
The Principles of Deep Learning Theory

Dan Roberts

MIT & Salesforce

January 13, 2022

Based on The Principles of Deep Learning Theory w/ Yaida and Hanin, 2106.10165,
to be published by Cambridge University Press in 2022.

1 / 40

Goals

The goal of this talk is to theoretically analyze deep neural
networks of finite width. In particular, we’ll

(i) explain at a high level our approach, and
(ii) analyze a simple model of representation learning in

nonlinear models.

2 / 40

Neural Networks
A neural network is a recipe for computing a function built out of
many computational units called neurons:

Neurons are then organized in parallel into layers, and deep neural
networks are those composed of multiple layers in sequence.

3 / 40

Neural Networks Abstracted

For the moment, let’s ignore the detailed structure and focus on a
general parameterized function,

f (x ; θ) ,

where x is the input to the function and θ is a vector of a large
number of parameters controlling the shape of the function.

4 / 40

The Theoretical Minimum

Our goal is to analyze the trained network function:

f (x ; θ?) .

One way to see the kinds of technical problems that we’ll encounter
in pursuit of this goal is to Taylor expand our trained network
function f (x ; θ?) around the initialized value of the parameters θ

f (x ; θ?) =f (x ; θ) + (θ? − θ) df
dθ + 1

2 (θ? − θ)2 d2f
dθ2 + . . . ,

where f (x ; θ) and its derivatives on the right-hand side are all
evaluated at initialized value of the parameters.

5 / 40

The Theoretical Minimum

Our goal is to analyze the trained network function:

f (x ; θ?) .

One way to see the kinds of technical problems that we’ll encounter
in pursuit of this goal is to Taylor expand our trained network
function f (x ; θ?) around the initialized value of the parameters θ

f (x ; θ?) =f (x ; θ) + (θ? − θ) df
dθ + 1

2 (θ? − θ)2 d2f
dθ2 + . . . ,

where f (x ; θ) and its derivatives on the right-hand side are all
evaluated at initialized value of the parameters.

5 / 40

The Theoretical Minimum: Problem 1

In general, the Taylor series contains an infinite number of terms

f , df
dθ ,

d2f
dθ2 ,

d3f
dθ3 ,

d4f
dθ4 , . . . ,

and in principle we need to compute them all.

6 / 40

The Theoretical Minimum: Problem 2

Since the parameters θ are randomly sampled from p(θ), each time
we initialize our network we get a different function f (x ; θ), and we
need to determine the mapping:

p(θ)→ p
(

f , df
dθ ,

d2f
dθ2 , . . .

)
.

This means that each term f , df /dθ, d2f /dθ2, . . . , in the Taylor
expansion is really a random function of the input x , and this joint
distribution will have intricate statistical dependencies.

7 / 40

The Theoretical Minimum: Problem 3

The learned value of the parameters, θ?, is the result of a
complicated training process. In general, θ? is not unique and can
depend on everything:

θ? ≡ [θ?]
(
θ, f , df

dθ ,
d2f
dθ2 , . . . ; learning algorithm; training data

)
.

Determining an analytical expression for θ? must take “everything”
into account.

8 / 40

Goal, restated

If we could solve all three of these problems, then we’d have a
distribution over trained network functions

p(f ?) ≡ p
(

f (x ; θ?)
∣∣∣ learning algorithm; training data

)
,

now conditioned in a simple way on the learning algorithm and the
data we used for training.

I A framework for analyzing p(f ?) would let us understand AI
systems and then let us use that knowledge to improve them.

The development of a method for the analytical computation of
p(f ?) should be a main goal of a theory of deep learning.

9 / 40

Goal, restated

If we could solve all three of these problems, then we’d have a
distribution over trained network functions

p(f ?) ≡ p
(

f (x ; θ?)
∣∣∣ learning algorithm; training data

)
,

now conditioned in a simple way on the learning algorithm and the
data we used for training.

I A framework for analyzing p(f ?) would let us understand AI
systems and then let us use that knowledge to improve them.

The development of a method for the analytical computation of
p(f ?) should be a main goal of a theory of deep learning.

9 / 40

Goal, restated

If we could solve all three of these problems, then we’d have a
distribution over trained network functions

p(f ?) ≡ p
(

f (x ; θ?)
∣∣∣ learning algorithm; training data

)
,

now conditioned in a simple way on the learning algorithm and the
data we used for training.

I A framework for analyzing p(f ?) would let us understand AI
systems and then let us use that knowledge to improve them.

The development of a method for the analytical computation of
p(f ?) should be a main goal of a theory of deep learning.

9 / 40

Fine, Structure
Solving our three problems for general f (x ; θ) is not tractable, so
we need to use the particular structure of neural-network function.

I A starting point is the infinite-width limit

lim
n→∞

p(f ?) ,

which gives an expression for the fully-trained distribution, in
terms of a Gaussian distribution with a nonzero mean.

[Neal, Lee/Bahri/. . . , Matthews/. . . , Jacot/. . . , . . .]

I We can find an effective description using perturbation
theory, expanding in the inverse layer width, ε ≡ 1/n:

p(f ?) ≡ p{0}(f ?) + p{1}(f ?)
n + O

(1
n2

)
.

(The details are in The Principles of Deep Learning Theory.)

10 / 40

Fine, Structure
Solving our three problems for general f (x ; θ) is not tractable, so
we need to use the particular structure of neural-network function.

I A starting point is the infinite-width limit

lim
n→∞

p(f ?) ,

which gives an expression for the fully-trained distribution, in
terms of a Gaussian distribution with a nonzero mean.

[Neal, Lee/Bahri/. . . , Matthews/. . . , Jacot/. . . , . . .]

I We can find an effective description using perturbation
theory, expanding in the inverse layer width, ε ≡ 1/n:

p(f ?) ≡ p{0}(f ?) + p{1}(f ?)
n + O

(1
n2

)
.

(The details are in The Principles of Deep Learning Theory.)

10 / 40

Fine, Structure
Solving our three problems for general f (x ; θ) is not tractable, so
we need to use the particular structure of neural-network function.

I A starting point is the infinite-width limit

lim
n→∞

p(f ?) ,

which gives an expression for the fully-trained distribution, in
terms of a Gaussian distribution with a nonzero mean.

[Neal, Lee/Bahri/. . . , Matthews/. . . , Jacot/. . . , . . .]

