# The Principles of Deep Learning Theory 

Dan Roberts

MIT \& Salesforce

January 13, 2022

Based on The Principles of Deep Learning Theory w/ Yaida and Hanin, 2106.10165, to be published by Cambridge University Press in 2022.

## Goals

The goal of this talk is to theoretically analyze deep neural networks of finite width. In particular, we'll
(i) explain at a high level our approach, and
(ii) analyze a simple model of representation learning in nonlinear models.

## Neural Networks

A neural network is a recipe for computing a function built out of many computational units called neurons:


Neurons are then organized in parallel into layers, and deep neural networks are those composed of multiple layers in sequence.

## Neural Networks Abstracted

For the moment, let's ignore the detailed structure and focus on a general parameterized function,

$$
f(x ; \theta),
$$

where $x$ is the input to the function and $\theta$ is a vector of a large number of parameters controlling the shape of the function.

## The Theoretical Minimum

Our goal is to analyze the trained network function:

$$
f\left(x ; \theta^{\star}\right)
$$

## The Theoretical Minimum

Our goal is to analyze the trained network function:

$$
f\left(x ; \theta^{\star}\right)
$$

One way to see the kinds of technical problems that we'll encounter in pursuit of this goal is to Taylor expand our trained network function $f\left(x ; \theta^{\star}\right)$ around the initialized value of the parameters $\theta$

$$
f\left(x ; \theta^{\star}\right)=f(x ; \theta)+\left(\theta^{\star}-\theta\right) \frac{d f}{d \theta}+\frac{1}{2}\left(\theta^{\star}-\theta\right)^{2} \frac{d^{2} f}{d \theta^{2}}+\ldots
$$

where $f(x ; \theta)$ and its derivatives on the right-hand side are all evaluated at initialized value of the parameters.

## The Theoretical Minimum: Problem 1

In general, the Taylor series contains an infinite number of terms

$$
f, \quad \frac{d f}{d \theta}, \quad \frac{d^{2} f}{d \theta^{2}}, \quad \frac{d^{3} f}{d \theta^{3}}, \quad \frac{d^{4} f}{d \theta^{4}}, \quad \ldots,
$$

and in principle we need to compute them all.

## The Theoretical Minimum: Problem 2

Since the parameters $\theta$ are randomly sampled from $p(\theta)$, each time we initialize our network we get a different function $f(x ; \theta)$, and we need to determine the mapping:

$$
p(\theta) \rightarrow p\left(f, \frac{d f}{d \theta}, \frac{d^{2} f}{d \theta^{2}}, \ldots\right)
$$

This means that each term $f, d f / d \theta, d^{2} f / d \theta^{2}, \ldots$, in the Taylor expansion is really a random function of the input $x$, and this joint distribution will have intricate statistical dependencies.

## The Theoretical Minimum: Problem 3

The learned value of the parameters, $\theta^{\star}$, is the result of a complicated training process. In general, $\theta^{\star}$ is not unique and can depend on everything:
$\theta^{\star} \equiv\left[\theta^{\star}\right]\left(\theta, f, \frac{d f}{d \theta}, \frac{d^{2} f}{d \theta^{2}}, \ldots ;\right.$ learning algorithm; training data $)$.

Determining an analytical expression for $\theta^{\star}$ must take "everything" into account.

## Goal, restated

If we could solve all three of these problems, then we'd have a distribution over trained network functions

$$
p\left(f^{\star}\right) \equiv p\left(f\left(x ; \theta^{\star}\right) \mid \text { learning algorithm; training data }\right),
$$

now conditioned in a simple way on the learning algorithm and the data we used for training.

## Goal, restated

If we could solve all three of these problems, then we'd have a distribution over trained network functions

$$
p\left(f^{\star}\right) \equiv p\left(f\left(x ; \theta^{\star}\right) \mid \text { learning algorithm; training data }\right),
$$

now conditioned in a simple way on the learning algorithm and the data we used for training.

- A framework for analyzing $p\left(f^{\star}\right)$ would let us understand Al systems and then let us use that knowledge to improve them.


## Goal, restated

If we could solve all three of these problems, then we'd have a distribution over trained network functions

$$
p\left(f^{\star}\right) \equiv p\left(f\left(x ; \theta^{\star}\right) \mid \text { learning algorithm; training data }\right),
$$

now conditioned in a simple way on the learning algorithm and the data we used for training.

- A framework for analyzing $p\left(f^{\star}\right)$ would let us understand AI systems and then let us use that knowledge to improve them.

The development of a method for the analytical computation of $p\left(f^{\star}\right)$ should be a main goal of a theory of deep learning.

## Fine, Structure

Solving our three problems for general $f(x ; \theta)$ is not tractable, so we need to use the particular structure of neural-network function.

## Fine, Structure

Solving our three problems for general $f(x ; \theta)$ is not tractable, so we need to use the particular structure of neural-network function.

- A starting point is the infinite-width limit

$$
\lim _{n \rightarrow \infty} p\left(f^{\star}\right)
$$

which gives an expression for the fully-trained distribution, in terms of a Gaussian distribution with a nonzero mean.
[Neal, Lee/Bahri/..., Matthews/..., Jacot/..., ...]

## Fine, Structure

Solving our three problems for general $f(x ; \theta)$ is not tractable, so we need to use the particular structure of neural-network function.

- A starting point is the infinite-width limit

$$
\lim _{n \rightarrow \infty} p\left(f^{\star}\right),
$$

which gives an expression for the fully-trained distribution, in terms of a Gaussian distribution with a nonzero mean.

$$
[\text { Neal, Lee/Bahri/..., Matthews/..., Jacot/..., ...] }
$$

- We can find an effective description using perturbation theory, expanding in the inverse layer width, $\epsilon \equiv 1 / n$ :

$$
p\left(f^{\star}\right) \equiv p^{\{0\}}\left(f^{\star}\right)+\frac{p^{\{1\}}\left(f^{\star}\right)}{n}+O\left(\frac{1}{n^{2}}\right) .
$$

(The details are in The Principles of Deep Learning Theory.)

## Statistics vs. Dynamics

Stepping back, Problems 1 and 2 are about initialization statistics:

$$
p(\theta) \rightarrow p\left(f, \frac{d f}{d \theta}, \frac{d^{2} f}{d \theta^{2}}, \ldots\right)
$$

- Understanding this ensemble is essential for understanding generalization given different hyperparameter choices.


## Statistics vs. Dynamics

Stepping back, Problems 1 and 2 are about initialization statistics:

$$
p(\theta) \rightarrow p\left(f, \frac{d f}{d \theta}, \frac{d^{2} f}{d \theta^{2}}, \ldots\right)
$$

- Understanding this ensemble is essential for understanding generalization given different hyperparameter choices.

Problem 3 is about the training dynamics:
$\theta^{\star} \equiv\left[\theta^{\star}\right]\left(\theta, f, \frac{d f}{d \theta}, \frac{d^{2} f}{d \theta^{2}}, \ldots\right.$; learning algorithm; training data $)$.

- For now, we will try understand the algorithm dependence and data dependence of solutions for a very general class of machine learning models.

Machine Learning Models

$$
f(x ; \theta)
$$

Machine Learning Models

$$
f(x ; \theta) \equiv z(x ; \theta)
$$

## Machine Learning Models

$$
f(x ; \theta) \equiv z_{i}(x ; \theta)
$$

- $i=1, \ldots, n_{\text {out }}$ is a vectorial index


## Machine Learning Models

$$
f(x ; \theta) \equiv z_{i}\left(x_{\delta} ; \theta\right)
$$

- $i=1, \ldots, n_{\text {out }}$ is a vectorial index
- $\delta \in \mathcal{D}$ is a sample index


## Machine Learning Models

$$
f(x ; \theta) \equiv z_{i ; \delta}(\theta)
$$

- $i=1, \ldots, n_{\text {out }}$ is a vectorial index
- $\delta \in \mathcal{D}$ is a sample index


## A Familiar Example

The simplest machine learning model is a linear model:

$$
z_{i ; \delta}(\theta)=b_{i}+\sum_{j=1}^{n_{0}} W_{i j} x_{j ; \delta}
$$

## A Familiar Example

The simplest machine learning model is a linear model:

$$
z_{i ; \delta}(\theta)=b_{i}+\sum_{j=1}^{n_{0}} W_{i j} x_{j ; \delta}
$$

- Linear in both the parameters $\theta=\left\{b_{i}, W_{i j}\right\}$ and the input $x_{j}$.


