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Outline of the talk

e Introduction to quantum (coherent) control
o Quantum state- vs operator (gate) control
o Lie-algebraic (operator) controllability theorems

@ Local control of qubit arrays with Heisenberg-type interaction
and realization of conditional three-qubit gates
o Interacting qubit arrays
o Local control: application to qubit arrays with Heisenberg interaction
e Control-based (single-shot) realization of Toffoli and Fredkin gates

V. M. Stojanovi¢, PRA 99, 012345 (2019).

o W-to-GHZ state conversion in the Rydberg-blockade regime
of neutral-atom systems

Maximally-entangled three-qubit (multiqubit) states: W and GHZ

Symmetric sector of the three-qubit Hilbert space

Introduction to Rydberg-atom-based platform for QC

Dynamical-symmetry approach to W-to-GHZ state conversion

T. Haase, G. Alber, and V. M. Stojanovi¢, PRA 103, 032427 (2021).

@ Conclusions & Outlook



Quantum control: generalities

o State-to-state ( state-selective ) control: How to steer a
quantum system from a given initial- to a desired final state?

e Operator ( state-independent ) control: How to realize a
pre-determined unitary transformation (target quantum gate)?

P
H(t) = H, + Z fi(t)H; | f;(t) — control fields

j=1

The system is completely controllable if H (t) can give rise
to an arbitrary unitary transformation on its Hilbert space #

i.e., the reachable set R is equal to U(n) or SU(n) (n = dim#H )



General controllability theorems

U(t) = —i[Ho + Y fi(H;JU®) , U(0) = Lnxn | (#)

j=1

Lie-algebra rank condition

The reachable set R of a quantum system described by Eq. (#) is the
connected Lie group associated with the Lie algebra Lq generated by
—iHy, —iH1,...,—iH,, ie, R = e~°.

= complete (operator) controllability

A system described by Eq. (#) is completely (operator) controllable iff
Lo = u(n) [or Lo = su(n) ], where Ly is the Lie algebra generated
by —iHo, —tHqy,...,—1H)p. ( Lo — the dynamical Lie algebra )




Interacting qubit arrays

general form: | Hyyy = ZZ Jgﬁai,aaj,g (a,B=z,y,2)

i<j a3
qubit-qubit interaction ‘ qubit system
Ising Rydberg atom (g-r type)
XY SC flux, phase, transmons
Heisenberg spin, donor atom

transmons: XY coupling mediated by photons in a resonator

CPW cavity

H, =) J,;(X.X; + Y.Y;) | OOigrr—p=pta{>~
1<j @Tg m IR g_'_@ T g_'_@
L L =

V. M. Stojanovi¢, A. Fedorov, A. Wallraff, and C. Bruder, PRB 85, 054504 (2012)



Local control in interacting systems: general aspects

composite system S = C U C with controls acting only on C
p
total Hamiltonian: H(t) = Hg + Z fi ($)H;
Jj=1

S is completely controllable iff —2Hg and —iHjC g=1,...,p)
generate the Lie algebra £(.S) of all skew-Hermitian operators on S

(iHs, L(C)) = L(S)

L£(C) ={—iH{,...,—iHS}¢

(A, B) — algebraic closure of the operator sets .A and B



Local control in qubit arrays with “always-on” interactions

conventional control

6 bbb

local control

i...




Controllability of qubit arrays with Heisenberg interactions

N-1
Hy=J Y (XnXnt1+ YaYnti + AZnZnta)

n=1

Hc(t) == hm(t)\Xfl/"‘ hy(t)\yi/ Htotal(t) = H, + Hc(t)
Ji(t) H, f2(t) H,

Acting on the x- and y-components of a single qubit in an X X Z- or
Heisenberg-coupled qubit array renders the array completely controllable!

sufficient to show that the dimension of the dynamical Lie algebra
Ly generated by {—i1H,, —t X1, —iY1} isd* — 1 (d = 2V)

= Loy = su(d) = ef*v = SU(d) (complete controllability)

= any (multiqubit) gate can be realized through control of a single qubit



Control objectives (target gates)

controlled-NOT on the last two qubits of the array:

CNOTy_; n = 1@...®;®(|o><0| ® I+ [1)(1] ®x)
N2 CNOT

(X =0z)

flip (NOT) of the last qubit Xy =1 ®...® 1 ® X
requires only an @ control!