I We can find an effective description using perturbation
theory, expanding in the inverse layer width, ε ≡ 1/n:

p(f ?) ≡ p{0}(f ?) + p{1}(f ?)
n + O

(1
n2

)
.

(The details are in The Principles of Deep Learning Theory.)
10 / 40

Statistics vs. Dynamics
Stepping back, Problems 1 and 2 are about initialization statistics:

p(θ)→ p
(

f , df
dθ ,

d2f
dθ2 , . . .

)
.

I Understanding this ensemble is essential for understanding
generalization given different hyperparameter choices.

Problem 3 is about the training dynamics:

θ? ≡ [θ?]
(
θ, f , df

dθ ,
d2f
dθ2 , . . . ; learning algorithm; training data

)
.

I For now, we will try understand the algorithm dependence and
data dependence of solutions for a very general class of
machine learning models.

11 / 40

Statistics vs. Dynamics
Stepping back, Problems 1 and 2 are about initialization statistics:

p(θ)→ p
(

f , df
dθ ,

d2f
dθ2 , . . .

)
.

I Understanding this ensemble is essential for understanding
generalization given different hyperparameter choices.

Problem 3 is about the training dynamics:

θ? ≡ [θ?]
(
θ, f , df

dθ ,
d2f
dθ2 , . . . ; learning algorithm; training data

)
.

I For now, we will try understand the algorithm dependence and
data dependence of solutions for a very general class of
machine learning models.

11 / 40

Machine Learning Models

f (x ; θ)

12 / 40

Machine Learning Models

f (x ; θ) ≡z(x ; θ)

12 / 40

Machine Learning Models

f (x ; θ) ≡zi (x ; θ)

I i = 1, . . . , nout is a vectorial index

12 / 40

Machine Learning Models

f (x ; θ) ≡zi (xδ; θ)

I i = 1, . . . , nout is a vectorial index
I δ ∈ D is a sample index

12 / 40

Machine Learning Models

f (x ; θ) ≡zi ;δ(θ)

I i = 1, . . . , nout is a vectorial index
I δ ∈ D is a sample index

12 / 40

A Familiar Example

The simplest machine learning model is a linear model:

zi ;δ(θ) = bi +
n0∑

j=1
Wij xj;δ .

I Linear in both the parameters θ = {bi ,Wij} and the input xj .
I The linear in linear model takes its name from the dependence

on the parameters θ and not the input x .
I The linearity in x means this model can only approximate

functions that are linear transformations of the input.
I By another name: a one-layer (zero-hidden layer) network.

13 / 40

A Familiar Example

The simplest machine learning model is a linear model:

zi ;δ(θ) = bi +
n0∑

j=1
Wij xj;δ .

I Linear in both the parameters θ = {bi ,Wij} and the input xj .

I The linear in linear model takes its name from the dependence
on the parameters θ and not the input x .

I The linearity in x means this model can only approximate
functions that are linear transformations of the input.

I By another name: a one-layer (zero-hidden layer) network.

13 / 40

A Familiar Example

The simplest machine learning model is a linear model:

zi ;δ(θ) = bi +
n0∑

j=1
Wij xj;δ .

I Linear in both the parameters θ = {bi ,Wij} and the input xj .
I The linear in linear model takes its name from the dependence

on the parameters θ and not the input x .

I The linearity in x means this model can only approximate
functions that are linear transformations of the input.

I By another name: a one-layer (zero-hidden layer) network.

13 / 40

A Familiar Example

The simplest machine learning model is a linear model:

zi ;δ(θ) = bi +
n0∑

j=1
Wij xj;δ .

I Linear in both the parameters θ = {bi ,Wij} and the input xj .
I The linear in linear model takes its name from the dependence

on the parameters θ and not the input x .
I The linearity in x means this model can only approximate

functions that are linear transformations of the input.

I By another name: a one-layer (zero-hidden layer) network.

13 / 40

A Familiar Example

The simplest machine learning model is a linear model:

zi ;δ(θ) = bi +
n0∑

j=1
Wij xj;δ .

I Linear in both the parameters θ = {bi ,Wij} and the input xj .
I The linear in linear model takes its name from the dependence

on the parameters θ and not the input x .
I The linearity in x means this model can only approximate

functions that are linear transformations of the input.
I By another name: a one-layer (zero-hidden layer) network.

13 / 40

(Generalized) Linear Models

Instead, we might design a fixed basis of feature functions φj(x)
that are meant to fit more complicated functions:

zi ;δ(θ) = bi +
nf∑

j=1
Wij φj(xδ)

14 / 40

(Generalized) Linear Models

Instead, we might design a fixed basis of feature functions φj(x)
that are meant to fit more complicated functions:

zi ;δ(θ) = bi +
nf∑

j=1
Wij φj(xδ)

I In this context, much of the complicated modeling work goes
into the construction of these feature functions φj(x).

14 / 40

(Generalized) Linear Models

Instead, we might design a fixed basis of feature functions φj(x)
that are meant to fit more complicated functions:

zi ;δ(θ) = bi +
nf∑

j=1
Wij φj(xδ)

I In this context, much of the complicated modeling work goes
into the construction of these feature functions φj(x).

I We can still think of this model as a one-layer neural network,
but now we pre-process x with the function φj(x).

14 / 40

(Generalized) Linear Models

Instead, we might design a fixed basis of feature functions φj(x)
that are meant to fit more complicated functions:

zi ;δ(θ) =
nf∑

j=0
Wij φj(xδ)

I Here, we’ve subsumed the bias vector into the weight matrix
by setting φ0(x) ≡ 1 and Wi0 ≡ bi .

14 / 40

(Generalized) Linear Models

Instead, we might design a fixed basis of feature functions φj(x)
that are meant to fit more complicated functions:

zi ;δ(θ) =
nf∑

j=0
Wij φj(xδ)

I Here, we’ve subsumed the bias vector into the weight matrix
by setting φ0(x) ≡ 1 and Wi0 ≡ bi .

I (e.g. for a 1-dimensional function we might pick a basis
φj(x) = {1, x , x2, x3} and fit cubic curves.)

14 / 40

(Generalized) Linear Models

Instead, we might design a fixed basis of feature functions φj(x)
that are meant to fit more complicated functions:

zi (θ) = Wi0 + Wi1x + Wi2x2 + Wi3x3
n0∑

j=1

I Here, we’ve subsumed the bias vector into the weight matrix
by setting φ0(x) ≡ 1 and Wi0 ≡ bi .

