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Goals

The goal of this talk is to theoretically analyze deep neural
networks of finite width. In particular, we'll

(i) explain at a high level our approach, and

(ii) analyze a simple model of representation learning in
nonlinear models.
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Neural Networks

A neural network is a recipe for computing a function built out of
many computational units called neurons:

Neurons are then organized in parallel into layers, and deep neural
networks are those composed of multiple layers in sequence.
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Neural Networks Abstracted

For the moment, let’s ignore the detailed structure and focus on a
general parameterized function,

f(x;0),

where x is the input to the function and 6 is a vector of a large
number of parameters controlling the shape of the function.
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The Theoretical Minimum

Our goal is to analyze the trained network function:

f(x; 6%).
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The Theoretical Minimum

Our goal is to analyze the trained network function:
f(x; 6%).

One way to see the kinds of technical problems that we'll encounter
in pursuit of this goal is to Taylor expand our trained network
function f(x; 0*) around the initialized value of the parameters ¢

df 1 , d?f

f(x;0%) =f(x;0)+ (6 — 0) — o (0*— )? J2 T

where f(x; ) and its derivatives on the right-hand side are all
evaluated at initialized value of the parameters.
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The Theoretical Minimum: Problem 1

In general, the Taylor series contains an infinite number of terms

df  dPf  df

f, —
©do’  de2’ ded’  de*’ ’

and in principle we need to compute them all.
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The Theoretical Minimum: Problem 2

Since the parameters 0 are randomly sampled from p(#), each time
we initialize our network we get a different function f(x; 6), and we
need to determine the mapping:

df of
fo—, —, ...
o(0) - o( - 55 Gk )
This means that each term f, df /df, d*f/d6?, ..., in the Taylor

expansion is really a random function of the input x, and this joint
distribution will have intricate statistical dependencies.
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The Theoretical Minimum: Problem 3

The learned value of the parameters, 0*, is the result of a
complicated training process. In general, 6* is not unique and can
depend on everything:

. _ [gx df d*f : o
0" =0 ]<0, f, 70 d@ learning algorithm; training data) .

Determining an analytical expression for 8* must take “everything”
into account.
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Goal, restated

If we could solve all three of these problems, then we'd have a
distribution over trained network functions

p(f*) = p(f(x; 9*)‘ learning algorithm; training data) ,

now conditioned in a simple way on the learning algorithm and the
data we used for training.
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now conditioned in a simple way on the learning algorithm and the
data we used for training.

» A framework for analyzing p(f*) would let us understand Al
systems and then let us use that knowledge to improve them.
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Goal, restated
If we could solve all three of these problems, then we'd have a
distribution over trained network functions
p(f*) = p(f(x; 9*)‘ learning algorithm; training data) ,

now conditioned in a simple way on the learning algorithm and the
data we used for training.

» A framework for analyzing p(f*) would let us understand Al
systems and then let us use that knowledge to improve them.

The development of a method for the analytical computation of
p(f*) should be a main goal of a theory of deep learning.
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Fine, Structure

Solving our three problems for general f(x; ) is not tractable, so
we need to use the particular structure of neural-network function.
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Fine, Structure

Solving our three problems for general f(x; ) is not tractable, so
we need to use the particular structure of neural-network function.

» A starting point is the infinite-width limit

lim p(f*),

n—o0

which gives an expression for the fully-trained distribution, in
terms of a Gaussian distribution with a nonzero mean.

[Neal, Lee/Bahri/. .., Matthews/..., Jacot/..., ... ]
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Fine, Structure

Solving our three problems for general f(x; ) is not tractable, so
we need to use the particular structure of neural-network function.

» A starting point is the infinite-width limit

lim p(f*),

n—oo
which gives an expression for the fully-trained distribution, in
terms of a Gaussian distribution with a nonzero mean.
[Neal, Lee/Bahri/..., Matthews/. .., Jacot/..., ... ]

» We can find an effective description using perturbation
theory, expanding in the inverse layer width, e = 1/n:

p(F*) = plo(F*) + p{l}n(f*) + o<nl2> .