SWAP on the last two qubits: SWAPx_1.~n

reminder: SWAP = '8 ¢ 18 (X®X+YR®Y +2Q2)

N =3, A =1 case: dim L, = 18, basis {—iHg,...,—iH17}
Is there A € L., such that v/SWAPz2,3 = e? ?
1XX + 1YY +1ZZ = 1(Ho — Hs + He — Hi6 + H1r)



Control pulses and fidelity maximization

alternate x and y (or x only !) piecewise-constant controls:

by (t) hs3 full time evolution (total time ty = IN,T'):

U(tf) - Uy,Nt/2Um,Nt/2 e e Uy,lUw,l

t (Ui = e=HinT (j=a,y)]

hmZ

)

1
gate fidelity: | F(ty) = — )tr[UT(tf)Utarget]

[0 < F(ty) <1]

maximize F' = F({h, .; h, .}) numerically

frequency-filtered control fields: ideal low-pass filter:

hj(t) = F (W) Flh; ()] f(w) = 0(w + wo) — O(w — wo)




Three-qubit Toffoli- and Fredkin gates

a a
| TOFFOLI = controlled-controlled-NOT |
b b two-qubit-gate counterpart: controlled-NOT ( CNOT )
conventional realization:
6 CNOT 10 single-qubit ti
q T | s + single-qubit operations |

| FREDKIN = controlled-SWAP |

related two-qubit gate: exponential SWAP (eSWAP)
exp(i0.SWAP) = cos O.14x4 + % sin 6. SWAP

conventional realization:

| at least 5 entangling two-qubit gates; at least 8 CNOTs |

Q: Can single-shot Toffoli and Fredkin gates efficiently be realized
in Heisenberg(XXZ)-coupled qubit arrays with local control?



Single-shot realizations of Toffoli and Fredkin gates

Gate times only slightly longer than for CNOT and eSWAP!
eg for F=1—10"%

ty ~ 28 J~1 (Toffoli ) vs. t;y =25 J~1 ( CNOT)

ty ~ 31 J~! (Fredkin ) vs. t; = 29 J~! ( eSWAP )

: h /]
" TOffO!; gate [ . x e g - Fredkin gate
t, /17 =280 [ L o 3 =310
15
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V. M. Stojanovi¢, PRA 99, 012345 (2019).
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W states: a reminder

(W) = (]10...0) +]01...0) +...+ |00...1))

2~

o generalizations:
N
“twisted” W states: |Wy(k)) = —— Z e *"0...1,...0)
VN =

W -like states:
N

N —1/2
Wn({An})) = <Z |An|2> > Anl0...1,...0)
n=1 n=1

@ robustness: remains entangled even if any 2 parties are removed,;
the most robust IN-qubit state to particle loss!

o applications: quantum teleportation, superdense coding, etc.



GHZ states: a reminder

1 3
GHZy) = — (|00...0) +e¢’|11...1))

e generalization: o; +3; =1 («aj4,8; € {0,1})

|GHZy) (lens - o) + €188, .. B3))

1
=7
@ robustness: extremely fragile to particle loss; |GHZs) is

not entangled at all any more if one of the
three qubits is traced out!

@ applications: high-precision spectroscopy, concatenated
error-correcting codes, etc.

|GHZy) and |Wy) are LOCC-inequivalent



Physical realizations of W and GHZ states

record experimental realizations of multipartite entanglement:

@ 20 trapped ions with F = 63.2%
@ 20 Rydberg atoms with F' = 54.2%
@ 12 photons with F' = 59.8%

@ 12 SC qubits with F = 55.6%;
18 SC qubits with F = 53.0%

proposals for W -state engineering
based on a solid-state-physics analogy

SC qubits:
V. M. Stojanovi¢, PRL 124, 190504 (2020)

Rydberg-dressed qubits:
V. M. Stojanovi¢, PRA 103, 022410 (2021)




Three-qubit W vs. GHZ states and W-to-GHZ conversion

GHZ and W states: the only two inequivalent kinds of tripartite
entanglement in a three-qubit system!

@ GHZ : maximal essential three-way entanglement (Tapc = 1), while
pairwise entanglements vanish (Co3 = 03 o, 8 € {A,B,C})

@ W : no essential three-way entanglement (T,5c = 0), but a strong
pairwise entanglement (C2, + C2_ 4+ C? = 4/3)

= Q: How about an interconversion between W and GHZ states?

proposals: photons (nondeterministic), Rydberg atoms (STA / LRI), etc.

important observation:

both |W3) and |GHZ3) are fully symmetric w.r.t. permutations of qubits,
i.e. under S3!