## A Familiar Example

The simplest machine learning model is a linear model:

$$
z_{i ; \delta}(\theta)=b_{i}+\sum_{j=1}^{n_{0}} W_{i j} x_{j ; \delta}
$$

- Linear in both the parameters $\theta=\left\{b_{i}, W_{i j}\right\}$ and the input $x_{j}$.
- The linear in linear model takes its name from the dependence on the parameters $\theta$ and not the input $x$.


## A Familiar Example

The simplest machine learning model is a linear model:

$$
z_{i ; \delta}(\theta)=b_{i}+\sum_{j=1}^{n_{0}} W_{i j} x_{j ; \delta} .
$$

- Linear in both the parameters $\theta=\left\{b_{i}, W_{i j}\right\}$ and the input $x_{j}$.
- The linear in linear model takes its name from the dependence on the parameters $\theta$ and not the input $x$.
- The linearity in $x$ means this model can only approximate functions that are linear transformations of the input.


## A Familiar Example

The simplest machine learning model is a linear model:

$$
z_{i ; \delta}(\theta)=b_{i}+\sum_{j=1}^{n_{0}} W_{i j} x_{j ; \delta} .
$$

- Linear in both the parameters $\theta=\left\{b_{i}, W_{i j}\right\}$ and the input $x_{j}$.
- The linear in linear model takes its name from the dependence on the parameters $\theta$ and not the input $x$.
- The linearity in $x$ means this model can only approximate functions that are linear transformations of the input.
- By another name: a one-layer (zero-hidden layer) network.


## (Generalized) Linear Models

Instead, we might design a fixed basis of feature functions $\phi_{j}(x)$ that are meant to fit more complicated functions:

$$
z_{i ; \delta}(\theta)=b_{i}+\sum_{j=1}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)
$$

## (Generalized) Linear Models

Instead, we might design a fixed basis of feature functions $\phi_{j}(x)$ that are meant to fit more complicated functions:

$$
z_{i ; \delta}(\theta)=b_{i}+\sum_{j=1}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)
$$

- In this context, much of the complicated modeling work goes into the construction of these feature functions $\phi_{j}(x)$.


## (Generalized) Linear Models

Instead, we might design a fixed basis of feature functions $\phi_{j}(x)$ that are meant to fit more complicated functions:

$$
z_{i ; \delta}(\theta)=b_{i}+\sum_{j=1}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)
$$

- In this context, much of the complicated modeling work goes into the construction of these feature functions $\phi_{j}(x)$.
- We can still think of this model as a one-layer neural network, but now we pre-process $x$ with the function $\phi_{j}(x)$.


## (Generalized) Linear Models

Instead, we might design a fixed basis of feature functions $\phi_{j}(x)$ that are meant to fit more complicated functions:

$$
z_{i ; \delta}(\theta)=\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)
$$

- Here, we've subsumed the bias vector into the weight matrix by setting $\phi_{0}(x) \equiv 1$ and $W_{i 0} \equiv b_{i}$.


## (Generalized) Linear Models

Instead, we might design a fixed basis of feature functions $\phi_{j}(x)$ that are meant to fit more complicated functions:

$$
z_{i ; \delta}(\theta)=\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)
$$

- Here, we've subsumed the bias vector into the weight matrix by setting $\phi_{0}(x) \equiv 1$ and $W_{i 0} \equiv b_{i}$.
- (e.g. for a 1-dimensional function we might pick a basis $\phi_{j}(x)=\left\{1, x, x^{2}, x^{3}\right\}$ and fit cubic curves.)


## (Generalized) Linear Models

Instead, we might design a fixed basis of feature functions $\phi_{j}(x)$ that are meant to fit more complicated functions:

$$
z_{i}(\theta)=W_{i 0}+W_{i 1} x+W_{i 2} x^{2}+W_{i 3} x^{3}
$$

- Here, we've subsumed the bias vector into the weight matrix by setting $\phi_{0}(x) \equiv 1$ and $W_{i 0} \equiv b_{i}$.
- (e.g. for a 1-dimensional function we might pick a basis $\phi_{j}(x)=\left\{1, x, x^{2}, x^{3}\right\}$ and fit cubic curves.)


## Linear Regression

Supervised learning with a linear model is linear regression

$$
\mathcal{L}_{\mathcal{A}}(\theta)=\frac{1}{2} \sum_{\tilde{\alpha} \in \mathcal{A}} \sum_{i=1}^{n_{\text {out }}}\left[y_{i ; \tilde{\alpha}}-\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\tilde{\alpha}}\right)\right]^{2}
$$

where $y_{i} \equiv f_{i}(x)$ is an observed true output or label.

## Linear Regression

Supervised learning with a linear model is linear regression

$$
\mathcal{L}_{\mathcal{A}}(\theta)=\frac{1}{2} \sum_{\tilde{\alpha} \in \mathcal{A}} \sum_{i=1}^{n_{\text {out }}}\left[y_{i ; \tilde{\alpha}}-\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\tilde{\alpha}}\right)\right]^{2}
$$

where $y_{i} \equiv f_{i}(x)$ is an observed true output or label.

- We could solve by direct optimization:

$$
0=\left.\frac{d \mathcal{L}_{\mathcal{A}}}{d W_{i j}}\right|_{W=W^{\star}}
$$

## Linear Regression

Supervised learning with a linear model is linear regression

$$
\mathcal{L}_{\mathcal{A}}(\theta)=\frac{1}{2} \sum_{\tilde{\alpha} \in \mathcal{A}} \sum_{i=1}^{n_{\text {out }}}\left[y_{i ; \tilde{\alpha}}-\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\tilde{\alpha}}\right)\right]^{2}
$$

where $y_{i} \equiv f_{i}(x)$ is an observed true output or label.

- We could solve by direct optimization:

$$
0=\left.\frac{d \mathcal{L}_{\mathcal{A}}}{d W_{i j}}\right|_{W=W^{\star}}
$$

- We could solve by gradient descent:

$$
W_{i j}(t+1)=W_{i j}(t)-\left.\eta \frac{d \mathcal{L}_{\mathcal{A}}}{d W_{i j}}\right|_{W_{i j}=W_{i j}(t)}
$$

## The Kernel

Let us introduce a new $N_{\mathcal{D}} \times N_{\mathcal{D}}$-dimensional symmetric matrix:

$$
k_{\delta_{1} \delta_{2}} \equiv k\left(x_{\delta_{1}}, x_{\delta_{2}}\right) \equiv \sum_{j=0}^{n_{f}} \phi_{j}\left(x_{\delta_{1}}\right) \phi_{j}\left(x_{\delta_{2}}\right) .
$$

As an inner product of features, the kernel $k_{\delta_{1} \delta_{2}}$ is a measure of similarity between two inputs $x_{i ; \delta_{1}}$ and $x_{i ; \delta_{2}}$ in feature space.

We'll also denote an $N_{\mathcal{A}}$-by- $N_{\mathcal{A}}$-dimensional submatrix of the kernel evaluated on the training set as $\widetilde{k}_{\tilde{\alpha}_{1} \tilde{\alpha}_{2}}$ with a tilde. This lets us write its inverse as $\widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}}$, which satisfies

$$
\sum_{\tilde{\alpha}_{2} \in \mathcal{A}} \tilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}} \tilde{k}_{\tilde{\alpha}_{2} \tilde{\alpha}_{3}}=\delta_{\tilde{\alpha}_{3}}^{\tilde{\alpha}_{1}}
$$

## Linear Models and Kernel Methods

Two forms of a solution for a linear model:

- parameter space - linear regression

$$
z_{i}\left(x_{\dot{\beta}} ; \theta^{\star}\right)=\sum_{j=0}^{n_{f}} W_{i j}^{\star} \phi_{j}\left(x_{\dot{\beta}}\right)
$$

- sample space - kernel methods

$$
z_{i}\left(x_{\dot{\beta}} ; \theta^{\star}\right)=\sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}} k_{\dot{\beta} \tilde{\alpha}_{1}} \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}} .
$$

## Linear Models and Kernel Methods

Two forms of a solution for a linear model:

- parameter space - linear regression

$$
z_{i}\left(x_{\dot{\beta}} ; \theta^{\star}\right)=\sum_{j=0}^{n_{f}} W_{i j}^{\star} \phi_{j}\left(x_{\dot{\beta}}\right)
$$

- sample space - kernel methods

$$
z_{i}\left(x_{\dot{\beta}} ; \theta^{\star}\right)=\sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}} k_{\dot{\beta} \tilde{\alpha}_{1}} \tilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}} .
$$

Features of this model, expressed as $\phi_{j}(x)$ or $k_{\delta_{1} \delta_{2}}$, are fixed.