I (e.g. for a 1-dimensional function we might pick a basis
φj(x) = {1, x , x2, x3} and fit cubic curves.)

14 / 40

Linear Regression
Supervised learning with a linear model is linear regression

LA(θ) = 1
2
∑
α̃∈A

nout∑
i=1

yi ;α̃ −
nf∑

j=0
Wijφj(xα̃)

2

,

where yi ≡ fi (x) is an observed true output or label.

I We could solve by direct optimization:

0 = dLA
dWij

∣∣∣∣∣
W =W ?

.

I We could solve by gradient descent:

Wij(t + 1) = Wij(t)− ηdLA
dWij

∣∣∣∣∣
Wij =Wij (t)

.

15 / 40

Linear Regression
Supervised learning with a linear model is linear regression

LA(θ) = 1
2
∑
α̃∈A

nout∑
i=1

yi ;α̃ −
nf∑

j=0
Wijφj(xα̃)

2

,

where yi ≡ fi (x) is an observed true output or label.

I We could solve by direct optimization:

0 = dLA
dWij

∣∣∣∣∣
W =W ?

.

I We could solve by gradient descent:

Wij(t + 1) = Wij(t)− ηdLA
dWij

∣∣∣∣∣
Wij =Wij (t)

.

15 / 40

Linear Regression
Supervised learning with a linear model is linear regression

LA(θ) = 1
2
∑
α̃∈A

nout∑
i=1

yi ;α̃ −
nf∑

j=0
Wijφj(xα̃)

2

,

where yi ≡ fi (x) is an observed true output or label.

I We could solve by direct optimization:

0 = dLA
dWij

∣∣∣∣∣
W =W ?

.

I We could solve by gradient descent:

Wij(t + 1) = Wij(t)− ηdLA
dWij

∣∣∣∣∣
Wij =Wij (t)

.

15 / 40

The Kernel

Let us introduce a new ND × ND-dimensional symmetric matrix:

kδ1δ2 ≡ k(xδ1 , xδ2) ≡
nf∑

j=0
φj(xδ1)φj(xδ2) .

As an inner product of features, the kernel kδ1δ2 is a measure of
similarity between two inputs xi ;δ1 and xi ;δ2 in feature space.

We’ll also denote an NA-by-NA-dimensional submatrix of the
kernel evaluated on the training set as k̃α̃1α̃2 with a tilde. This lets
us write its inverse as k̃ α̃1α̃2 , which satisfies∑

α̃2∈A
k̃ α̃1α̃2 k̃α̃2α̃3 = δα̃1

α̃3
.

16 / 40

Linear Models and Kernel Methods

Two forms of a solution for a linear model:

I parameter space – linear regression

zi
(
xβ̇; θ?

)
=

nf∑
j=0

W ?
ij φj(xβ̇)

I sample space – kernel methods

zi
(
xβ̇; θ?

)
=

∑
α̃1,α̃2∈A

kβ̇α̃1
k̃ α̃1α̃2yi ;α̃2 .

Features of this model, expressed as φj(x) or kδ1δ2 , are fixed.

17 / 40

Linear Models and Kernel Methods

Two forms of a solution for a linear model:

I parameter space – linear regression

zi
(
xβ̇; θ?

)
=

nf∑
j=0

W ?
ij φj(xβ̇)

I sample space – kernel methods

zi
(
xβ̇; θ?

)
=

∑
α̃1,α̃2∈A

kβ̇α̃1
k̃ α̃1α̃2yi ;α̃2 .

Features of this model, expressed as φj(x) or kδ1δ2 , are fixed.

17 / 40

Frameworks: Linear Models vs. Deep Learning

Linear Regression goes back to Legendre and Gauss.

I “Three Problems” are tractable and can analyze completely.
Just “curve fitting” so naively unlikely to be useful for AI.

18 / 40

Frameworks: Linear Models vs. Deep Learning

Linear Regression goes back to Legendre and Gauss.

I “Three Problems” are tractable and can analyze completely.
Just “curve fitting” so naively unlikely to be useful for AI.

18 / 40

Frameworks: Linear Models vs. Deep Learning

Linear Regression goes back to Legendre and Gauss.

I “Three Problems” are tractable and can analyze completely.
I Just “curve fitting” so naively unlikely to be useful for AI.

19 / 40

Frameworks: Linear Models vs. Deep Learning

Deep learning extends this classic paradigm in 2 important ways:
neural networks are typically nonlinear both in x and θ.

20 / 40

Frameworks: Linear Models vs. Deep Learning

Deep learning extends this classic paradigm in 2 important ways:
neural networks are typically nonlinear both in x and θ.

(i) The generalization of the φ(x) are inherited from the network
and are random at the beginning of training.

I Practitioners can design a network to have certain nice
properties – like including convolutions for translation-invariant
data – rather than having to pick a basis of functions.

I Understanding the particular basis requires a calculation.

20 / 40

Frameworks: Linear Models vs. Deep Learning

Deep learning extends this classic paradigm in 2 important ways:
neural networks are typically nonlinear both in x and θ.

(i) The generalization of the φ(x) are inherited from the network
and are random at the beginning of training.

I Practitioners can design a network to have certain nice
properties – like including convolutions for translation-invariant
data – rather than having to pick a basis of functions.

I Understanding the particular basis requires a calculation.

20 / 40

Frameworks: Linear Models vs. Deep Learning

Deep learning extends this classic paradigm in 2 important ways:
neural networks are typically nonlinear both in x and θ.

(i) The generalization of the φ(x) are inherited from the network
and are random at the beginning of training.

I Practitioners can design a network to have certain nice
properties – like including convolutions for translation-invariant
data – rather than having to pick a basis of functions.

I Understanding the particular basis requires a calculation.

20 / 40

Frameworks: Linear Models vs. Deep Learning

Deep learning extends this classic paradigm in 2 important ways:
neural networks are typically nonlinear both in x and θ.

(ii) The effective features evolve over the course of training:

φ(x)→ φ(x ; θ?) .

I No longer just fitting a curve with a fixed basis!
I Such feature learning is only a property of nonlinear models.

20 / 40

Frameworks: Linear Models vs. Deep Learning

Deep learning extends this classic paradigm in 2 important ways:
neural networks are typically nonlinear both in x and θ.

(ii) The effective features evolve over the course of training:

φ(x)→ φ(x ; θ?) .

I No longer just fitting a curve with a fixed basis!

I Such feature learning is only a property of nonlinear models.

