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Symmetric sector of the three-qubit Hilbert space
Introduction to Rydberg-atom-based platform for QC
Dynamical-symmetry approach to W -to-GHZ state conversion

T. Haase, G. Alber, and V. M. Stojanović, PRA 103, 032427 (2021).

Conclusions & Outlook



Quantum control: generalities

State-to-state ( state-selective ) control: How to steer a
quantum system from a given initial- to a desired final state?

Operator ( state-independent ) control: How to realize a
pre-determined unitary transformation (target quantum gate)?

H(t) = H0 +

p∑
j=1

fj(t)Hj fj(t) – control fields

The system is completely controllable if H(t) can give rise
to an arbitrary unitary transformation on its Hilbert space H

i.e., the reachable set R is equal to U(n) or SU(n) ( n = dimH )



General controllability theorems

U̇(t) = −i[H0 +

p∑
j=1

fj(t)Hj]U(t) , U(0) = 1n×n (#)

Lie-algebra rank condition

Theorem

The reachable set R of a quantum system described by Eq. (#) is the
connected Lie group associated with the Lie algebra L0 generated by
−iH0,−iH1, . . . ,−iHp, i.e., R = eL0 .

⇒ complete (operator) controllability

Theorem

A system described by Eq. (#) is completely (operator) controllable iff
L0 = u(n) [ or L0 = su(n) ], where L0 is the Lie algebra generated
by −iH0,−iH1, . . . ,−iHp. ( L0 – the dynamical Lie algebra )



Interacting qubit arrays

general form: Hint =
∑
i<j

∑
α,β

Jαβ
ij σi,ασj,β ( α, β = x, y, z )

qubit-qubit interaction qubit system

Ising Rydberg atom (g-r type)
XY SC flux, phase, transmons

Heisenberg spin, donor atom

transmons: XY coupling mediated by photons in a resonator

H0 =
∑
i<j

Jij(XiXj + YiYj)

V. M. Stojanović, A. Fedorov, A. Wallraff, and C. Bruder, PRB 85, 054504 (2012)



Local control in interacting systems: general aspects

composite system S = C ∪ C̄ with controls acting only on C

total Hamiltonian: H(t) = HS +

p∑
j=1

fC
j (t)HC

j

S is completely controllable iff −iHS and −iHC
j (j = 1, . . . , p)

generate the Lie algebra L(S) of all skew-Hermitian operators on S

⟨iHS,L(C)⟩ = L(S)

L(C) = {−iHC
1 , . . . ,−iHC

p }L

⟨A,B⟩ – algebraic closure of the operator sets A and B



Local control in qubit arrays with “always-on” interactions



Controllability of qubit arrays with Heisenberg interactions

H0 = J

N−1∑
n=1

(
XnXn+1 + YnYn+1 + ∆ZnZn+1

)

Hc(t) = hx(t)︸ ︷︷ ︸
f1(t)

X1︸︷︷︸
H1

+hy(t)︸ ︷︷ ︸
f2(t)

Y1︸︷︷︸
H2

Htotal(t) = H0 +Hc(t)

Acting on the x- and y-components of a single qubit in an XXZ- or
Heisenberg-coupled qubit array renders the array completely controllable!

sufficient to show that the dimension of the dynamical Lie algebra
Lxy generated by {−iH0,−iX1,−iY1} is d2 − 1 (d ≡ 2N)

⇒ Lxy
∼= su(d) ⇒ eLxy ∼= SU(d) (complete controllability)

⇒ any (multiqubit) gate can be realized through control of a single qubit



Control objectives (target gates)

controlled-NOT on the last two qubits of the array:

CNOTN−1,N ≡ I ⊗ . . .⊗ I︸ ︷︷ ︸
N − 2

⊗
(
|0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X︸ ︷︷ ︸

CNOT

)
(X ≡ σx )

flip (NOT) of the last qubit XN ≡ 1⊗ . . .⊗ 1⊗ X
requires only an x control!

√
SWAP on the last two qubits:

√
SWAPN−1,N

reminder:
√
SWAP ≡ ei

π
8 e−iπ

8
(X⊗X+Y ⊗Y +Z⊗Z)

N = 3, ∆ = 1 case: dim Lx = 18 , basis {−iH0, . . . ,−iH17}

Is there A ∈ Lx such that
√
SWAP2,3 = eA ?

