct digits on each input in Q with probability 2/3.

(iii) There does exist an algorithm (a Turing or a BSS machine) that produces K — 1 correct digits
for all inputs in Q. However, any such algorithm will need an arbitrarily long time to achieve this.
In particular, for any fixed dimensions m, N, any T > 0, and any algorithm T, there exists an
input v € Qp,  such that either T on input v does not produce K — 1 correct digits for =(1) or the
runtime of [ on v exceeds T. Moreover, for any randomised algorithm ['™®* and p < 1/2 there
exists an input v € Qp, n such that

P(I™" (1) does not produce K — 1 correct digits for (1) or the runtime of T on « exceeds T) > p.

(iv) There exists a polynomial pol : R — R, as well as a Turing machine and a BSS machine that
both produce K — 2 correct digits for all inputs in Q, so that the number of arithmetic operations
for both machines is bounded by pol(n), where n = m + mN is the number of variables, and the
number of digits required from the oracle (8) is bounded by pol(log(n)). Moreover, the space
complexity of the Turing machine is bounded by pol(n).
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Condition of a matrix: Cond(A) = ||A||||A7Y|.

Condition of the mapping = : Q C C" — C™, linear or non-linear, is
often given by

Cond(Z) = sup lim  sup dist(=(x + 2), =(x))

xeQ€e—0" xizeQ HZ”
0<]lzlI<e

Feasibility condition number. Define
p(A,y) =sup{d|||Al, |7 <6 = (A+ Ay +7) e Q are feasible},
and this yields the Feasibility Primal (FP) condition number

max([|A[, Iyll)

CFP(Aa}/) = p(A y)

The results in the theorem are valid with uniform bounds on the condition
numbers and input.
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Can the ‘exit flag’ be computed?
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Problem 4 (Can the ‘exit flag' be computed?)

Consider an algorithm designed to compute any of the problems
(38). Suppose that the algorithm should produce K correct digits.
Can we compute the ‘exit flag’ for this algorithm, i.e., the function
taking on the value 1 if the algorithm succeeds in producing K
correct digits, and 0 otherwise?

Given o > 0 and make the following assumption on the algorithm:

dist pm(M(2), =()) < a for all v € Q. (9)
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Theorem 5 (Impossibility of computing the 'exit flag')

Let = denote the solution map to any of the problems (38) with the regularisation parameters
satisfying § € [0,1], A\ € (0,1/3], and 7 € [1/2,2] (and additionally being rational in the
Turing case) and consider the || - ||p-norm for measuring the error, for an arbitrary p € [1, co].
Let K € N and fix real @ and w so that 0 < o < w < 10~K. Then, for any fixed dimensions
N > m > 4, there exists a class of inputs Q for = such that, if [ is an algorithm satisfying (9)
with parameter « for the computational problem of approximating = with K correct digits,
then we have the following.

()
(ii)

(iii)

(iv)

No algorithm, even randomised with access to an exact solution oracle of precision w, can
compute the exit flag of I (with probability exceeding p > 1/2 in the randomised case).

If we allow randomised algorithms with non-zero probability of not halting (producing an
output), then no such algorithm, even with access to an exact solution oracle of precision
w, can compute the exit flag of [ with probability exceeding p > 1/2.

The problem of computing the exit flag of [ is strictly harder than computing K correct
digits of = in the following sense: if one is given the exit flag as an oracle then it is possible
to construct an algorithm that computes K correct digits of =. However, if one is instead
given an oracle providing a K-digit approximation to =, then it is still not possible to
compute the exit flag of I'.

For linear programming and basis pursuit, however, there exists a class of inputs Qf # Q
such that no algorithm, even randomised with non-zero probability of not halting, can
compute the exit flag of [ (with probability exceeding p > 1/2 in the randomised case),
yet one can compute the exit flag with a deterministic algorithm with access to an exact
solution oracle of precision w.
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We consider two concrete examples: the linear program

min2 x; + xo subjectto x3 + (1 —0)x =1, X1, X >0, (10)
xeR

where § > 0 is a parameter, and the centred and standardised (so that the
columns of the design matrix are normalised) Lasso problem

1 )
min —lAs Dsx = yll> + Allxl1, (11)

where m=3,N =2, A € (0,1//3],

1 1
ARG r
_ i 1 3x2 — 3
A= |-L -5 —L|er¥ y—(1v2 -1/v2 0) €R
26 0

(12)
and Ds is the unique diagonal matrix such that each column of A;Ds has

norm \/m
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spgll on basis pursuit with § =0 MATLAB's lasso on Lasso (A = 107?)
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Figure: The vertical axis represents the success rate #-o1SUcesses. Gy ccagg
# of trials

< computed solution is accurate to at least K = 2 digits (|| - ||oo norm).
The horizontal axis shows the dimension N. In all cases, A € RY*N is iid —
according to the distributions U(a, b), Exp(r) and N (1, 02) — in
particular, the uniform distribution on [a, b], the exponential distribution

with parameter v and the normal distribution with mean p and variance T /51



Default settings

‘RelTol’ = €mach

‘RelTol’ = €mach

‘MaxIter =¢ !

mach

0 Error Runtime  Warn Error Runtime  Warn Error Runtime Warn
271 1 1.107% < 0.01s 0 1-107% < 0.01s 0 1-107 < 0.01s 0
277 0.68 < 0.01s 0 2.10716 0.02s 0 2.10716 0.02s 0
2715 1.17 < 0.01s 0 1.17 0.33s 1 1-1071  1381.5s 0
2-20 1.17 < 0.01s 0 1.17 0.33s 1 no output > 12h 0
2% 1.17 < 0.01s 0 1.17 0.34s 1 no output > 12h 0
2% 1.17 < 0.01s 0 1.17 0.34s 1 no output > 12h 0
2% 1.17 < 0.01s 0 1.17 < 0.01s 0 1.17 < 0.01s 0
230 1.17 < 0.01s 0 1.17 < 0.01s 0 1.17 < 0.01s 0

Table: The output of lasso applied to (11) with inputs as in (12) and A = 0.1. The table shows
the error ||X — X||;2 (where % is the true minimiser and X is the computed minimiser), the CPU
runtime, and a boolean value indicating whether a Warning was issued.
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