## Frameworks: Linear Models vs. Deep Learning

Linear Regression goes back to Legendre and Gauss.

## Frameworks: Linear Models vs. Deep Learning

Linear Regression goes back to Legendre and Gauss.

- "Three Problems" are tractable and can analyze completely.


## Frameworks: Linear Models vs. Deep Learning

Linear Regression goes back to Legendre and Gauss.

- "Three Problems" are tractable and can analyze completely.
- Just "curve fitting" so naively unlikely to be useful for AI.


## Frameworks: Linear Models vs. Deep Learning

Deep learning extends this classic paradigm in 2 important ways: neural networks are typically nonlinear both in $x$ and $\theta$.

## Frameworks: Linear Models vs. Deep Learning

Deep learning extends this classic paradigm in 2 important ways: neural networks are typically nonlinear both in $x$ and $\theta$.
(i) The generalization of the $\phi(x)$ are inherited from the network and are random at the beginning of training.

## Frameworks: Linear Models vs. Deep Learning

Deep learning extends this classic paradigm in 2 important ways: neural networks are typically nonlinear both in $x$ and $\theta$.
(i) The generalization of the $\phi(x)$ are inherited from the network and are random at the beginning of training.

- Practitioners can design a network to have certain nice properties - like including convolutions for translation-invariant data - rather than having to pick a basis of functions.


## Frameworks: Linear Models vs. Deep Learning

Deep learning extends this classic paradigm in 2 important ways: neural networks are typically nonlinear both in $x$ and $\theta$.
(i) The generalization of the $\phi(x)$ are inherited from the network and are random at the beginning of training.

- Practitioners can design a network to have certain nice properties - like including convolutions for translation-invariant data - rather than having to pick a basis of functions.
- Understanding the particular basis requires a calculation.


## Frameworks: Linear Models vs. Deep Learning

Deep learning extends this classic paradigm in 2 important ways: neural networks are typically nonlinear both in $x$ and $\theta$.
(ii) The effective features evolve over the course of training:

$$
\phi(x) \rightarrow \phi\left(x ; \theta^{\star}\right) .
$$

## Frameworks: Linear Models vs. Deep Learning

Deep learning extends this classic paradigm in 2 important ways: neural networks are typically nonlinear both in $x$ and $\theta$.
(ii) The effective features evolve over the course of training:

$$
\phi(x) \rightarrow \phi\left(x ; \theta^{\star}\right) .
$$

- No longer just fitting a curve with a fixed basis!


## Frameworks: Linear Models vs. Deep Learning

Deep learning extends this classic paradigm in 2 important ways: neural networks are typically nonlinear both in $x$ and $\theta$.
(ii) The effective features evolve over the course of training:

$$
\phi(x) \rightarrow \phi\left(x ; \theta^{\star}\right) .
$$

- No longer just fitting a curve with a fixed basis!
- Such feature learning is only a property of nonlinear models.


## Nonlinear Models

To go beyond the linear paradigm, let's slightly deform it to get a nonlinear model, specifically a quadratic model:

$$
z_{i ; \delta}(\theta)=\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)+\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\delta}\right)
$$

## Nonlinear Models

To go beyond the linear paradigm, let's slightly deform it to get a nonlinear model, specifically a quadratic model:

$$
z_{i ; \delta}(\theta)=\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)+\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\delta}\right)
$$

- It's nonlinear because it's quadratic in the weights: $W_{i j_{1}} W_{i j_{2}}$.


## Nonlinear Models

To go beyond the linear paradigm, let's slightly deform it to get a nonlinear model, specifically a quadratic model:

$$
z_{i ; \delta}(\theta)=\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)+\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\delta}\right)
$$

- It's nonlinear because it's quadratic in the weights: $W_{i j_{1}} W_{i j_{2}}$.
- $\epsilon \ll 1$ is small parameter that controls the size of the deformation.


## Nonlinear Models

To go beyond the linear paradigm, let's slightly deform it to get a nonlinear model, specifically a quadratic model:

$$
z_{i ; \delta}(\theta)=\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)+\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\delta}\right)
$$

- It's nonlinear because it's quadratic in the weights: $W_{i j_{1}} W_{i j_{2}}$.
- $\epsilon \ll 1$ is small parameter that controls the size of the deformation.
- We've introduced $\left(n_{f}+1\right)\left(n_{f}+2\right) / 2$ meta feature functions, $\psi_{j_{1} j_{2}}(x)$, with two feature indices.


## Quadratic Models

To familiarize ourselves with this model, let's make a small change in the model parameters $W_{i j} \rightarrow W_{i j}+d W_{i j}$ :

$$
\begin{aligned}
z_{i}\left(x_{\delta} ; \theta+d \theta\right)=z_{i}\left(x_{\delta} ; \theta\right) & +\sum_{j=0}^{n_{f}} d W_{i j}\left[\phi_{j}\left(x_{\delta}\right)+\epsilon \sum_{j_{1}=0}^{n_{f}} W_{i j_{1}} \psi_{j_{1} j}\left(x_{\delta}\right)\right] \\
& +\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} d W_{i j_{1}} d W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\delta}\right)
\end{aligned}
$$

## Quadratic Models

To familiarize ourselves with this model, let's make a small change in the model parameters $W_{i j} \rightarrow W_{i j}+d W_{i j}$ :

$$
\begin{aligned}
z_{i}\left(x_{\delta} ; \theta+d \theta\right)=z_{i}\left(x_{\delta} ; \theta\right) & +\sum_{j=0}^{n_{f}} d W_{i j}\left[\phi_{j}\left(x_{\delta}\right)+\epsilon \sum_{j_{1}=0}^{n_{f}} W_{i j_{1}} \psi_{j_{1} j}\left(x_{\delta}\right)\right] \\
& +\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} d W_{i j_{1}} d W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\delta}\right)
\end{aligned}
$$

Let us make a shorthand for the quantity in the square bracket,

$$
\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta\right) \equiv \frac{d z_{i}\left(x_{\delta} ; \theta\right)}{d W_{i j}}=\phi_{j}\left(x_{\delta}\right)+\epsilon \sum_{k=0}^{n_{f}} W_{i k} \psi_{k j}\left(x_{\delta}\right),
$$

which is an effective feature function.

## Effective Feature Learning

The quadratic model $z_{i}\left(x_{\delta} ; \theta\right)$ behaves effectively as if it has a parameter-dependent feature function, $\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta\right)$.

## Effective Feature Learning

The quadratic model $z_{i}\left(x_{\delta} ; \theta\right)$ behaves effectively as if it has a parameter-dependent feature function, $\phi_{i j}\left(x_{\delta} ; \theta\right)$.

- The $\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta\right)$ learns with update $d W_{i k}$ :

$$
\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta+d \theta\right)=\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta\right)+\epsilon \sum_{k=0}^{n_{f}} d W_{i k} \psi_{k j}\left(x_{\delta}\right) .
$$

## Effective Feature Learning

The quadratic model $z_{i}\left(x_{\delta} ; \theta\right)$ behaves effectively as if it has a parameter-dependent feature function, $\phi_{i j}\left(x_{\delta} ; \theta\right)$.