1XX + 1Y Y + 1ZZ = 1
2
(H0 −H3 +H6 −H16 +H17)



Control pulses and fidelity maximization

alternate x and y (or x only !) piecewise-constant controls:

full time evolution (total time tf ≡ NtT ):

U(tf) = Uy,Nt/2
Ux,Nt/2

. . . Uy,1Ux,1[
Uj,n ≡ e−iHj,nT (j = x, y)

]

gate fidelity: F (tf) =
1

d

∣∣∣tr[U†(tf)Utarget

]∣∣∣ [
0 ≤ F (tf) ≤ 1

]
maximize F = F ({hx,n;hy,n}) numerically

frequency-filtered control fields:

h̃j(t) = F−1
[
f(ω)F [hj(t)]

] ideal low-pass filter:

f(ω) = θ(ω + ω0) − θ(ω − ω0)



Three-qubit Toffoli- and Fredkin gates

a

bb

1

a

1+ab

TOFFOLI ≡ controlled-controlled-NOT

two-qubit-gate counterpart: controlled-NOT ( CNOT )

conventional realization:
6 CNOTs + 10 single-qubit operations

FREDKIN ≡ controlled-SWAP

related two-qubit gate: exponential SWAP (eSWAP)
exp(iθcSWAP) ≡ cos θc14×4 + i sin θc SWAP

conventional realization:
at least 5 entangling two-qubit gates; at least 8 CNOTs

Q: Can single-shot Toffoli and Fredkin gates efficiently be realized
in Heisenberg(XXZ)-coupled qubit arrays with local control?



Single-shot realizations of Toffoli and Fredkin gates

Gate times only slightly longer than for CNOT and eSWAP!

e.g. for F = 1 − 10−4:

tf ≈ 28 J−1 ( Toffoli ) vs. tf ≈ 25 J−1 ( CNOT )

tf ≈ 31 J−1 ( Fredkin ) vs. tf ≈ 29 J−1 ( eSWAP )

V. M. Stojanović, PRA 99, 012345 (2019).



W states: a reminder

|WN⟩ ≡
1

√
N

(|10 . . . 0⟩ + |01 . . . 0⟩ + . . .+ |00 . . . 1⟩)

generalizations:

“twisted” W states: |WN(k)⟩ ≡
1

√
N

N∑
n=1

e−ikn|0 . . . 1n . . . 0⟩

W -like states:

|WN({An})⟩ =

(
N∑

n=1

|An|2
)−1/2 N∑

n=1

An|0 . . . 1n . . . 0⟩

robustness: remains entangled even if any 2 parties are removed;
the most robust N -qubit state to particle loss!

applications: quantum teleportation, superdense coding, etc.



GHZ states: a reminder

|GHZN⟩ ≡
1
√
2

(
|00 . . . 0⟩ + eiϕ|11 . . . 1⟩

)

generalization: αj + βj = 1 ( αj, βj ∈ {0, 1} )

|GHZN⟩ ≡
1
√
2

(
|α1α2 . . . αN⟩ + eiϕ|β1β2 . . . βN⟩

)
robustness: extremely fragile to particle loss; |GHZ3⟩ is

not entangled at all any more if one of the
three qubits is traced out!

applications: high-precision spectroscopy, concatenated
error-correcting codes, etc.

|GHZN⟩ and |WN⟩ are LOCC-inequivalent



Physical realizations of W and GHZ states

record experimental realizations of multipartite entanglement:

20 trapped ions with F = 63.2%

20 Rydberg atoms with F = 54.2%

12 photons with F = 59.8%

12 SC qubits with F = 55.6%;
18 SC qubits with F = 53.0%

proposals for W -state engineering
based on a solid-state-physics analogy

SC qubits:

V. M. Stojanović, PRL 124, 190504 (2020)

Rydberg-dressed qubits:

V. M. Stojanović, PRA 103, 022410 (2021)



Three-qubit W vs. GHZ states and W -to-GHZ conversion

GHZ and W states: the only two inequivalent kinds of tripartite
entanglement in a three-qubit system!