(The details are in The Principles of Deep Learning Theory.)
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Statistics vs. Dynamics

Stepping back, Problems 1 and 2 are about initialization statistics:

df d°f
P(Q)%P<fadevdoﬁ7 ) .

» Understanding this ensemble is essential for understanding
generalization given different hyperparameter choices.
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Statistics vs. Dynamics

Stepping back, Problems 1 and 2 are about initialization statistics:

df d°f
P(Q)%P<fad€7doﬁ7 ) .

» Understanding this ensemble is essential for understanding
generalization given different hyperparameter choices.

Problem 3 is about the training dynamics:

. _ [gx df d*f : o
0" =0 ]<¢9, f, 98 9@ learning algorithm; training data) .

» For now, we will try understand the algorithm dependence and
data dependence of solutions for a very general class of
machine learning models.
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Machine Learning Models

f(x;0)
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Machine Learning Models

f(x;0) =z(x; 0)
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Machine Learning Models
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Machine Learning Models

f(x;0) =zi(xs;0)

» i=1,...,nou is a vectorial index

» § € D is a sample index
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Machine Learning Models

f(x;0) =z.5(0)

» i=1,...,nou is a vectorial index

» § € D is a sample index
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A Familiar Example

The simplest machine learning model is a linear model:

no
Zi;5(9) = bi + Z VVU Xji6 -
=1
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A Familiar Example

The simplest machine learning model is a linear model:
o
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j=1
» Linear in both the parameters 6 = {b;, Wj;} and the input x;.

» The linear in linear model takes its name from the dependence
on the parameters # and not the input x.
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A Familiar Example

The

simplest machine learning model is a linear model:

no
zi;(5(9) = bi + Z VVI_] Xji6 -

=1

Linear in both the parameters § = {b;, W;;} and the input x;.

The linear in linear model takes its name from the dependence
on the parameters # and not the input x.

The linearity in x means this model can only approximate
functions that are linear transformations of the input.

By another name: a one-layer (zero-hidden layer) network.
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(Generalized) Linear Models

Instead, we might design a fixed basis of feature functions ¢;(x)
that are meant to fit more complicated functions:

2i:5(0) = bi + Y _ Wi dj(xs)

Jj=1
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that are meant to fit more complicated functions:

2i:5(0) = bi + Y _ Wi dj(xs)

Jj=1

» In this context, much of the complicated modeling work goes
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(Generalized) Linear Models

Instead, we might design a fixed basis of feature functions ¢;(x)
that are meant to fit more complicated functions:

2i:5(0) = bi + Y _ Wi dj(xs)

Jj=1

» In this context, much of the complicated modeling work goes
into the construction of these feature functions ¢;(x).

» We can still think of this model as a one-layer neural network,
but now we pre-process x with the function ¢;(x).
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(Generalized) Linear Models

Instead, we might design a fixed basis of feature functions ¢;(x)
that are meant to fit more complicated functions:

Z,-;(;(Q) = Zf VVij ¢j(X5)

Jj=0

» Here, we've subsumed the bias vector into the weight matrix
by setting ¢o(x) =1 and Wiy = b;.
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(Generalized) Linear Models

Instead, we might design a fixed basis of feature functions ¢;(x)
that are meant to fit more complicated functions:

Z,-;(;(Q) = Zf VVij ¢j(X5)

Jj=0

» Here, we've subsumed the bias vector into the weight matrix
by setting ¢o(x) =1 and Wiy = b;.

» (e.g. for a 1-dimensional function we might pick a basis
¢j(x) = {1,x,x%,x3} and fit cubic curves.)
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(Generalized) Linear Models

Instead, we might design a fixed basis of feature functions ¢;(x)
that are meant to fit more complicated functions:

zi(0) = Wip + Wirx + Winx? + Wisx®
» Here, we've subsumed the bias vector into the weight matrix
by setting ¢o(x) =1 and Wiy = b;.