- The $\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta\right)$ learns with update $d W_{i k}$ :

$$
\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta+d \theta\right)=\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta\right)+\epsilon \sum_{k=0}^{n_{f}} d W_{i k} \psi_{k j}\left(x_{\delta}\right) .
$$

- For comparison, for the linear model we'd have:

$$
z_{i}\left(x_{\delta} ; \theta+d \theta\right)=z_{i}\left(x_{\delta} ; \theta\right)+\sum_{j=0}^{n_{f}} d W_{i j} \phi_{j}\left(x_{\delta}\right)
$$

## Effective Feature Learning

The quadratic model $z_{i}\left(x_{\delta} ; \theta\right)$ behaves effectively as if it has a parameter-dependent feature function, $\phi_{i j}\left(x_{\delta} ; \theta\right)$.

- The $\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta\right)$ learns with update $d W_{i k}$ :

$$
\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta+d \theta\right)=\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta\right)+\epsilon \sum_{k=0}^{n_{f}} d W_{i k} \psi_{k j}\left(x_{\delta}\right) .
$$

- For comparison, for the linear model we'd have:

$$
z_{i}\left(x_{\delta} ; \theta+d \theta\right)=z_{i}\left(x_{\delta} ; \theta\right)+\sum_{j=0}^{n_{f}} d W_{i j} \phi_{j}\left(x_{\delta}\right)
$$

Thus quadratic model has a hierarchical structure, where the features evolve as if they are described by a linear model and the model's output evolves in a more complicated nonlinear way.

## Quadratic Regression

Supervised learning a quadratic model doesn't have a particular name, but if it did, we'd all probably agree that its name should be quadratic regression:
$\mathcal{L}_{\mathcal{A}}(\theta)=\frac{1}{2} \sum_{\tilde{\alpha} \in \mathcal{A}} \sum_{i=1}^{n_{\text {out }}}\left[y_{i ; \tilde{\alpha}}-\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\tilde{\alpha}}\right)-\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\tilde{\alpha}}\right)\right]^{2}$.

## Quadratic Regression

Supervised learning a quadratic model doesn't have a particular name, but if it did, we'd all probably agree that its name should be quadratic regression:

$$
\mathcal{L}_{\mathcal{A}}(\theta)=\frac{1}{2} \sum_{\tilde{\alpha} \in \mathcal{A}} \sum_{i=1}^{n_{\text {out }}}\left[y_{i ; \tilde{\alpha}}-\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\tilde{\alpha}}\right)-\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\tilde{\alpha}}\right)\right]^{2}
$$

The loss is now quartic in the parameters, and in general

$$
0=\left.\frac{d \mathcal{L}_{\mathcal{A}}}{d W_{i j}}\right|_{W=W^{\star}}
$$

doesn't give analytical solutions or a tractable practical method.

## Quadratic Regression

Supervised learning a quadratic model doesn't have a particular name, but if it did, we'd all probably agree that its name should be quadratic regression:

$$
\mathcal{L}_{\mathcal{A}}(\theta)=\frac{1}{2} \sum_{\tilde{\alpha} \in \mathcal{A}} \sum_{i=1}^{n_{\text {out }}}\left[y_{i ; \tilde{\alpha}}-\sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\tilde{\alpha}}\right)-\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\tilde{\alpha}}\right)\right]^{2} .
$$

The loss is now quartic in the parameters, but we can optimize with gradient descent:

$$
W_{i j}(t+1)=W_{i j}(t)-\left.\eta \frac{d \mathcal{L}_{\mathcal{A}}}{d W_{i j}}\right|_{W_{i j}=W_{i j}(t)}
$$

This will find a minimum in practice.

## Quadratic Model Gradient Descent Dynamics

The weights will update as

$$
\begin{aligned}
W_{i j}(t+1) & =W_{i j}(t)-\left.\eta \frac{d \mathcal{L}_{\mathcal{A}}}{d W_{i j}}\right|_{W_{i j}=W_{i j}(t)} \\
& =W_{i j}(t)-\eta \sum_{\tilde{\alpha}} \phi_{i j ; \tilde{\alpha}}^{\mathrm{E}}(t)\left(z_{i ; \tilde{\alpha}}(t)-y_{i ; \tilde{\alpha}}\right) .
\end{aligned}
$$

While the model and effective features update as

$$
\begin{aligned}
& z_{i ; \delta}(t+1)=z_{i ; \delta}(t)+\sum_{j} d W_{i j}(t) \phi_{i j ; \delta}^{\mathrm{E}}(t) \\
& +\frac{\epsilon}{2} \sum_{j_{1}, j_{2}} d W_{i j_{1}}(t) d W_{i j_{2}}(t) \psi_{j_{1} j_{2}}\left(x_{\delta}\right), \\
& \phi_{i j ; \delta}^{\mathrm{E}}(t+1)=\phi_{i j ; \delta}^{\mathrm{E}}(t)+\epsilon \sum_{k=0}^{n_{f}} d W_{i k}(t) \psi_{k j}\left(x_{\delta}\right) .
\end{aligned}
$$

## Aside: Effective Kernel

To better understand this from the dual sample-space picture, let's analogously define an effective kernel

$$
k_{i i ;}^{\mathrm{E}} \delta_{1} \delta_{2}(\theta) \equiv \sum_{j=0}^{n_{f}} \phi_{i j}^{\mathrm{E}}\left(x_{\delta_{1}} ; \theta\right) \phi_{i j}^{\mathrm{E}}\left(x_{\delta_{2}} ; \theta\right)
$$

which measures a parameter-dependent similarity between two inputs $x_{\delta_{1}}$ and $x_{\delta_{2}}$ using our effective features $\phi_{i j}^{\mathrm{E}}\left(x_{\delta} ; \theta\right)$.

## Aside 2: Meta Kernel

Another important object worth defining we call the meta kernel:

$$
\mu_{\delta_{0} \delta_{1} \delta_{2}} \equiv \sum_{j_{1}, j_{2}=0}^{n_{f}} \epsilon \psi_{j_{1} j_{2}}\left(x_{\delta_{0}}\right) \phi_{j_{1}}\left(x_{\delta_{1}}\right) \phi_{j_{2}}\left(x_{\delta_{2}}\right) .
$$

## Aside 2: Meta Kernel

Another important object worth defining we call the meta kernel:

$$
\mu_{\delta_{0} \delta_{1} \delta_{2}} \equiv \sum_{j_{1}, j_{2}=0}^{n_{f}} \epsilon \psi_{j_{1} j_{2}}\left(x_{\delta_{0}}\right) \phi_{j_{1}}\left(x_{\delta_{1}}\right) \phi_{j_{2}}\left(x_{\delta_{2}}\right) .
$$

- This is a parameter-independent tensor given entirely in terms of the fixed $\phi_{j}(x)$ and $\psi_{j_{1} j_{2}}(x)$ that define the model.


## Aside 2: Meta Kernel

Another important object worth defining we call the meta kernel:

$$
\mu_{\delta_{0} \delta_{1} \delta_{2}} \equiv \sum_{j_{1}, j_{2}=0}^{n_{f}} \epsilon \psi_{j_{1} j_{2}}\left(x_{\delta_{0}}\right) \phi_{j_{1}}\left(x_{\delta_{1}}\right) \phi_{j_{2}}\left(x_{\delta_{2}}\right) .
$$

- This is a parameter-independent tensor given entirely in terms of the fixed $\phi_{j}(x)$ and $\psi_{j_{1} j_{2}}(x)$ that define the model.
- For a fixed input $x_{\delta_{0}}, \mu_{\delta_{0} \delta_{1} \delta_{2}}$ computes a different feature-space inner product between the two inputs, $x_{\delta_{1}} \& x_{\delta_{2}}$.


## Aside 2: Meta Kernel

Another important object worth defining we call the meta kernel:

$$
\mu_{\delta_{0} \delta_{1} \delta_{2}} \equiv \sum_{j_{1}, j_{2}=0}^{n_{f}} \epsilon \psi_{j_{1} j_{2}}\left(x_{\delta_{0}}\right) \phi_{j_{1}}\left(x_{\delta_{1}}\right) \phi_{j_{2}}\left(x_{\delta_{2}}\right) .
$$

- This is a parameter-independent tensor given entirely in terms of the fixed $\phi_{j}(x)$ and $\psi_{j_{1} j_{2}}(x)$ that define the model.
- For a fixed input $x_{\delta_{0}}, \mu_{\delta_{0} \delta_{1} \delta_{2}}$ computes a different feature-space inner product between the two inputs, $x_{\delta_{1}} \& x_{\delta_{2}}$.
- Due to the inclusion of $\epsilon$ into the definition of $\mu_{\delta_{0} \delta_{1} \delta_{2}}$, we should think of it as being parametrically small too.