GHZ : maximal essential three-way entanglement (τABC = 1), while
pairwise entanglements vanish (Cαβ = 0 ; α, β ∈ {A,B,C})

W : no essential three-way entanglement (τABC = 0), but a strong
pairwise entanglement (C2

AB
+ C2

BC
+ C2

AC
= 4/3)

⇒ Q: How about an interconversion between W and GHZ states?

proposals: photons (nondeterministic), Rydberg atoms (STA / LRI), etc.

important observation:

both |W3⟩ and |GHZ3⟩ are fully symmetric w.r.t. permutations of qubits,
i.e. under S3!

⇒ if |W3⟩
U→ |GHZ3⟩, the unitary U should be symmetric as well!



Symmetric sector of the three-qubit Hilbert space

unitaries invariant under S3: Lie subgroup US3(8) of U(8)

dim US3(8) = 20

=⇒ Lie algebra: uS3(8) = span{iΠ(σ1 ⊗ σ2 ⊗ σ3)}

Π =
1

3!

∑
P∈S3

P ( symmetrization operator )

σn ∈ {1n, Xn, Yn, Zn} ( n = 1, 2, 3 )

invariant subspaces of H ≡ (C2)⊗3 under the action of US3(8):

H splits into 3 invariant subspaces with dimensions 2, 2, and 4 !

basis of the 4-dimensional subspace ( symmetric sector ):

|ϕ0⟩ = |000⟩ |ϕ1⟩ =
1
√
3
(|100⟩ + |010⟩ + |001⟩)

|ϕ2⟩ =
1
√
3
(|101⟩ + |010⟩ + |011⟩) |ϕ3⟩ = |111⟩



Rydberg atoms: basic properties and interactions

long lifetimes τr ∝ n3 ( e.g. τr ∼ 100 µs for n ∼ 50 )

large dipole moments d ∝ n2 between states n and n− 1

resonant dipole-dipole off-resonant dipole-dipole

interaction (RDDI) interaction (van der Waals)

Sibalic & Adams, IOP (2018)

vdW interaction between
Rydberg atoms:

Hint =
∑
i<j

C6

R6
ij

ninj

|g⟩ ≡ |0⟩ , |r⟩ ≡ |1⟩

ni ≡ (1 + Zi)/2

⇒ Ising-type interaction:

Hint =
∑
i<j

Jij ZiZj



Rydberg blockade (RB) and its implications

coherent coupling of ground and Rydberg states: |g⟩ Ω−→ |r⟩

blockade condition: two atoms interacting through vdW, such that

C6R
−6 ≫ ℏΩ → R ≪ Rb ≡

(
C6

ℏΩ

)1/6

( blockade radius )

simultaneous excitation of both atoms not
possible, i.e. |gg⟩ Ω↛ |rr⟩
√
2 Rabi-enhancement and entanglement:

|gg⟩ Ω
√

2−→
1
√
2
(|gr⟩ + |rg⟩)

Browaeys & Lahaye,

Nat. Phys. (2020)
generalization to N atoms:

|g . . . g⟩ Ω
√

N−→
1

√
N

(|rg . . . g⟩ + . . .+ |gg . . . r⟩)



W -to-GHZ state conversion in Rydberg-atom trimers

V

V

V

Ωr0 Ωr1

Ωr3

|r〉

|g〉

Ωr2

|ggg〉 |W 〉 |W ′〉

Ω3Ω2Ω1

(a)

(b)

|rrr〉

3 equidistant neutral atoms
subject to 4 external lasers:

ωj , Ωr0, Ωrj(t) (j = 1, 2, 3)

atom – effective two-level
system (g − r type qubits):

|g⟩ ≡ |0⟩ , |r⟩ ≡ |1⟩ .

task: deterministic W -to-GHZ state conversion
1
√
3
(|rgg⟩ + |grg⟩ + |ggr⟩) →

1
√
2

(
|ggg⟩ + eiϕ|rrr⟩

)
interaction-picture Hamiltonian: HI(t)/ℏ

=

3∑
k=1

3∑
j=0

[Ωrj(t)e
−i(δj+∆j)t|r⟩kk⟨g| + H.c.] +

∑
p<q

V |rr⟩pq⟨rr|



Effective Hamiltonian on a 4-state manifold

An effective Hamiltonian on the symmetric sector?

conditions of validity:

|∆0|Tint ≫ 1 , |V |Tint ≫ 1 (RB regime), |∆0|, |V | ≫ |Ωr0|

⇒ effective Hamiltonian on a 4-state manifold: Heff(t)/ℏ

= Ω1(t)|ggg⟩⟨W | + Ω2(t)|W ⟩⟨W ′| + Ω3(t)|W ′⟩⟨rrr| + H.c.