» (e.g. for a 1-dimensional function we might pick a basis
oj(x) = {1,x,x%,x3} and fit cubic curves.)
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Linear Regression
Supervised learning with a linear model is linear regression

L4(0) = % Z ff [y;;& - i: W1j¢j(X&)] )

GeA i=1 j=0

where y; = fi(x) is an observed true output or /abel.
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Linear Regression
Supervised learning with a linear model is linear regression

2

1 Nout nf

La(0) =5 2;42; [)’i;& - Zo WU¢1(X&)] :
QcA I= J=

where y; = fi(x) is an observed true output or /abel.

> We could solve by direct optimization:

_dLy

0=
dW;

W=wx=
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Linear Regression
Supervised learning with a linear model is linear regression

2

1 Nout nf

La(0) =5 2;42; [)’i;& - Zo WU¢1(X&)] :
QcA I= J=

where y; = fi(x) is an observed true output or /abel.

> We could solve by direct optimization:

_dLy

0=
dW;

W=wx=

> We could solve by gradient descent:

Wyt +1) = Wy(t) -

15/40



The Kernel

Let us introduce a new Np x Np-dimensional symmetric matrix:

nf

ks, = k(xs,,%5,) = Y 0j(x5,) j(xs,) -

Jj=0

As an inner product of features, the kernel ks, 5, is a measure of
similarity between two inputs X;.5, and Xx;.5, in feature space.

We'll also denote an N 4-by-N 4-dimensional submatrix of the
kernel evaluated on the training set as ks, a, with a tilde. This lets
us write its inverse as k®1%2 which satisfies

Ta1do . . _ 501
3 kg, = 6%
drcA
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Linear Models and Kernel Methods

Two forms of a solution for a linear model:

P parameter space — linear regression
ng
Z,'(XB; 9*) = Z V‘/Ijqu(Xﬂ)
j=0
» sample space — kernel methods

z,-(xﬂ-;G*): Z k-dlzaldzy;;&2.

a1,02€A
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Linear Models and Kernel Methods

Two forms of a solution for a linear model:

P parameter space — linear regression
ng
Z,'(XB; 9*) = Z V‘/Ijqu(Xﬂ)
j=0
» sample space — kernel methods
z,-(xﬂ-;G*) = Z k-dlzaldzy;;&2.

a1,02€A

Features of this model, expressed as ¢;(x) or ks,s,, are fixed.
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Frameworks: Linear Models vs. Deep Learning

Linear Regression goes back to Legendre and Gauss.
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Frameworks: Linear Models vs. Deep Learning

Linear Regression goes back to Legendre and Gauss.

> “Three Problems” are tractable and can analyze completely.

» Just “curve fitting” so naively unlikely to be useful for Al.
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Frameworks: Linear Models vs. Deep Learning

Deep learning extends this classic paradigm in 2 important ways:
neural networks are typically nonlinear both in x and 6.
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Deep learning extends this classic paradigm in 2 important ways:
neural networks are typically nonlinear both in x and 6.

(i) The generalization of the ¢(x) are inherited from the network
and are random at the beginning of training.

» Practitioners can design a network to have certain nice
properties — like including convolutions for translation-invariant
data — rather than having to pick a basis of functions.
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Frameworks: Linear Models vs. Deep Learning

Deep learning extends this classic paradigm in 2 important ways:
neural networks are typically nonlinear both in x and 6.

(i) The generalization of the ¢(x) are inherited from the network
and are random at the beginning of training.

» Practitioners can design a network to have certain nice
properties — like including convolutions for translation-invariant

data — rather than having to pick a basis of functions.

» Understanding the particular basis requires a calculation.

20/40



Frameworks: Linear Models vs. Deep Learning

Deep learning extends this classic paradigm in 2 important ways:

neural networks are typically nonlinear both in x and 6.

(i) The effective features evolve over the course of training:

d(x) = ¢(x;0%).
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Frameworks: Linear Models vs. Deep Learning

Deep learning extends this classic paradigm in 2 important ways:

neural networks are typically nonlinear both in x and 6.

(i) The effective features evolve over the course of training:

d(x) = ¢(x;0%).

» No longer just fitting a curve with a fixed basis!