= if |W3) LN |GHZ3), the unitary U should be symmetric as well!



Symmetric sector of the three-qubit Hilbert space

unitaries invariant under Sj: Lie subgroup

U3 (8) | of U(8)

dim U3 (8) = 20
= Lie algebra: u%3(8) = span{ill (01 ® 02 ® 03)}

1 N
I = = Z P ( symmetrization operator )

: PeSs

on € {]]-n,X'erna Zn} (TL = 172’3)

invariant subspaces of H = (C?%)®3 under the action of US2(8):
H. splits into 3 invariant subspaces with dimensions 2, 2, and 4 !

basis of the 4-dimensional subspace ( symmetric sector ):

V3

90) = 1000)] | I61) = —= (1100} + [010) +001))

1
|p2) = 73 (]101) +|010) + |011))

|#s) = |111)




Rydberg atoms: basic properties and interactions

e long lifetimes 7. oc 3 (e.g. 7 ~ 100 us for n ~ 50 )

o large dipole moments d oc n? between states m and n — 1

(a) dipole-dipole interactions

Ins)
o< R#
AN
Itn— 1)) -
Ita—1p) Ins)
|ns)

|(n—1)P)

© = (nS|er|(n—1)P) o< n?

Example: Rubidium atoms

[nS1/2, (n—1)P3p,) pair-state
Interactions V(R) = C3/R* oc n/R*
n=20 C3/h = 83 MHz um?®
n =80 C3/h = 40 GHz pm®

resonant dipole-dipole
interaction (RDDI)

(b) van der Waals interactions
In"P)

Example: Rubidium atoms

[nS1 /2, nSyy2) pair-state, all [nR nP)
Interactions V(R) = Cs/R® o< n'! /R®
n=40 Cg/h = —1.0 GHz um*®
n==80 Cy/h = —4.2 THz ym®

off-resonant dipole-dipole
interaction (van der Waals)

Sibalic & Adams, IOP (2018)

vdW interaction between
Rydberg atoms:

Ce
Hi = Z 6. "
i<j T i

lg) =10) . |r) = 1)
n; = (1-|—Zz)/2

=> Ising-type interaction:

Hi, = Z Jij ZiZ;
i<j




Rydberg blockade (RB) and its implications

coherent coupling of ground and Rydberg states: |g) LI |7)

blockade condition: two atoms interacting through vdW, such that

Cs

h&2

simultaneous excita{tzion of both atoms not
possible, i.e. |gg) - |rr)

v/2 Rabi-enhancement and entanglement:

by 22 %ugw + [ra))

generalization to IN atoms:

1
)%ﬁ

VN

lg...q

(Irg...g)+...+lgg-.

1/6
CeR®*>n| - RK Ry = <> ( blockade radius )

o 0

o Q.
§

I I R
Browaeys & Lahaye,
Nat. Phys. (2020)

@

o

g



W -to-GHZ state conversion in Rydberg-atom trimers

@ 3 equidistant neutral atoms
subject to 4 external lasers:

wj, QT(), er(t) (_7 = 1,2,3)

@ atom — effective two-level
system (g — r type qubits):

lg) =10) . [r) =11) |

lagg) W) W) |rrr)

task: deterministic W-to-GHZ state conversion
1 1 ,
— (|r + |grg) + r)) - — + e®|rrr
\/g(l ag9) + |lgrg) + lggr)) 7 (Iggg} | ))

interaction-picture Hamiltonian: Hi(t)/h

=2

k=1j

[ (£)e  CiTAN Yy (gl + Hel + > Virr), (rr|

3
=0 r<q




Effective Hamiltonian on a 4-state manifold

An effective Hamiltonian on the symmetric sector?

conditions of validity:

|A0|T'int > 1 ' |V|T;nt > 1 (RB regime), |A0|7 |V| > |Qr0|

= effective Hamiltonian on a 4-state manifold: H.s(t)/h

= Q1(t)|gg99) (W[ + Q2(t)[W)(W'| + Q3(£)[W')(rrr| + H.c
Q1(t) = V3 Q,1(t), Qa2(t) = 2 Qya(t), Q3(t) = V3 Q,3(t)

basis of the symmetric sector:

1

lagg) . W) 73 (Irgg) + |lgrg) + lggr))

W) = = (irrg) +Irgr) +lgre)) . Jrem)