20 / 40

Frameworks: Linear Models vs. Deep Learning

Deep learning extends this classic paradigm in 2 important ways:
neural networks are typically nonlinear both in x and θ.

(ii) The effective features evolve over the course of training:

φ(x)→ φ(x ; θ?) .

I No longer just fitting a curve with a fixed basis!
I Such feature learning is only a property of nonlinear models.

20 / 40

Nonlinear Models

To go beyond the linear paradigm, let’s slightly deform it to get a
nonlinear model, specifically a quadratic model:

zi ;δ(θ) =
nf∑

j=0
Wijφj(xδ) + ε

2

nf∑
j1,j2=0

Wij1Wij2ψj1j2(xδ)

21 / 40

Nonlinear Models

To go beyond the linear paradigm, let’s slightly deform it to get a
nonlinear model, specifically a quadratic model:

zi ;δ(θ) =
nf∑

j=0
Wijφj(xδ) + ε

2

nf∑
j1,j2=0

Wij1Wij2ψj1j2(xδ)

I It’s nonlinear because it’s quadratic in the weights: Wij1Wij2 .

21 / 40

Nonlinear Models

To go beyond the linear paradigm, let’s slightly deform it to get a
nonlinear model, specifically a quadratic model:

zi ;δ(θ) =
nf∑

j=0
Wijφj(xδ) + ε

2

nf∑
j1,j2=0

Wij1Wij2ψj1j2(xδ)

I It’s nonlinear because it’s quadratic in the weights: Wij1Wij2 .
I ε� 1 is small parameter that controls the size of the

deformation.

21 / 40

Nonlinear Models

To go beyond the linear paradigm, let’s slightly deform it to get a
nonlinear model, specifically a quadratic model:

zi ;δ(θ) =
nf∑

j=0
Wijφj(xδ) + ε

2

nf∑
j1,j2=0

Wij1Wij2ψj1j2(xδ)

I It’s nonlinear because it’s quadratic in the weights: Wij1Wij2 .
I ε� 1 is small parameter that controls the size of the

deformation.
I We’ve introduced (nf + 1)(nf + 2)/2 meta feature

functions, ψj1j2(x), with two feature indices.

21 / 40

Quadratic Models

To familiarize ourselves with this model, let’s make a small change
in the model parameters Wij →Wij + dWij :

zi (xδ; θ + dθ) = zi (xδ; θ) +
nf∑

j=0
dWij

φj(xδ) + ε
nf∑

j1=0
Wij1ψj1j(xδ)


+ ε

2

nf∑
j1,j2=0

dWij1dWij2ψj1j2(xδ).

Let us make a shorthand for the quantity in the square bracket,

φE
ij (xδ; θ) ≡ dzi (xδ; θ)

dWij
= φj(xδ) + ε

nf∑
k=0

Wikψkj(xδ) ,

which is an effective feature function.

22 / 40

Quadratic Models

To familiarize ourselves with this model, let’s make a small change
in the model parameters Wij →Wij + dWij :

zi (xδ; θ + dθ) = zi (xδ; θ) +
nf∑

j=0
dWij

φj(xδ) + ε
nf∑

j1=0
Wij1ψj1j(xδ)


+ ε

2

nf∑
j1,j2=0

dWij1dWij2ψj1j2(xδ).

Let us make a shorthand for the quantity in the square bracket,

φE
ij (xδ; θ) ≡ dzi (xδ; θ)

dWij
= φj(xδ) + ε

nf∑
k=0

Wikψkj(xδ) ,

which is an effective feature function.

22 / 40

Effective Feature Learning
The quadratic model zi (xδ; θ) behaves effectively as if it has a
parameter-dependent feature function, φE

ij (xδ; θ).

I The φE
ij (xδ; θ) learns with update dWik :

φE
ij (xδ; θ + dθ) = φE

ij (xδ; θ) + ε
nf∑

k=0
dWik ψkj(xδ) .

I For comparison, for the linear model we’d have:

zi (xδ; θ + dθ) = zi (xδ; θ) +
nf∑

j=0
dWij φj(xδ)

Thus quadratic model has a hierarchical structure, where the
features evolve as if they are described by a linear model and the
model’s output evolves in a more complicated nonlinear way.

23 / 40

Effective Feature Learning
The quadratic model zi (xδ; θ) behaves effectively as if it has a
parameter-dependent feature function, φE

ij (xδ; θ).

I The φE
ij (xδ; θ) learns with update dWik :

φE
ij (xδ; θ + dθ) = φE

ij (xδ; θ) + ε
nf∑

k=0
dWik ψkj(xδ) .

I For comparison, for the linear model we’d have:

zi (xδ; θ + dθ) = zi (xδ; θ) +
nf∑

j=0
dWij φj(xδ)

Thus quadratic model has a hierarchical structure, where the
features evolve as if they are described by a linear model and the
model’s output evolves in a more complicated nonlinear way.

23 / 40

Effective Feature Learning
The quadratic model zi (xδ; θ) behaves effectively as if it has a
parameter-dependent feature function, φE

ij (xδ; θ).

I The φE
ij (xδ; θ) learns with update dWik :

φE
ij (xδ; θ + dθ) = φE

ij (xδ; θ) + ε
nf∑

k=0
dWik ψkj(xδ) .

I For comparison, for the linear model we’d have:

zi (xδ; θ + dθ) = zi (xδ; θ) +
nf∑

j=0
dWij φj(xδ)

Thus quadratic model has a hierarchical structure, where the
features evolve as if they are described by a linear model and the
model’s output evolves in a more complicated nonlinear way.

23 / 40

Effective Feature Learning
The quadratic model zi (xδ; θ) behaves effectively as if it has a
parameter-dependent feature function, φE

ij (xδ; θ).

I The φE
ij (xδ; θ) learns with update dWik :

φE
ij (xδ; θ + dθ) = φE

ij (xδ; θ) + ε
nf∑

k=0
dWik ψkj(xδ) .

I For comparison, for the linear model we’d have:

zi (xδ; θ + dθ) = zi (xδ; θ) +
nf∑

j=0
dWij φj(xδ)

Thus quadratic model has a hierarchical structure, where the
features evolve as if they are described by a linear model and the
model’s output evolves in a more complicated nonlinear way.