## Quadratic Model Gradient Descent Dynamics (Again)

The weights will update as

$$
\begin{aligned}
W_{i j}(t+1) & =W_{i j}(t)-\left.\eta \frac{d \mathcal{L}_{\mathcal{A}}}{d W_{i j}}\right|_{W_{i j}=W_{i j}(t)} \\
& =W_{i j}(t)-\eta \sum_{\tilde{\alpha}} \phi_{\mathrm{E} ; \tilde{\alpha}}(t)\left(z_{i ; \tilde{\alpha}}(t)-y_{i ; \tilde{\alpha}}\right) .
\end{aligned}
$$

While the model and effective features update as

$$
\begin{aligned}
& z_{i ; \delta}(t+1)=z_{i ; \delta}(t)+\sum_{j} d W_{i j}(t) \phi_{i j ; \delta}^{\mathrm{E}}(t) \\
& +\frac{\epsilon}{2} \sum_{j_{1}, j_{2}} d W_{i j_{1}}(t) d W_{i j_{2}}(t) \psi_{j_{1} j_{2}}\left(x_{\delta}\right), \\
& \phi_{i j ; \delta}^{\mathrm{E}}(t+1)=\phi_{i j ; \delta}^{\mathrm{E}}(t)+\epsilon \sum_{k=0}^{n_{f}} d W_{i k}(t) \psi_{k j}\left(x_{\delta}\right) .
\end{aligned}
$$

## Quadratic Model Gradient Dynamics: Dual Sample Space

The model predictions will update as

$$
\begin{aligned}
& z_{i ; \delta}(t+1) \\
= & z_{i ; \delta}(t)-\eta \sum_{\tilde{\alpha}} k_{i i ; \delta \tilde{\alpha}}^{\mathrm{E}}(t) \epsilon_{i ; \tilde{\alpha}}(t)+\frac{\eta^{2}}{2} \sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2}} \mu_{\delta \tilde{\alpha}_{1} \tilde{\alpha}_{2}} \epsilon_{i ; \tilde{\alpha}_{1}}(t) \epsilon_{i ; \tilde{\alpha}_{2}}(t)+\ldots,
\end{aligned}
$$

while the effective kernel will update as

$$
k_{i i ; \delta_{1} \delta_{2}}^{\mathrm{E}}(t+1)=k_{i i ; \delta_{1} \delta_{2}}^{\mathrm{E}}(t)-\eta \sum_{\tilde{\alpha}}\left(\mu_{\delta_{1} \delta_{2} \tilde{\alpha}}+\mu_{\delta_{2} \delta_{1} \tilde{\alpha}}\right) \epsilon_{i ; \tilde{\alpha}}(t)+\ldots,
$$

with the residual training error

$$
\epsilon_{i ; \tilde{\alpha}}(t) \equiv z_{i ; \tilde{\alpha}}(t)-y_{i ; \tilde{\alpha}} .
$$

- These joint updates are coupled difference equations, and the first is nonlinear in the training error.


## Solution

$$
\begin{aligned}
& z_{i ; \dot{\beta}}(\infty) \\
= & \sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}} k_{\dot{\beta} \tilde{\alpha}_{1}} \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}} \\
& +\sum_{\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{4} \in \mathcal{A}}\left[\mu_{\tilde{\alpha}_{1} \dot{\beta} \tilde{\alpha}_{2}}-\sum_{\tilde{\alpha}_{5}, \tilde{\alpha}_{6} \in \mathcal{A}} k_{\dot{\beta} \tilde{\alpha}_{5}} \tilde{k}^{\tilde{\alpha}_{5} \tilde{\alpha}_{6}} \mu_{\tilde{\alpha}_{1} \tilde{\alpha}_{6} \tilde{\alpha}_{2}}\right] Z_{\mathrm{A}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} y_{i ; \tilde{\alpha}_{3}} y_{i ; \tilde{\alpha}_{4}} \\
& +\sum_{\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{4} \in \mathcal{A}}\left[\mu_{\dot{\beta} \tilde{\alpha}_{1} \tilde{\alpha}_{2}}-\sum_{\tilde{\alpha}_{5}, \tilde{\alpha}_{6} \in \mathcal{A}} k_{\dot{\beta} \tilde{\alpha}_{5}} \tilde{k}^{\tilde{\alpha}_{5} \tilde{\alpha}_{6}} \mu_{\tilde{\alpha}_{6} \tilde{\alpha}_{1} \tilde{\alpha}_{2}}\right] Z_{\mathrm{B}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} y_{i ; \tilde{\alpha}_{3}} y_{i ; \tilde{\alpha}_{4}}
\end{aligned}
$$

where the algorithm projectors are given by

$$
\begin{aligned}
& Z_{\mathrm{A}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} \equiv \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{3}} \tilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{4}}-\sum_{\tilde{\alpha}_{5}} \tilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{5}} X_{\mathrm{II}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{5} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} \\
& Z_{\mathrm{B}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} \equiv \tilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{3}} \tilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{4}}-\sum_{\tilde{\mathrm{\alpha}}_{2}} \tilde{\alpha}_{2} \tilde{\alpha}_{5} \\
& X_{\mathrm{II}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{5} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}+\frac{\eta}{2} X_{\mathrm{II}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}
\end{aligned}
$$

Here, an inverting tensor is implicitly defined:

$$
\begin{aligned}
& \delta_{\tilde{\alpha}_{5}}^{\tilde{\alpha}_{1}} \delta_{\tilde{\alpha}_{6}}^{\tilde{\alpha}_{2}} \\
= & \sum_{\tilde{\alpha}_{3}, \tilde{\alpha}_{4} \in \mathcal{A}} X_{\text {II }}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} \frac{1}{\eta}\left[\delta_{\tilde{\alpha}_{3} \tilde{\alpha}_{5}} \delta_{\tilde{\alpha}_{4} \tilde{\alpha}_{6}}-\left(\delta_{\tilde{\alpha}_{3} \tilde{\alpha}_{5}}-\eta \widetilde{k}_{\tilde{\alpha}_{3} \tilde{\alpha}_{5}}\right)\left(\delta_{\tilde{\alpha}_{4} \tilde{\alpha}_{6}}-\eta \widetilde{k}_{\tilde{\alpha}_{4} \tilde{\alpha}_{6}}\right)\right] \\
= & \sum_{\tilde{\alpha}_{3}, \tilde{\alpha}_{4} \in \mathcal{A}} X_{I I}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}\left(\widetilde{k}_{\tilde{\alpha}_{3} \tilde{\alpha}_{5}} \delta_{\tilde{\alpha}_{4} \tilde{\alpha}_{6}}+\delta_{\tilde{\alpha}_{3} \tilde{\alpha}_{5}} \widetilde{k}_{\tilde{\alpha}_{4} \tilde{\alpha}_{6}}-\eta \widetilde{k}_{\tilde{\alpha}_{3} \tilde{\alpha}_{5}} \widetilde{k}_{\tilde{\alpha}_{4} \tilde{\alpha}_{6}}\right)
\end{aligned}
$$