V3



Dynamical symmetry of H.g(1)

dynamical symmetry of Heg(t): | su(2) @ su(2) = so(4)

six-dimensional maximal subalgebra of su(4)

a generic property of four-level systems 0 a 00
with adjacent level couplings H=1? 0 b0

0 b 0 ¢
a,b,c — Ql(t)’QZ(t)’Q3(t) 0 0 ¢ O

generalization to n-level systems: dynamical symmetry so(n)

angular-momentum operators: {S;|: =1,2,3}, {T; |t = 1,2, 3}
[Sis Sj] = i€ijkSk > [Ti, Tj] = i€ijeTr s [Si, T3] =0

Heﬁ‘(t)
h

= Q1 (t) (S1 + T1) + Q2(t) (S2 + T2) + Q3(t) (S1 — T1)

Q;(t) € R — Hcg(t) describes the dynamics of two constrained

pseudospin-1/2 degrees of freedom!




Dynamical-symmetry approach

dynamical Lie group of the system: | SU(2) x SU(2) C SU(4)

unitary transformations: |U (e, 3) = e iSe—ifT — p—i(aS+(-T)

time evolution of the system:

six-dimensional differentiable curve
¢ t — {a(t)7 ﬂ(t)} t S [07 Tconv]

TOSE: | i Ula(®), (0] = HOUla(®), ()

task: find Ula(t), 3(t)] such that

U[a(t = TCOHV)’ IB(t = Tconv)]|W> = eiq)|GHZ>




W -to-GHZ conversion

the most general Hamiltonian satisfying the last TDSE:

H;Lt) = wla(t), &(t)] - S + w[B(t), B(t)] - T

time-dependent vectorial frequency-like quantity ( Richtmyer, Vol. I ):

sin || 2 sin? 2

wl|a(t), & = & 2 [« &
(1), &) = TS0 + =g () X ()]
|| — sin [a(2)] :
e CORIOIE
conditions resulting from wila(t)] + wi[B(2)]

Q(t) = %S

wifa(t)] — w1[B(2)]

the actual form of Heg(t):

ws[Bt)] =0 ) =

2
wa[B(0) NP GO R )
2

wsla(t)]
wa[a(t)]




Resulting W-to-GHZ conversion protocol

Q; Tir
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Fonz(t) = [(GHZ|v(2))]

Both simpler and 5 times faster
protocol than the one based on
Lewis-Riesenfeld (LR) invariants!

R. -H. Zheng et. al, PRA 101,

012345 (2020).



Conclusions & Outlook

o Arbitrary multiqubit gate is reachable through single-qubit control
in qubit arrays with XXZ (Heisenberg) type interactions; efficient
single-shot realizations of Toffoli and Fredkin gates are possible!

V. M. Stojanovi¢, PRA 99, 012345 (2019).

@ W-to-GHZ conversion in the RB regime of neutral-atom system
possible with time-independent Rabi frequencies of external lasers;
much faster than STA-based protocol with time-dependent ones.
T. Haase, G. Alber, and V. M. Stojanovi¢, PRA 103, 032427 (2021);
generalization: twisted-W to GHZ — arXiv:2111.09718.

@ Further applications of Lie-algebraic concepts in quantum-state
control (W-to-GHZ conversion for other types of qubit-qubit
interactions and for N > 3; engineering of entangled states, etc.).

V. M. Stojanovi¢ (in preparation).

Acknowledgment: support by DFG — SFB 1119 — 236615297



Optical lattices vs. arrays of individual dipole traps

common schemes for optical trapping of neutral-atom ensembles:

@ optical lattices ( period @ = Ar,/2 < 1 um )

@ arrays of individual optical dipole traps (tweezers)
( period 3 um S a < 25 um)

96 atoms 105 atoms 111 atoms,

D. Ohl de Mello et al., PRL (2019)



Generalization to graphs

Local controllability on a graph G = (S, E) by actingon C C S

p
H=H5'—|—Z f]C(t)HJC Hg = Z Hpm

j=1 n,meE

graph criterion of controllability (sufficient condition):
algebraic property of Hy,, + topological property of G

Hg is algebraically propagating if for all n € S and (n,m) € E

([iHnm9 E(n)]’ L(”)) = L(”’ m)

Heisenberg and Affleck-Kennedy-Lieb-Tasaki (AKLT) couplings are A.P. !

S is controllable by acting on C' if Hg is A.P. and C is infecting
D. Burgarth et. al., PRA 79, 060305(R) (2009)