23 / 40

Quadratic Regression

Supervised learning a quadratic model doesn’t have a particular
name, but if it did, we’d all probably agree that its name should be
quadratic regression:

LA(θ) = 1
2
∑
α̃∈A

nout∑
i=1

yi ;α̃ −
nf∑

j=0
Wij φj(xα̃)− ε

2

nf∑
j1,j2=0

Wij1Wij2ψj1j2(xα̃)

2

.

24 / 40

Quadratic Regression

Supervised learning a quadratic model doesn’t have a particular
name, but if it did, we’d all probably agree that its name should be
quadratic regression:

LA(θ) = 1
2
∑
α̃∈A

nout∑
i=1

yi ;α̃ −
nf∑

j=0
Wij φj(xα̃)− ε

2

nf∑
j1,j2=0

Wij1Wij2ψj1j2(xα̃)

2

.

The loss is now quartic in the parameters, and in general

0 = dLA
dWij

∣∣∣∣∣
W =W ?

,

doesn’t give analytical solutions or a tractable practical method.

24 / 40

Quadratic Regression

Supervised learning a quadratic model doesn’t have a particular
name, but if it did, we’d all probably agree that its name should be
quadratic regression:

LA(θ) = 1
2
∑
α̃∈A

nout∑
i=1

yi ;α̃ −
nf∑

j=0
Wij φj(xα̃)− ε

2

nf∑
j1,j2=0

Wij1Wij2ψj1j2(xα̃)

2

.

The loss is now quartic in the parameters, but we can optimize with
gradient descent:

Wij(t + 1) = Wij(t)− ηdLA
dWij

∣∣∣∣∣
Wij =Wij (t)

.

This will find a minimum in practice.

24 / 40

Quadratic Model Gradient Descent Dynamics
The weights will update as

Wij(t + 1) = Wij(t)− ηdLA
dWij

∣∣∣∣∣
Wij =Wij (t)

= Wij(t)− η
∑
α̃

φE
ij;α̃(t) (zi ;α̃(t)− yi ;α̃) .

While the model and effective features update as

zi ;δ(t + 1) =zi ;δ(t) +
∑

j
dWij(t)φE

ij;δ(t)

+ ε

2
∑
j1,j2

dWij1(t) dWij2(t)ψj1j2(xδ),

φE
ij;δ(t + 1) =φE

ij;δ(t) + ε
nf∑

k=0
dWik(t)ψkj(xδ).

25 / 40

Aside: Effective Kernel

To better understand this from the dual sample-space picture, let’s
analogously define an effective kernel

kE
ii ;δ1δ2(θ) ≡

nf∑
j=0

φE
ij (xδ1 ; θ)φE

ij (xδ2 ; θ) ,

which measures a parameter-dependent similarity between two
inputs xδ1 and xδ2 using our effective features φE

ij (xδ; θ).

26 / 40

Aside 2: Meta Kernel

Another important object worth defining we call the meta kernel:

µδ0δ1δ2 ≡
nf∑

j1,j2=0
ε ψj1j2(xδ0)φj1(xδ1)φj2(xδ2).

I This is a parameter-independent tensor given entirely in terms
of the fixed φj(x) and ψj1j2(x) that define the model.

I For a fixed input xδ0 , µδ0δ1δ2 computes a different
feature-space inner product between the two inputs, xδ1 & xδ2 .

I Due to the inclusion of ε into the definition of µδ0δ1δ2 , we
should think of it as being parametrically small too.

27 / 40

Aside 2: Meta Kernel

Another important object worth defining we call the meta kernel:

µδ0δ1δ2 ≡
nf∑

j1,j2=0
ε ψj1j2(xδ0)φj1(xδ1)φj2(xδ2).

I This is a parameter-independent tensor given entirely in terms
of the fixed φj(x) and ψj1j2(x) that define the model.

I For a fixed input xδ0 , µδ0δ1δ2 computes a different
feature-space inner product between the two inputs, xδ1 & xδ2 .

I Due to the inclusion of ε into the definition of µδ0δ1δ2 , we
should think of it as being parametrically small too.

27 / 40

Aside 2: Meta Kernel

Another important object worth defining we call the meta kernel:

µδ0δ1δ2 ≡
nf∑

j1,j2=0
ε ψj1j2(xδ0)φj1(xδ1)φj2(xδ2).

I This is a parameter-independent tensor given entirely in terms
of the fixed φj(x) and ψj1j2(x) that define the model.

I For a fixed input xδ0 , µδ0δ1δ2 computes a different
feature-space inner product between the two inputs, xδ1 & xδ2 .

I Due to the inclusion of ε into the definition of µδ0δ1δ2 , we
should think of it as being parametrically small too.

27 / 40

Aside 2: Meta Kernel

Another important object worth defining we call the meta kernel:

µδ0δ1δ2 ≡
nf∑

j1,j2=0
ε ψj1j2(xδ0)φj1(xδ1)φj2(xδ2).

I This is a parameter-independent tensor given entirely in terms
of the fixed φj(x) and ψj1j2(x) that define the model.

I For a fixed input xδ0 , µδ0δ1δ2 computes a different
feature-space inner product between the two inputs, xδ1 & xδ2 .

I Due to the inclusion of ε into the definition of µδ0δ1δ2 , we
should think of it as being parametrically small too.

27 / 40

Quadratic Model Gradient Descent Dynamics (Again)
The weights will update as

Wij(t + 1) = Wij(t)− ηdLA
dWij

∣∣∣∣∣
Wij =Wij (t)

= Wij(t)− η
∑
α̃

φE
ij;α̃(t) (zi ;α̃(t)− yi ;α̃) .

While the model and effective features update as

zi ;δ(t + 1) =zi ;δ(t) +
∑

j
dWij(t)φE

ij;δ(t)

+ ε

2
∑
j1,j2

dWij1(t) dWij2(t)ψj1j2(xδ),

φE
ij;δ(t + 1) =φE

ij;δ(t) + ε
nf∑

k=0
dWik(t)ψkj(xδ).

28 / 40

Quadratic Model Gradient Dynamics: Dual Sample Space
The model predictions will update as

zi ;δ(t + 1)

=zi ;δ(t)− η
∑
α̃

kE
ii ;δα̃(t) εi ;α̃(t) + η2

2
∑
α̃1,α̃2

µδα̃1α̃2εi ;α̃1(t) εi ;α̃2(t) + . . . ,

while the effective kernel will update as

kE
ii ;δ1δ2(t + 1) =kE

ii ;δ1δ2(t)− η
∑
α̃

(
µδ1δ2α̃ + µδ2δ1α̃

)
εi ;α̃(t) + . . . ,

with the residual training error

εi ;α̃(t) ≡ zi ;α̃(t)− yi ;α̃ .