## Solution

$$
\begin{aligned}
& z_{i ; \dot{\beta}}(\infty) \\
= & \sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}} k_{\dot{\beta} \tilde{\alpha}_{1}} \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}} \\
& +\sum_{\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{4} \in \mathcal{A}}\left[\mu_{\tilde{\alpha}_{1} \dot{\beta} \tilde{\alpha}_{2}}-\sum_{\tilde{\alpha}_{5}, \tilde{\alpha}_{6} \in \mathcal{A}} k_{\dot{\beta} \tilde{\alpha}_{5}} \tilde{k}^{\tilde{\alpha}_{5} \tilde{\alpha}_{6}} \mu_{\tilde{\alpha}_{1} \tilde{\alpha}_{6} \tilde{\alpha}_{2}}\right] Z_{\mathrm{A}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} y_{i ; \tilde{\alpha}_{3}} y_{i ; \tilde{\alpha}_{4}} \\
& +\sum_{\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{4} \in \mathcal{A}}\left[\mu_{\dot{\beta} \tilde{\alpha}_{1} \tilde{\alpha}_{2}}-\sum_{\tilde{\alpha}_{5}, \tilde{\alpha}_{6} \in \mathcal{A}} k_{\dot{\beta} \tilde{\alpha}_{5}} \tilde{k}^{\tilde{\alpha}_{5} \tilde{\alpha}_{6}} \mu_{\tilde{\alpha}_{6} \tilde{\alpha}_{1} \tilde{\alpha}_{2}}\right] Z_{\mathrm{B}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} y_{i ; \tilde{\alpha}_{3}} y_{i ; \tilde{\alpha}_{4}}
\end{aligned}
$$

where the algorithm projectors are given by

$$
\begin{aligned}
& Z_{\mathrm{A}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} \equiv \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{3}} \tilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{4}}-\sum_{\tilde{\alpha}_{5}} \tilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{5}} X_{\mathrm{II}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{5} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} \\
& Z_{\mathrm{B}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} \equiv \tilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{3}} \tilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{4}}-\sum_{\tilde{\mathrm{\alpha}}_{2}} \tilde{\alpha}_{2} \tilde{\alpha}_{5} \\
& X_{\mathrm{II}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{5} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}+\frac{\eta}{2} X_{\mathrm{II}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}
\end{aligned}
$$

## Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as a nearly-kernel machine or nearly-kernel methods.

## Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as a nearly-kernel machine or nearly-kernel methods.

Unlike kernel methods, this depends on the learning algorithm.

## Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as a nearly-kernel machine or nearly-kernel methods.

Unlike kernel methods, this depends on the learning algorithm.

- If we'd optimized by direct optimization, we'd have found:

$$
Z_{\mathrm{A}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}=0, \quad Z_{\mathrm{B}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}=\frac{1}{2} \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{3}} \widetilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{4}}
$$

## Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as a nearly-kernel machine or nearly-kernel methods.

Unlike kernel methods, this depends on the learning algorithm.

- If we'd optimized by direct optimization, we'd have found:

$$
Z_{\mathrm{A}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}=0, \quad Z_{\mathrm{B}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}=\frac{1}{2} \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{3} \tilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{4}} . . . . ~}
$$

- In the ODE limit, we get different predictions

$$
\begin{aligned}
& Z_{\mathrm{A}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}=Z_{\mathrm{B}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}} \equiv \tilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{3}} \tilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{4}}-\sum_{\tilde{\alpha}_{5}} \tilde{k}^{\tilde{\alpha}_{2} \tilde{\alpha}_{5}} X_{\mathrm{II}}^{\tilde{\alpha}_{1} \tilde{\alpha}_{5} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}, \\
& \sum_{\tilde{\alpha}_{3}, \tilde{\alpha}_{4} \in \mathcal{A}} X_{I I}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2} \tilde{\alpha}_{3} \tilde{\alpha}_{4}}\left(\tilde{k}_{\tilde{\alpha}_{3} \tilde{\alpha}_{5}} \delta_{\tilde{\alpha}_{4} \tilde{\alpha}_{6}}+\delta_{\tilde{\alpha}_{3} \tilde{\alpha}_{5}} \tilde{k}_{\tilde{\alpha}_{4} \tilde{\alpha}_{6}}\right)=\delta_{\tilde{\alpha}_{5}}^{\tilde{\alpha}_{1}} \delta_{\tilde{\alpha}_{6}}^{\tilde{\alpha}_{2}},
\end{aligned}
$$

## Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as a nearly-kernel machine or nearly-kernel methods.

We again have two ways of thinking about the solution:

- we can use the optimal parameters to make predictions, or
- we can make nearly-kernel predictions in which the features, the meta features, and the model parameters do not appear.


## Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as a nearly-kernel machine or nearly-kernel methods.

We again have two ways of thinking about the solution:

- we can use the optimal parameters to make predictions, or
- we can make nearly-kernel predictions in which the features, the meta features, and the model parameters do not appear.

Predictions are made by direct comparison with the training set:

- It has the kernel linear piece $\propto y_{i ; \tilde{\alpha}_{2}}$, and
- it also has a new quadratic piece $\propto y_{i ; \tilde{\alpha}_{1}} y_{i ; \tilde{\alpha}_{2}}$.


## Representation Learning

For simplicity, let's pick the direct optimization solution:
$k_{i i ; \delta_{1} \delta_{2}}^{\mathrm{E}}\left(\theta^{\star}\right)=k_{\delta_{1} \delta_{2}}+\sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}}\left(\mu_{\delta_{1} \delta_{2} \tilde{\alpha}_{1}}+\mu_{\delta_{2} \delta_{1} \tilde{\alpha}_{1}}\right) \widetilde{k}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}}+O\left(\epsilon^{2}\right)$.
Then, we can define a trained kernel that averages between the fixed kernel and dynamical effective kernels:

$$
k_{i ; \delta_{1} \delta_{2}}^{\sharp} \equiv \frac{1}{2}\left[k_{\delta_{1} \delta_{2}}+k_{i i ; \delta_{1} \delta_{2}}^{\mathrm{E}}\left(\theta^{\star}\right)\right] .
$$

Now the nearly-kernel prediction formula can be compressed,

$$
z_{i}\left(x_{\dot{\beta}} ; \theta^{\star}\right)=\sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}} k_{i i ; \beta \tilde{\beta}_{1}}^{\sharp} \widetilde{k}_{i i}^{\tilde{\alpha}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}}+O\left(\epsilon^{2}\right),
$$

taking the form of a kernel prediction, but with the benefit of nontrivial feature evolution incorporated into the trained kernel.

## Representation Learning as Regularization

The direct optimization solution in parameter space is

$$
z_{i}\left(x_{\dot{\beta}} ; \theta^{\star}\right)=\sum_{j=0}^{n_{f}} W_{i j}^{\star} \phi_{j}\left(x_{\dot{\beta}}\right)+\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}}^{\star} W_{i j_{2}}^{\star} \psi_{j_{1} j_{2}}\left(x_{\dot{\beta}}\right)
$$

and the optimal parameters can decompose as

$$
W_{i j}^{\star} \equiv W_{i j}^{\mathrm{F}}+W_{i j}^{\prime}
$$

where $W_{i j}^{\mathrm{F}}$ are the optimal parameters from the linear model.

## Representation Learning as Regularization

The direct optimization solution in parameter space is

$$
z_{i}\left(x_{\dot{\beta}} ; \theta^{\star}\right)=\sum_{j=0}^{n_{f}} W_{i j}^{\star} \phi_{j}\left(x_{\dot{\beta}}\right)+\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}}^{\star} W_{i j_{2}}^{\star} \psi_{j_{1} j_{2}}\left(x_{\dot{\beta}}\right)
$$

and the optimal parameters can decompose as

$$
W_{i j}^{\star} \equiv W_{i j}^{\mathrm{F}}+W_{i j}^{\prime}
$$

where $W_{i j}^{\mathrm{F}}$ are the optimal parameters from the linear model.

- The $O(\epsilon)$ tunings $W_{i j}^{\prime}$ ruin the fine tuning of the $W_{i j}^{\mathrm{F}}$, as they are constrained by the $\psi_{k j}(x)$ defined before training.


## Representation Learning as Regularization

The direct optimization solution in parameter space is

$$
z_{i}\left(x_{\dot{\beta}} ; \theta^{\star}\right)=\sum_{j=0}^{n_{f}} W_{i j}^{\star} \phi_{j}\left(x_{\dot{\beta}}\right)+\frac{\epsilon}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}}^{\star} W_{i j_{2}}^{\star} \psi_{j_{1} j_{2}}\left(x_{\dot{\beta}}\right)
$$

and the optimal parameters can decompose as

$$
W_{i j}^{\star} \equiv W_{i j}^{\mathrm{F}}+W_{i j}^{\prime}
$$

where $W_{i j}^{\mathrm{F}}$ are the optimal parameters from the linear model.