» Such feature learning is only a property of nonlinear models.
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Nonlinear Models

To go beyond the linear paradigm, let's slightly deform it to get a
nonlinear model, specifically a quadratic model:

ng € nf
zi5(0) = > Wioi(xs) + 5 > Wi Wiy, (x5)
j=0 J1a=0
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Nonlinear Models

To go beyond the linear paradigm, let's slightly deform it to get a

nonlinear model, specifically a quadratic model:

ng € nf
zi5(0) = > Wioi(xs) + 5 > Wi Wiy, (x5)

Jj=0 J1,j2=0

» It's nonlinear because it's quadratic in the weights: Wj;, Wj;,.

> ¢ < 1 is small parameter that controls the size of the
deformation.

» We've introduced (n¢ + 1)(nf + 2)/2 meta feature
functions, 1;,;,(x), with two feature indices.
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Quadratic Models

To familiarize ourselves with this model, let’'s make a small change
in the model parameters Wj; — Wj; + dWj;:

ng nf
zi(x5: 0 + dO) = zi(x5:0) + > dWj; | dj(x5) + € > Wiy, i(xs5)
Jj=0 J1=0

ng
€
4 5 Z CI'VV,:,'1 dVVijz 7vb.iljz (X5)'
J1.2=0
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Quadratic Models

To familiarize ourselves with this model, let’'s make a small change
in the model parameters Wj; — Wj; + dWj;:

ng nf
zi(x5: 0 + dO) = zi(x5:0) + > dWj; | dj(x5) + € > Wiy, i(xs5)
Jj=0 J1=0

ng
€
4 5 Z (J'VV,:,‘1 dVVijz 7vb.iljz (X5)'
J1.2=0

Let us make a shorthand for the quantity in the square bracket,

d. i ;0 i
zcﬁ/(vé,--) = ¢j(xs) + € kz:% Wiktbii(xs) ,

05 (x5:0) =
which is an effective feature function.
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Effective Feature Learning

The quadratic model z;(xs; 0) behaves effectively as if it has a
parameter-dependent feature function, qbg(x(;; 0).
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Effective Feature Learning

The quadratic model z;(xs; 0) behaves effectively as if it has a
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Effective Feature Learning

The quadratic model z;(xs; 0) behaves effectively as if it has a
parameter-dependent feature function, qu(x(;; 0).

> The ¢,-EJ-(X5; 0) learns with update dWi:

¢;’Ej(X5? 0+ df) = qﬁg(x(;; )+ € Z dWik ki(xs) -
k=0

» For comparison, for the linear model we'd have:

ng
zi(xs5; 0 + dO) = zi(xs;0) + Z dWij; ¢j(x5)
j=0
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Effective Feature Learning

The quadratic model z;(xs; 0) behaves effectively as if it has a
parameter-dependent feature function, gbg(x(;; 0).

> The <Z>,-EJ-(X5; 0) learns with update dWi:

950510 + dO) = 95(x5: 0) + € 3 dWi i (xs)
k=0

» For comparison, for the linear model we'd have:

zi(xs; 0 + d0) = z(xs; 0 +Zd i 0j(xs)

Thus quadratic model has a hierarchical structure, where the
features evolve as if they are described by a linear model and the
model's output evolves in a more complicated nonlinear way.
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Quadratic Regression

Supervised learning a quadratic model doesn't have a particular
name, but if it did, we'd all probably agree that its name should be
quadratic regression:

2
1 Nout ng € nf
La(0) =5 SN lvia — > Wy di(xa) — 5 > Wy Wit (xa)
aeAi=1 Jj=0 J1,2=0
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Quadratic Regression

Supervised learning a quadratic model doesn't have a particular
name, but if it did, we'd all probably agree that its name should be
quadratic regression:

2
1 Nout ng € nf
La(0) =5 SN lvia — > Wy di(xa) — 5 Y Wiy Wip i, (xa)
aeAi=1 Jj=0 J1,2=0

The loss is now quartic in the parameters, and in general

_dLy

= d|/VU ,
W=w=

0

doesn't give analytical solutions or a tractable practical method.
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Quadratic Regression

Supervised learning a quadratic model doesn't have a particular
name, but if it did, we'd all probably agree that its name should be
quadratic regression:

2
Z Z |:y: It Z VVij Qsj(xa - Z ij1 M/Uéwjljz (Xd) .

aeA i=1 Jj=0 Jl J2=0

The loss is now quartic in the parameters, but we can optimize with
gradient descent:

Wi(t + 1) = Wy(t) — ndWJ
YW= (r)

This will find a minimum in practice.
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Quadratic Model Gradient Descent Dynamics

The weights will update as

dLa

Wii(t +1) = W(t) -
Wi=Wj(t)

= Wy(t) = n Y o5a(t) (zia(t) — via) -
While the model and effective features update as

zi;(;(t-i- 1) 22,5 +ZdM/U ¢U 5(1:)

ZdWm ) dWi (8) Y11 (x5),

Jl J2

Ua(f+ 1) ¢U5 )+€Zdek(f)¢kj(Xzs)-

k=0
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Aside: Effective Kernel

To better understand this from the dual sample-space picture, let's
analogously define an effective kernel

u 6152 Z ¢U X51v QSIJ (X52v 0)

which measures a parameter-dependent similarity between two
inputs xs, and xs, using our effective features ¢5(X5; 0).
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Aside 2: Meta Kernel

Another important object worth defining we call the meta kernel:

nf

Hoobrsr = €Up(Xsy) B (x5,) B (x5,)-

J1.j2=0
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Aside 2: Meta Kernel

Another important object worth defining we call the meta kernel:

nr

Hoobrsr = €Up(Xsy) B (x5,) B (x5,)-

J1.j2=0

» This is a parameter-independent tensor given entirely in terms
of the fixed ¢;(x) and v j,(x) that define the model.

» For a fixed input xs,, fts,5,5, computes a different
feature-space inner product between the two inputs, x5, & Xs,.

» Due to the inclusion of ¢ into the definition of p5.5,5,, We
should think of it as being parametrically small too.
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Quadratic Model Gradient Descent Dynamics (Again)

The weights will update as

dLa

Wii(t +1) = W(t) -
Wi=Wj(t)

= Wy(t) = n Y o5a(t) (zia(t) — via) -
While the model and effective features update as

zi;(;(t-i- 1) 22,5 +ZdM/U ¢U 5(1:)

ZdWm ) dWi (8) Y11 (x5),

Jl J2

Ua(f+ 1) ¢U5 )+€Zdek(f)¢kj(Xzs)-

k=0
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Quadratic Model Gradient Dynamics: Dual Sample Space

The model predictions will update as
Z,';(;(t + ].)

:ZI5 nzku 6a +7 Z Héaén €, Otl(t) 6/;&2(t)+... )

G1,82

while the effective kernel will update as
ku 5162(t + 1) i (51(52(t) n Z (M51525é + :u525151)6i;&(t) .,
&

with the residual training error
€ia(t) = zia(t) — yia -

» These joint updates are coupled difference equations, and the
first is nonlinear in the training error.
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Solution

Zi;B(oo)
Z kB&I ;&1542”;&2

a1,00€A

. 065046 o Q16263604 ,
T Z #&15562 Z k k a1 ZA Yiaz Yiag
81,04 €A | as,a6€A

. . Ta8sd6,, . . . G16003G4
+ E Ha516, — E k &Sk Késéras | £g Yias Vi
A1,...,04EA L as,06€A

where the algorithm projectors are given by
Q1020304 163 A28 T b yo1 050304
ZA :k13k24_zk25X” ,
Gs
231&2&3544 E;&1&3;6¢2&4 - Z ka2a5X0410450430¢4 + 77X041Oé2043044
as

30/40



Here, an inverting tensor is implicitly defined:

050G,
1 - -
Z chltla2a3a47 {50630656044546 - (5543545 - 77k543545)(65z4546 - nkda,de)}
as,04€A n
= Z leéld2&3a4( G305 014016 +50¢3a5;a4016 77;513515%&4540 .
a3,04€A
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Solution

Zi;B(oo)
Z kB&I ;&1542”;&2

a1,00€A

. 065046 o Q16263604 ,
T Z #&15562 Z k k a1 ZA Yiaz Yiag
81,04 €A | as,a6€A

. . Ta8sd6,, . . . G16003G4
+ E Ha516, — E k &Sk Késéras | £g Yias Vi
A1,...,04EA L as,06€A

where the algorithm projectors are given by
Q1020304 163 A28 T b yo1 050304
ZA :k13k24_zk25X” ,
Gs
231&2&3544 E;&1&3;6¢2&4 - Z ka2a5X0410450430¢4 + 77X041Oé2043044
as
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Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as
a nearly-kernel machine or nearly-kernel methods.
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Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as
a nearly-kernel machine or nearly-kernel methods.