I These joint updates are coupled difference equations, and the
first is nonlinear in the training error.

29 / 40

Solution

zi ;β̇(∞)

=
∑

α̃1,α̃2∈A
kβ̇α̃1

k̃ α̃1α̃2yi ;α̃2

+
∑

α̃1,...,α̃4∈A

µα̃1β̇α̃2
−
∑

α̃5,α̃6∈A
kβ̇α̃5

k̃ α̃5α̃6µα̃1α̃6α̃2

Z α̃1α̃2α̃3α̃4
A yi ;α̃3 yi ;α̃4

+
∑

α̃1,...,α̃4∈A

µβ̇α̃1α̃2
−
∑

α̃5,α̃6∈A
kβ̇α̃5

k̃ α̃5α̃6µα̃6α̃1α̃2

Z α̃1α̃2α̃3α̃4
B yi ;α̃3 yi ;α̃4

where the algorithm projectors are given by

Z α̃1α̃2α̃3α̃4
A ≡k̃ α̃1α̃3 k̃ α̃2α̃4 −

∑
α̃5

k̃ α̃2α̃5X α̃1α̃5α̃3α̃4
II ,

Z α̃1α̃2α̃3α̃4
B ≡k̃ α̃1α̃3 k̃ α̃2α̃4 −

∑
α̃5

k̃ α̃2α̃5X α̃1α̃5α̃3α̃4
II + η

2 X α̃1α̃2α̃3α̃4
II .

30 / 40

Here, an inverting tensor is implicitly defined:

δα̃1
α̃5
δα̃2
α̃6

=
∑

α̃3,α̃4∈A
X α̃1α̃2α̃3α̃4

II
1
η

[
δα̃3α̃5δα̃4α̃6 − (δα̃3α̃5 − ηk̃α̃3α̃5)(δα̃4α̃6 − ηk̃α̃4α̃6)

]
=

∑
α̃3,α̃4∈A

X α̃1α̃2α̃3α̃4
II

(
k̃α̃3α̃5δα̃4α̃6 + δα̃3α̃5 k̃α̃4α̃6 − ηk̃α̃3α̃5 k̃α̃4α̃6

)
.

31 / 40

Solution

zi ;β̇(∞)

=
∑

α̃1,α̃2∈A
kβ̇α̃1

k̃ α̃1α̃2yi ;α̃2

+
∑

α̃1,...,α̃4∈A

µα̃1β̇α̃2
−
∑

α̃5,α̃6∈A
kβ̇α̃5

k̃ α̃5α̃6µα̃1α̃6α̃2

Z α̃1α̃2α̃3α̃4
A yi ;α̃3 yi ;α̃4

+
∑

α̃1,...,α̃4∈A

µβ̇α̃1α̃2
−
∑

α̃5,α̃6∈A
kβ̇α̃5

k̃ α̃5α̃6µα̃6α̃1α̃2

Z α̃1α̃2α̃3α̃4
B yi ;α̃3 yi ;α̃4

where the algorithm projectors are given by

Z α̃1α̃2α̃3α̃4
A ≡k̃ α̃1α̃3 k̃ α̃2α̃4 −

∑
α̃5

k̃ α̃2α̃5X α̃1α̃5α̃3α̃4
II ,

Z α̃1α̃2α̃3α̃4
B ≡k̃ α̃1α̃3 k̃ α̃2α̃4 −

∑
α̃5

k̃ α̃2α̃5X α̃1α̃5α̃3α̃4
II + η

2 X α̃1α̃2α̃3α̃4
II .

32 / 40

Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as
a nearly-kernel machine or nearly-kernel methods.

33 / 40

Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as
a nearly-kernel machine or nearly-kernel methods.

Unlike kernel methods, this depends on the learning algorithm.

33 / 40

Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as
a nearly-kernel machine or nearly-kernel methods.

Unlike kernel methods, this depends on the learning algorithm.
I If we’d optimized by direct optimization, we’d have found:

Z α̃1α̃2α̃3α̃4
A = 0, Z α̃1α̃2α̃3α̃4

B = 1
2 k̃ α̃1α̃3 k̃ α̃2α̃4 .

33 / 40

Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as
a nearly-kernel machine or nearly-kernel methods.

Unlike kernel methods, this depends on the learning algorithm.
I If we’d optimized by direct optimization, we’d have found:

Z α̃1α̃2α̃3α̃4
A = 0, Z α̃1α̃2α̃3α̃4

B = 1
2 k̃ α̃1α̃3 k̃ α̃2α̃4 .

I In the ODE limit, we get different predictions

Z α̃1α̃2α̃3α̃4
A = Z α̃1α̃2α̃3α̃4

B ≡ k̃ α̃1α̃3 k̃ α̃2α̃4 −
∑
α̃5

k̃ α̃2α̃5X α̃1α̃5α̃3α̃4
II ,

∑
α̃3,α̃4∈A

X α̃1α̃2α̃3α̃4
II

(
k̃α̃3α̃5δα̃4α̃6 + δα̃3α̃5 k̃α̃4α̃6

)
= δα̃1

α̃5
δα̃2
α̃6
,

33 / 40

Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as
a nearly-kernel machine or nearly-kernel methods.

We again have two ways of thinking about the solution:
I we can use the optimal parameters to make predictions, or
I we can make nearly-kernel predictions in which the features,

the meta features, and the model parameters do not appear.

33 / 40

Nearly-Kernel Methods

When the prediction is computed in this way, we can think of it as
a nearly-kernel machine or nearly-kernel methods.

We again have two ways of thinking about the solution:
I we can use the optimal parameters to make predictions, or
I we can make nearly-kernel predictions in which the features,

the meta features, and the model parameters do not appear.

Predictions are made by direct comparison with the training set:
I It has the kernel linear piece ∝ yi ;α̃2 , and
I it also has a new quadratic piece ∝ yi ;α̃1yi ;α̃2 .

33 / 40

Representation Learning
For simplicity, let’s pick the direct optimization solution:

kE
ii ;δ1δ2(θ?) =kδ1δ2 +

∑
α̃1,α̃2∈A

(µδ1δ2α̃1 + µδ2δ1α̃1)k̃ α̃1α̃2yi ;α̃2 + O
(
ε2
)
.