- The $O(\epsilon)$ tunings $W_{i j}^{I}$ ruin the fine tuning of the $W_{i j}^{\mathrm{F}}$, as they are constrained by the $\psi_{k j}(x)$ defined before training.
- Assuming these $\psi_{k j}(x)$ are useful, we might expect that the quadratic model will overfit less and generalize better.


## Does feature learning help generalization?

Consider the generalization error

$$
\mathcal{L}_{\mathcal{B}}(\epsilon)=\frac{1}{2} \sum_{\dot{\beta} \in \mathcal{B}} \sum_{i=1}^{n_{\text {out }}}\left[y_{i ; \dot{\beta}}-z_{i ; \dot{\beta}}(\epsilon)\right]^{2}
$$

where $\dot{\beta} \in \mathcal{B}$ is a sample index in the test set, with

$$
z_{i ; \dot{\beta}}(\epsilon)=z_{i ; \dot{\beta}}^{\mathrm{F}}+\epsilon z_{i ; \dot{\beta}}^{\mathrm{I}}+O\left(\epsilon^{2}\right) .
$$

## Does feature learning help generalization?

Consider the generalization error

$$
\mathcal{L}_{\mathcal{B}}(\epsilon)=\frac{1}{2} \sum_{\dot{\beta} \in \mathcal{B}} \sum_{i=1}^{n_{\text {out }}}\left[y_{i ; \dot{\beta}}-z_{i ; \dot{\beta}}(\epsilon)\right]^{2}
$$

where $\dot{\beta} \in \mathcal{B}$ is a sample index in the test set, with

$$
z_{i ; \dot{\beta}}(\epsilon)=z_{i ; \dot{\beta}}^{\mathrm{F}}+\epsilon z_{i ; \dot{\beta}}^{\mathrm{I}}+O\left(\epsilon^{2}\right) .
$$

Then, we can see if the quadratic deformation helps by computing

$$
\frac{d \mathcal{L}_{\mathcal{B}}}{d \epsilon}=\sum_{\dot{\beta} \in \mathcal{B}} \sum_{i=1}^{n_{\text {out }}} \frac{\partial \mathcal{L}_{\mathcal{B}}(\epsilon)}{\partial z_{i ; \dot{\beta}}} \frac{d z_{i ; \dot{\beta}}}{d \epsilon}<0
$$

## Does feature learning help generalization?

Consider the generalization error

$$
\mathcal{L}_{\mathcal{B}}(\epsilon)=\frac{1}{2} \sum_{\dot{\beta} \in \mathcal{B}} \sum_{i=1}^{n_{\text {out }}}\left[y_{i ; \dot{\beta}}-z_{i ; \dot{\beta}}(\epsilon)\right]^{2}
$$

where $\dot{\beta} \in \mathcal{B}$ is a sample index in the test set, with

$$
z_{i ; \dot{\beta}}(\epsilon)=z_{i ; \dot{\beta}}^{\mathrm{F}}+\epsilon z_{i ; \dot{\beta}}^{\mathrm{I}}+O\left(\epsilon^{2}\right) .
$$

Then, we can see if the quadratic deformation helps by computing

$$
\frac{d \mathcal{L}_{\mathcal{B}}}{d \epsilon}=\sum_{\dot{\beta} \in \mathcal{B}} \sum_{i=1}^{n_{\text {out }}}\left(z_{i ; \dot{\beta}}(\epsilon)-y_{i ; \dot{\beta}}\right) \frac{d z_{i ; \dot{\beta}}}{d \epsilon}<0
$$

## Does feature learning help generalization?

Consider the generalization error

$$
\mathcal{L}_{\mathcal{B}}(\epsilon)=\frac{1}{2} \sum_{\dot{\beta} \in \mathcal{B}} \sum_{i=1}^{n_{\text {out }}}\left[y_{i ; \dot{\beta}}-z_{i ; \dot{\beta}}(\epsilon)\right]^{2}
$$

where $\dot{\beta} \in \mathcal{B}$ is a sample index in the test set, with

$$
z_{i ; \dot{\beta}}(\epsilon)=z_{i ; \dot{\beta}}^{\mathrm{F}}+\epsilon z_{i ; \dot{\beta}}^{\mathrm{I}}+O\left(\epsilon^{2}\right) .
$$

Then, we can see if the quadratic deformation helps by computing

$$
\frac{d \mathcal{L}_{\mathcal{B}}}{d \epsilon}=\sum_{\dot{\beta} \in \mathcal{B}} \sum_{i=1}^{n_{\text {out }}}\left(z_{i ; \dot{\beta}}(\epsilon)-y_{i ; \dot{\beta}}\right) \epsilon z_{i ; \dot{\beta}}^{1}+O\left(\epsilon^{2}\right)<0
$$

## Does feature learning help generalization?

Consider the generalization error

$$
\mathcal{L}_{\mathcal{B}}(\epsilon)=\frac{1}{2} \sum_{\dot{\beta} \in \mathcal{B}} \sum_{i=1}^{n_{\text {out }}}\left[y_{i ; \dot{\beta}}-z_{i ; \dot{\beta}}(\epsilon)\right]^{2}
$$

where $\dot{\beta} \in \mathcal{B}$ is a sample index in the test set, with

$$
z_{i ; \dot{\beta}}(\epsilon)=z_{i ; \dot{\beta}}^{\mathrm{F}}+\epsilon z_{i ; \dot{\beta}}^{\mathrm{I}}+O\left(\epsilon^{2}\right) .
$$

Then, we can see if the quadratic deformation helps by computing

$$
\frac{d \mathcal{L}_{\mathcal{B}}}{d \epsilon}=\sum_{\dot{\beta} \in \mathcal{B}} \sum_{i=1}^{n_{\text {out }}}\left(z_{i ; \dot{\beta}}^{\mathrm{F}}-y_{i ; \dot{\beta}}\right) \epsilon z_{i ; \dot{\beta}}^{\mathrm{I}}+O\left(\epsilon^{2}\right)<0
$$

## Does feature learning help generalization?

Consider the generalization error

$$
\mathcal{L}_{\mathcal{B}}(\epsilon)=\frac{1}{2} \sum_{\dot{\beta} \in \mathcal{B}} \sum_{i=1}^{n_{\text {out }}}\left[y_{i ; \dot{\beta}}-z_{i ; \dot{\beta}}(\epsilon)\right]^{2}
$$

where $\dot{\beta} \in \mathcal{B}$ is a sample index in the test set, with

$$
z_{i ; \dot{\beta}}(\epsilon)=z_{i ; \dot{\beta}}^{\mathrm{F}}+\epsilon z_{i ; \dot{\beta}}^{\mathrm{I}}+O\left(\epsilon^{2}\right) .
$$

Then, we can see if the quadratic deformation helps by computing

$$
\frac{d \mathcal{L}_{\mathcal{B}}}{d \epsilon}=\sum_{\dot{\beta} \in \mathcal{B}} \sum_{i=1}^{n_{\text {out }}}\left(z_{i ; \dot{\beta}}^{\mathrm{F}}-y_{i ; \dot{\beta}}\right) \epsilon z_{i ; \dot{\beta}}^{\mathrm{I}}+O\left(\epsilon^{2}\right)<0
$$

Depends on the initial training error and the nonlinear prediction.