Unlike kernel methods, this depends on the learning algorithm.

> If we'd optimized by direct optimization, we'd have found:

Zifaisde _ o ziadsie _ 1 renas e

» In the ODE limit, we get different predictions

01626304 _ 701020304 — T A183 G20 T by G538
Z8 = Z8 = kfbs ) S kaafds x| ,
as
z : Q16263604 (7. . S . T _ 501 G
XII (k0130456a4aﬁ + 6063015 ka4aﬁ) =0 &55 G 0

a3,04€A
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Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as
a nearly-kernel machine or nearly-kernel methods.

We again have two ways of thinking about the solution:
» we can use the optimal parameters to make predictions, or

> we can make nearly-kernel predictions in which the features,
the meta features, and the model parameters do not appear.

33/40



Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as
a nearly-kernel machine or nearly-kernel methods.

We again have two ways of thinking about the solution:
» we can use the optimal parameters to make predictions, or

> we can make nearly-kernel predictions in which the features,
the meta features, and the model parameters do not appear.

Predictions are made by direct comparison with the training set:
» It has the kernel linear piece  y;.5,, and

> it also has a new quadratic piece X y;.a, Yi:d,-
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Representation Learning

For simplicity, let's pick the direct optimization solution:

k” 5152(9*) :k5152 + Z (N51525v1 + ,u5251&1)z&1&2yi;5¢2 + 0(62) .

a1,00€A

Then, we can define a trained kernel that averages between the
fixed kernel and dynamical effective kernels:

1 *
K = 5 [kons + KEn(0)]

Now the nearly-kernel prediction formula can be compressed,

Z k”ﬂalmzl y,a2~|—0( )

G1,60€A

taking the form of a kernel prediction, but with the benefit of
nontrivial feature evolution incorporated into the trained kernel.
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Representation Learning as Regularization

The direct optimization solution in parameter space is
n¢g € ng
A% — * * *
zi(x3:07) =Y Wiej(xg) + 3 > Wi Wi in(xs)
Jj=0 J1.2=0
and the optimal parameters can decompose as

Wi = Wi+ wj,

where VV,}: are the optimal parameters from the linear model.
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zi(x3:07) =Y Wiej(xg) + 3 > Wi Wi in(xs)
Jj=0 J1.2=0
and the optimal parameters can decompose as

Wj = Wy + W,

where VVUF are the optimal parameters from the linear model.

> The O(e) tunings W ruin the fine tuning of the W}, as they

are constrained by the 1),;(x) defined before training.
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Representation Learning as Regularization

The direct optimization solution in parameter space is
n¢g € ng
A% — * * *
zi(x3:07) =Y Wiej(xg) + 3 > Wi Wi in(xs)
Jj=0 J1.2=0
and the optimal parameters can decompose as

Wi = Wi+ wj,

where VVUF are the optimal parameters from the linear model.

> The O(e) tunings W ruin the fine tuning of the W}, as they

are constrained by the 1),;(x) defined before training.

» Assuming these 1),;(x) are useful, we might expect that the
quadratic model will overfit less and generalize better.
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Does feature learning help generalization?

Consider the generalization error

I S sz

,BEB’ 1

where 3 € B is a sample index in the test set, with

(e)—z —|—ez —i—O()
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Consider the generalization error
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where 3 € B is a sample index in the test set, with
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Then, we can see if the quadratic deformation helps by computing
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Does feature learning help generalization?

Consider the generalization error
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where 3 € B is a sample index in the test set, with

(e)—z —|—ez —i—O()

Then, we can see if the quadratic deformation helps by computing

d[:B Nout
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Does feature learning help generalization?