Then, we can define a trained kernel that averages between the
fixed kernel and dynamical effective kernels:

k]ii ;δ1δ2
≡ 1

2
[
kδ1δ2 + kE

ii ;δ1δ2(θ?)
]
.

Now the nearly-kernel prediction formula can be compressed,

zi (xβ̇; θ?) =
∑

α̃1,α̃2∈A
k]ii ;β̇α̃1

k̃]
α̃1α̃2
ii yi ;α̃2 + O

(
ε2
)
,

taking the form of a kernel prediction, but with the benefit of
nontrivial feature evolution incorporated into the trained kernel.

34 / 40

Representation Learning as Regularization

The direct optimization solution in parameter space is

zi (xβ̇; θ?) =
nf∑

j=0
W ?

ij φj(xβ̇) + ε

2

nf∑
j1,j2=0

W ?
ij1W ?

ij2ψj1j2(xβ̇)

and the optimal parameters can decompose as

W ?
ij ≡W F

ij + W I
ij ,

where W F
ij are the optimal parameters from the linear model.

I The O(ε) tunings W I
ij ruin the fine tuning of the W F

ij , as they
are constrained by the ψkj(x) defined before training.

I Assuming these ψkj(x) are useful, we might expect that the
quadratic model will overfit less and generalize better.

35 / 40

Representation Learning as Regularization

The direct optimization solution in parameter space is

zi (xβ̇; θ?) =
nf∑

j=0
W ?

ij φj(xβ̇) + ε

2

nf∑
j1,j2=0

W ?
ij1W ?

ij2ψj1j2(xβ̇)

and the optimal parameters can decompose as

W ?
ij ≡W F

ij + W I
ij ,

where W F
ij are the optimal parameters from the linear model.

I The O(ε) tunings W I
ij ruin the fine tuning of the W F

ij , as they
are constrained by the ψkj(x) defined before training.

I Assuming these ψkj(x) are useful, we might expect that the
quadratic model will overfit less and generalize better.

35 / 40

Representation Learning as Regularization

The direct optimization solution in parameter space is

zi (xβ̇; θ?) =
nf∑

j=0
W ?

ij φj(xβ̇) + ε

2

nf∑
j1,j2=0

W ?
ij1W ?

ij2ψj1j2(xβ̇)

and the optimal parameters can decompose as

W ?
ij ≡W F

ij + W I
ij ,

where W F
ij are the optimal parameters from the linear model.

I The O(ε) tunings W I
ij ruin the fine tuning of the W F

ij , as they
are constrained by the ψkj(x) defined before training.

I Assuming these ψkj(x) are useful, we might expect that the
quadratic model will overfit less and generalize better.

35 / 40

Does feature learning help generalization?

Consider the generalization error

LB(ε) = 1
2
∑
β̇∈B

nout∑
i=1

[
yi ;β̇ − zi ;β̇(ε)

]2
,

where β̇ ∈ B is a sample index in the test set, with

zi ;β̇(ε) =zF
i ;β̇ + ε z I

i ;β̇ + O
(
ε2
)
.

Then, we can see if the quadratic deformation helps by computing

36 / 40

Does feature learning help generalization?

Consider the generalization error

LB(ε) = 1
2
∑
β̇∈B

nout∑
i=1

[
yi ;β̇ − zi ;β̇(ε)

]2
,

where β̇ ∈ B is a sample index in the test set, with

zi ;β̇(ε) =zF
i ;β̇ + ε z I

i ;β̇ + O
(
ε2
)
.

Then, we can see if the quadratic deformation helps by computing

dLB
dε =

∑
β̇∈B

nout∑
i=1

∂LB(ε)
∂zi ;β̇

dzi ;β̇
dε < 0

36 / 40

Does feature learning help generalization?

Consider the generalization error

LB(ε) = 1
2
∑
β̇∈B

nout∑
i=1

[
yi ;β̇ − zi ;β̇(ε)

]2
,

where β̇ ∈ B is a sample index in the test set, with

zi ;β̇(ε) =zF
i ;β̇ + ε z I

i ;β̇ + O
(
ε2
)
.

Then, we can see if the quadratic deformation helps by computing

dLB
dε =

∑
β̇∈B

nout∑
i=1

(
zi ;β̇(ε)− yi ;β̇

) dzi ;β̇
dε < 0

36 / 40

Does feature learning help generalization?

Consider the generalization error

LB(ε) = 1
2
∑
β̇∈B

nout∑
i=1

[
yi ;β̇ − zi ;β̇(ε)

]2
,

where β̇ ∈ B is a sample index in the test set, with

zi ;β̇(ε) =zF
i ;β̇ + ε z I

i ;β̇ + O
(
ε2
)
.

Then, we can see if the quadratic deformation helps by computing

dLB
dε =

∑
β̇∈B

nout∑
i=1

(
zi ;β̇(ε)− yi ;β̇

)
ε z I

i ;β̇ + O
(
ε2
)
< 0

36 / 40

Does feature learning help generalization?

Consider the generalization error

LB(ε) = 1
2
∑
β̇∈B

nout∑
i=1

[
yi ;β̇ − zi ;β̇(ε)

]2
,

where β̇ ∈ B is a sample index in the test set, with

zi ;β̇(ε) =zF
i ;β̇ + ε z I

i ;β̇ + O
(
ε2
)
.

Then, we can see if the quadratic deformation helps by computing

dLB
dε =

∑
β̇∈B

nout∑
i=1

(
zF

i ;β̇ − yi ;β̇

)
ε z I

i ;β̇ + O
(
ε2
)
< 0

36 / 40

Does feature learning help generalization?

Consider the generalization error

LB(ε) = 1
2
∑
β̇∈B

nout∑
i=1

[
yi ;β̇ − zi ;β̇(ε)

]2
,

where β̇ ∈ B is a sample index in the test set, with

zi ;β̇(ε) =zF
i ;β̇ + ε z I

i ;β̇ + O
(
ε2
)
.

Then, we can see if the quadratic deformation helps by computing

dLB
dε =

∑
β̇∈B

nout∑
i=1

(
zF

i ;β̇ − yi ;β̇

)
ε z I

i ;β̇ + O
(
ε2
)
< 0

Depends on the initial training error and the nonlinear prediction.

36 / 40

How Much?
Need to evaluate our solution to order ε2:

zi ;β̇(ε) =zF
i ;β̇ + ε z I

i ;β̇ + ε2 z II
i ;β̇ + O

(
ε3
)
.

Then, by calculating
0 = dLB

dε

∣∣∣
ε→ε?