## How Much?

Need to evaluate our solution to order $\epsilon^{2}$ :

$$
z_{i ; \dot{\beta}}(\epsilon)=z_{i ; \dot{\beta}}^{\mathrm{F}}+\epsilon z_{i ; \dot{\beta}}^{\mathrm{I}}+\epsilon^{2} z_{i ; \dot{\beta}}^{\mathrm{II}}+O\left(\epsilon^{3}\right) .
$$

## How Much?

Need to evaluate our solution to order $\epsilon^{2}$ :

$$
z_{i ; \dot{\beta}}(\epsilon)=z_{i ; \dot{\beta}}^{\mathrm{F}}+\epsilon z_{i ; \dot{\beta}}^{\mathrm{I}}+\epsilon^{2} z_{i ; \beta}^{\mathrm{II}}+O\left(\epsilon^{3}\right) .
$$

Then, by calculating

$$
0=\left.\frac{d \mathcal{L}_{\mathcal{B}}}{d \epsilon}\right|_{\epsilon \rightarrow \epsilon^{\star}},
$$

we can optimize the amount of feature learning:

$$
\epsilon^{\star}=\frac{-\sum_{\dot{\beta} \in \mathcal{B}} \sum_{i=1}^{n_{\text {out }}}\left(z_{i ; \dot{\beta}}^{\mathrm{F}}-y_{i ; \dot{\beta}}\right) z_{i ; \dot{\beta}}^{\mathrm{I}}}{\sum_{\dot{\beta} \in \mathcal{B}} \sum_{i=1}^{n_{\text {out }}}\left[\left(z_{i ; \dot{\beta}}^{\mathrm{I}}\right)^{2}+\left(z_{i ; \dot{\beta}}^{\mathrm{F}}-y_{i ; \dot{\beta}}\right) z_{i ; \dot{\beta}}^{\mathrm{II}}\right]}
$$

## How Much?

Need to evaluate our solution to order $\epsilon^{2}$ :

$$
z_{i ; \dot{\beta}}(\epsilon)=z_{i ; \dot{\beta}}^{\mathrm{F}}+\epsilon z_{i ; \dot{\beta}}^{\mathrm{I}}+\epsilon^{2} z_{i ; \dot{\beta}}^{\mathrm{II}}+O\left(\epsilon^{3}\right) .
$$

Then, by calculating

$$
0=\left.\frac{d \mathcal{L}_{\mathcal{B}}}{d \epsilon}\right|_{\epsilon \rightarrow \epsilon^{\star}},
$$

we can optimize the amount of feature learning:

$$
\epsilon^{\star}=\frac{-\sum_{\dot{\beta} \in \mathcal{B}} \sum_{i=1}^{n_{\text {out }}}\left(z_{i ; \dot{\beta}}^{\mathrm{F}}-y_{i ; \dot{\beta}}\right) z_{i ; \dot{\beta}}^{\mathrm{I}}}{\sum_{\dot{\beta} \in \mathcal{B}} \sum_{i=1}^{n_{\text {out }}}\left[\left(z_{i ; \dot{\beta}}^{\mathrm{I}}\right)^{2}+\left(z_{i ; \dot{\beta}}^{\mathrm{F}}-y_{i ; \dot{\beta}}\right) z_{i ; \dot{\beta}}^{\mathrm{II}}\right]}
$$

This means that for different datasets and tasks, this will have different levels of importance.

## Quadratic Models vs. Deep Learning

- Quadratic models are minimal models of feature learning:

$$
\begin{aligned}
z_{i}\left(x_{\delta} ; \theta^{\star}\right) & =\sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}} k_{i ; \delta \tilde{\alpha}_{1}}^{\sharp} \widetilde{k}_{i i}^{\tilde{\alpha}_{i i} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}}+O\left(\epsilon^{2}\right), \\
k_{i ; \delta_{1} \delta_{2}}^{\sharp} & \equiv \frac{1}{2}\left[k_{\delta_{1} \delta_{2}}+k_{i i ; \delta_{1} \delta_{2}}^{\mathrm{E}}\left(\theta^{\star}\right)\right] .
\end{aligned}
$$

## Quadratic Models vs. Deep Learning

- Quadratic models are minimal models of feature learning:

$$
\begin{aligned}
z_{i}\left(x_{\delta} ; \theta^{\star}\right) & =\sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}} k_{i i ; \delta \tilde{\alpha}_{1}}^{\sharp} \widetilde{k}_{i i}^{\tilde{\mu}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}}+O\left(\epsilon^{2}\right), \\
k_{i i ; \delta_{1} \delta_{2}}^{\sharp} & \equiv \frac{1}{2}\left[k_{\delta_{1} \delta_{2}}+k_{i i ; \delta_{1} \delta_{2}}^{\mathrm{E}}\left(\theta^{\star}\right)\right] .
\end{aligned}
$$

- MLPs at large-but-finite width are cubic models

$$
\begin{aligned}
z_{i}\left(x_{\delta} ; \theta\right)= & \sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)+\frac{1}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\delta}\right) \\
& +\frac{1}{6} \sum_{j_{1}, j_{2}, j_{3}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} W_{i j_{3}} \Psi_{j_{1} j_{2} j_{3}}\left(x_{\delta}\right)
\end{aligned}
$$

## Quadratic Models vs. Deep Learning

- Quadratic models are minimal models of feature learning:

$$
\begin{aligned}
z_{i}\left(x_{\delta} ; \theta^{\star}\right) & =\sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}} k_{i i ; \delta \tilde{\alpha}_{1}}^{\sharp} \widetilde{k}_{i i}^{\tilde{a}_{1} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}}+O\left(\epsilon^{2}\right), \\
k_{i i ; \delta_{1} \delta_{2}}^{\sharp} & \equiv \frac{1}{2}\left[k_{\delta_{1} \delta_{2}}+k_{i i ; \delta_{1} \delta_{2}}^{\mathrm{E}}\left(\theta^{\star}\right)\right] .
\end{aligned}
$$

- MLPs at large-but-finite width are cubic models

$$
\begin{aligned}
z_{i}\left(x_{\delta} ; \theta\right)= & \sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)+\frac{1}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\delta}\right) \\
& +\frac{1}{6} \sum_{j_{1}, j_{2}, j_{3}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} W_{i j_{3}} \Psi_{j_{1} j_{2} j_{3}}\left(x_{\delta}\right)
\end{aligned}
$$

- The amount of representation learning is set by the depth-to-width ratio, $\epsilon \equiv \frac{L}{n}$, with the depth $L$ and width $n$.


## Quadratic Models vs. Deep Learning

- Quadratic models are minimal models of feature learning:

$$
\begin{aligned}
z_{i}\left(x_{\delta} ; \theta^{\star}\right) & =\sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathcal{A}} k_{i i ; \delta \tilde{\alpha}_{1}}^{\sharp} \widetilde{k}_{i i}^{\tilde{a}_{1 i} \tilde{\alpha}_{2}} y_{i ; \tilde{\alpha}_{2}}+O\left(\epsilon^{2}\right), \\
k_{i i ; \delta_{1} \delta_{2}}^{\sharp} & \equiv \frac{1}{2}\left[k_{\delta_{1} \delta_{2}}+k_{i i ; \delta_{1} \delta_{2}}^{\mathrm{E}}\left(\theta^{\star}\right)\right] .
\end{aligned}
$$

- MLPs at large-but-finite width are cubic models

$$
\begin{aligned}
z_{i}\left(x_{\delta} ; \theta\right)= & \sum_{j=0}^{n_{f}} W_{i j} \phi_{j}\left(x_{\delta}\right)+\frac{1}{2} \sum_{j_{1}, j_{2}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} \psi_{j_{1} j_{2}}\left(x_{\delta}\right) \\
& +\frac{1}{6} \sum_{j_{1}, j_{2}, j_{3}=0}^{n_{f}} W_{i j_{1}} W_{i j_{2}} W_{i j_{3}} \Psi_{j_{1} j_{2} j_{3}}\left(x_{\delta}\right)
\end{aligned}
$$

- The amount of representation learning is set by the depth-to-width ratio, $\epsilon \equiv \frac{L}{n}$, with the depth $L$ and width $n$.
- The $\phi_{j}\left(x_{\delta}\right), \psi_{j_{1} j_{2}}\left(x_{\delta}\right), \Psi_{j_{1} j_{2} j_{3}}\left(x_{\delta}\right)$ are random.


## Some Takeaways

- The deep learning framework makes it easy to define and train nonlinear models, letting us approximate functions that are often easy for humans to do - is there a cat in that image? but hard for humans to program: a.k.a AI.
- These nonlinear models are much richer than classical statistical models such as linear regression.
- We can understand deep learning using "effective theory" tools to analyze large-but-finite-width networks.
- There are many more exciting "experimental" results that are waiting to be analyzed theoretically.


## Thank You!

This slide is intentionally left blank.