Consider the generalization error

I S sz

,BEB’ 1

where 3 € B is a sample index in the test set, with
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Then, we can see if the quadratic deformation helps by computing
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Does feature learning help generalization?

Consider the generalization error

Nout

}E: j{: bﬁ B 4 6)} )

,BEB’ 1

where 3 € B is a sample index in the test set, with

(e)—z —|—ez —|—O<)

Then, we can see if the quadratic deformation helps by computing

}E: j{: ( s = Vi 5) EAZ 5t C)( ) <0

Depends on the initial training error and the nonlinear prediction.

dﬁg
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How Much?

Need to evaluate our solution to order €2

| 1
z;.5(€) :zlfﬂ- +ez 5+ € zi5+ 0(63) .

5
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How Much?

Need to evaluate our solution to order €2

z;45(e) =2 —I—ez —|—€Z —I—O( )

Then, by calculating

dl
0= |
de leser
we can optimize the amount of feature learning:
out |
o~ Tses X (i) A

Srer o () + (£ 00) 2]
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How Much?

Need to evaluate our solution to order €2

z;45(e) =2 —I—ez —|—€Z —I—O( )

Then, by calculating

dl
0= |
de leser
we can optimize the amount of feature learning:
out |
o~ Tses X (i) A

Srer o () + (£ 00) 2]

This means that for different datasets and tasks, this will have
different levels of importance.
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Quadratic Models vs. Deep Learning

» Quadratic models are minimal models of feature learning:

i(xs:0%) = Z ku 6a1N’; Yiar + 0(62) ’

1,00 A

1
klj'il';5152 = E |:k(5162 + kl!lg;§152(9*)j| N
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Quadratic Models vs. Deep Learning

» Quadratic models are minimal models of feature learning:

i(xs:0%) = Z ku 6a1N’; Yiar + O<62) ’

G1,60€A
1
klj'il';5152 = E |:k(51(52 + kl!lg;§152(9*)j| N

» MLPs at large-but-finite width are cubic models

i(x5: 0 Z Wijg;(xs) + 5 Z i Wip¥jj» (x5)

JlJz =0

Z Wij, Wi, Wi W jo s (xs)

Jl J2:3=0
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Quadratic Models vs. Deep Learning

» Quadratic models are minimal models of feature learning:

i(xs:0%) = Z ku 6a1N’; Yiar + O<62) ’

G1,60€A
1
klj'jl';5152 = E |:k(51(52 + kl!lg;§152(9*)j| N
» MLPs at large-but-finite width are cubic models

i(x5: 0 Z Wijg;(xs) + 5 Z i Wip¥jj» (x5)

Jl J2=0
Z VVI'J'l VV"jz VVI'ja wj1j213 (X5 )
J1 J2:3=0

» The amount of representation learning is set by the
depth-to-width ratio, € = % with the depth L and width n.
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Quadratic Models vs. Deep Learning
» Quadratic models are minimal models of feature learning:

i(xs:0%) = Z ku 6a1N’; Yiar + O<62) ’

G1,60€A
1
klj'jl';5152 = E |:k(51(52 + kl!lg;§152(9*)j| N

» MLPs at large-but-finite width are cubic models

i(x5: 0 Z Wijg;(xs) + 5 Z i Wip¥jj» (x5)

1112 =0

Z VVI'J'l VV"jz VVI'ja wj1j213 (X5 )

J1 J2,/3=0
» The amount of representation learning is set by the
depth-to-width ratio, € = % with the depth L and width n.

» The ¢(xs), ¥j1jp(x5), Vjijpjs(x5) are random.
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Some Takeaways

» The deep learning framework makes it easy to define and train
nonlinear models, letting us approximate functions that are
often easy for humans to do — is there a cat in that image? —
but hard for humans to program: a.k.a Al.

» These nonlinear models are much richer than classical
statistical models such as linear regression.

» We can understand deep learning using “effective theory”
tools to analyze large-but-finite-width networks.

» There are many more exciting “experimental” results that are
waiting to be analyzed theoretically.

Thank You!
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