,

we can optimize the amount of feature learning:

ε? =
−
∑
β̇∈B

∑nout
i=1

(
zF

i ;β̇ − yi ;β̇

)
z I

i ;β̇∑
β̇∈B

∑nout
i=1

[(
z I

i ;β̇

)2
+
(

zF
i ;β̇ − yi ;β̇

)
z II

i ;β̇

]

This means that for different datasets and tasks, this will have
different levels of importance.

37 / 40

How Much?
Need to evaluate our solution to order ε2:

zi ;β̇(ε) =zF
i ;β̇ + ε z I

i ;β̇ + ε2 z II
i ;β̇ + O

(
ε3
)
.

Then, by calculating
0 = dLB

dε

∣∣∣
ε→ε?

,

we can optimize the amount of feature learning:

ε? =
−
∑
β̇∈B

∑nout
i=1

(
zF

i ;β̇ − yi ;β̇

)
z I

i ;β̇∑
β̇∈B

∑nout
i=1

[(
z I

i ;β̇

)2
+
(

zF
i ;β̇ − yi ;β̇

)
z II

i ;β̇

]

This means that for different datasets and tasks, this will have
different levels of importance.

37 / 40

How Much?
Need to evaluate our solution to order ε2:

zi ;β̇(ε) =zF
i ;β̇ + ε z I

i ;β̇ + ε2 z II
i ;β̇ + O

(
ε3
)
.

Then, by calculating
0 = dLB

dε

∣∣∣
ε→ε?

,

we can optimize the amount of feature learning:

ε? =
−
∑
β̇∈B

∑nout
i=1

(
zF

i ;β̇ − yi ;β̇

)
z I

i ;β̇∑
β̇∈B

∑nout
i=1

[(
z I

i ;β̇

)2
+
(

zF
i ;β̇ − yi ;β̇

)
z II

i ;β̇

]

This means that for different datasets and tasks, this will have
different levels of importance.

37 / 40

Quadratic Models vs. Deep Learning
I Quadratic models are minimal models of feature learning:

zi (xδ; θ?) =
∑

α̃1,α̃2∈A
k]ii ;δα̃1

k̃]
α̃1α̃2
ii yi ;α̃2 + O

(
ε2
)
,

k]ii ;δ1δ2
≡ 1

2
[
kδ1δ2 + kE

ii ;δ1δ2(θ?)
]
.

I MLPs at large-but-finite width are cubic models

zi (xδ; θ) =
nf∑

j=0
Wijφj(xδ) + 1

2

nf∑
j1,j2=0

Wij1Wij2ψj1j2(xδ)

+ 1
6

nf∑
j1,j2,j3=0

Wij1Wij2Wij3Ψj1j2j3(xδ)

I The amount of representation learning is set by the
depth-to-width ratio, ε ≡ L

n , with the depth L and width n.
I The φj(xδ), ψj1j2(xδ), Ψj1j2j3(xδ) are random.

38 / 40

Quadratic Models vs. Deep Learning
I Quadratic models are minimal models of feature learning:

zi (xδ; θ?) =
∑

α̃1,α̃2∈A
k]ii ;δα̃1

k̃]
α̃1α̃2
ii yi ;α̃2 + O

(
ε2
)
,

k]ii ;δ1δ2
≡ 1

2
[
kδ1δ2 + kE

ii ;δ1δ2(θ?)
]
.

I MLPs at large-but-finite width are cubic models

zi (xδ; θ) =
nf∑

j=0
Wijφj(xδ) + 1

2

nf∑
j1,j2=0

Wij1Wij2ψj1j2(xδ)

+ 1
6

nf∑
j1,j2,j3=0

Wij1Wij2Wij3Ψj1j2j3(xδ)

I The amount of representation learning is set by the
depth-to-width ratio, ε ≡ L

n , with the depth L and width n.
I The φj(xδ), ψj1j2(xδ), Ψj1j2j3(xδ) are random.

38 / 40

Quadratic Models vs. Deep Learning
I Quadratic models are minimal models of feature learning:

zi (xδ; θ?) =
∑

α̃1,α̃2∈A
k]ii ;δα̃1

k̃]
α̃1α̃2
ii yi ;α̃2 + O

(
ε2
)
,

k]ii ;δ1δ2
≡ 1

2
[
kδ1δ2 + kE

ii ;δ1δ2(θ?)
]
.

I MLPs at large-but-finite width are cubic models

zi (xδ; θ) =
nf∑

j=0
Wijφj(xδ) + 1

2

nf∑
j1,j2=0

Wij1Wij2ψj1j2(xδ)

+ 1
6

nf∑
j1,j2,j3=0

Wij1Wij2Wij3Ψj1j2j3(xδ)

I The amount of representation learning is set by the
depth-to-width ratio, ε ≡ L

n , with the depth L and width n.

I The φj(xδ), ψj1j2(xδ), Ψj1j2j3(xδ) are random.

38 / 40

Quadratic Models vs. Deep Learning
I Quadratic models are minimal models of feature learning:

zi (xδ; θ?) =
∑

α̃1,α̃2∈A
k]ii ;δα̃1

k̃]
α̃1α̃2
ii yi ;α̃2 + O

(
ε2
)
,

k]ii ;δ1δ2
≡ 1

2
[
kδ1δ2 + kE

ii ;δ1δ2(θ?)
]
.

I MLPs at large-but-finite width are cubic models

zi (xδ; θ) =
nf∑

j=0
Wijφj(xδ) + 1

2

nf∑
j1,j2=0

Wij1Wij2ψj1j2(xδ)

+ 1
6

nf∑
j1,j2,j3=0

Wij1Wij2Wij3Ψj1j2j3(xδ)

I The amount of representation learning is set by the
depth-to-width ratio, ε ≡ L

n , with the depth L and width n.
I The φj(xδ), ψj1j2(xδ), Ψj1j2j3(xδ) are random.

38 / 40

Some Takeaways

I The deep learning framework makes it easy to define and train
nonlinear models, letting us approximate functions that are
often easy for humans to do – is there a cat in that image? –
but hard for humans to program: a.k.a AI.

I These nonlinear models are much richer than classical
statistical models such as linear regression.

I We can understand deep learning using “effective theory”
tools to analyze large-but-finite-width networks.

I There are many more exciting “experimental” results that are
waiting to be analyzed theoretically.

Thank You!

39 / 40

This slide is intentionally left blank.

40 / 40