Ω1(t) =
√
3 Ωr1(t), Ω2(t) = 2 Ωr2(t), Ω3(t) =

√
3 Ωr3(t)

basis of the symmetric sector:

|ggg⟩ , |W ⟩ =
1
√
3
(|rgg⟩ + |grg⟩ + |ggr⟩)

|W ′⟩ =
1
√
3
(|rrg⟩ + |rgr⟩ + |grr⟩) , |rrr⟩



Dynamical symmetry of Heff(t)

dynamical symmetry of Heff(t): su(2) ⊕ su(2) ∼= so(4)

six-dimensional maximal subalgebra of su(4)

a generic property of four-level systems
with adjacent level couplings

a, b, c → Ω1(t),Ω2(t),Ω3(t)

H =


0 a 0 0
a 0 b 0
0 b 0 c
0 0 c 0


generalization to n-level systems: dynamical symmetry so(n)

angular-momentum operators: {Si|i = 1, 2, 3} , {Ti |i = 1, 2, 3}
[Si, Sj] = iϵijkSk , [Ti, Tj] = iϵijkTk , [Si, Tj] = 0

Heff(t)

ℏ
= Ω1(t) (S1 + T1) + Ω2(t) (S2 + T2) + Ω3(t) (S1 − T1)

Ωj(t) ∈ R → Heff(t) describes the dynamics of two constrained
pseudospin-1/2 degrees of freedom!



Dynamical-symmetry approach

dynamical Lie group of the system: SU(2) × SU(2) ⊂ SU(4)

unitary transformations: U(α, β) = e−iα·Se−iβ·T ≡ e−i(α·S+β·T)

time evolution of the system:

six-dimensional differentiable curve

γ : t −→ {α(t), β(t)} t ∈ [0, Tconv]

TDSE: iℏ
d

dt
U [α(t), β(t)] = H(t)U [α(t), β(t)]

task: find U [α(t), β(t)] such that

U [α(t = Tconv), β(t = Tconv)]|W ⟩ = eiΦ|GHZ⟩



W -to-GHZ conversion

the most general Hamiltonian satisfying the last TDSE:

H(t)

ℏ
= ω[α(t), α̇(t)] · S + ω[β(t), β̇(t)] · T

time-dependent vectorial frequency-like quantity ( Richtmyer, Vol. II ):

ω[α(t), α̇(t)] =
sin |α|
|α(t)|

α̇(t) +
2 sin2 |α|

2

|α|2
[α(t) × α̇(t)]

+
|α| − sin |α(t)|

|α(t)|3
[α(t) · α̇(t)]α(t)

conditions resulting from
the actual form of Heff(t):

ω3[α(t)] = ω3[β(t)] = 0

ω2[α(t)] = ω2[β(t)]

Ω1(t) =
ω1[α(t)] + ω1[β(t)]

2

Ω3(t) =
ω1[α(t)] − ω1[β(t)]

2

Ω2(t) =
ω2[α(t)] + ω2[β(t)]

2



Resulting W -to-GHZ conversion protocol

(a)

(b)

-10

0

10

τ = 0

τ = 1/3

LR

Tmin 0.5 10

0.5

1

Ω1,LR(t)Ω2,LR(t)

Ω3,LR(t)
Ω1(t)

Ω2(t)

Ω3(t)

t / TLR

Ω
i
T
L
R

A
/
A

L
R

A =

∫ Tconv

0

3∑
j=3

Ω2
j (t)dt

τ = 0

τ = 1/3

LR

Tmin 0.5 1

0

0.5

1

t / TLR

F
G
H
Z

FGHZ(t) = |⟨GHZ|ψ(t)⟩|

Both simpler and 5 times faster
protocol than the one based on
Lewis-Riesenfeld (LR) invariants!

R. -H. Zheng et. al, PRA 101,
012345 (2020).



Conclusions & Outlook

Arbitrary multiqubit gate is reachable through single-qubit control
in qubit arrays with XXZ (Heisenberg) type interactions; efficient
single-shot realizations of Toffoli and Fredkin gates are possible!

V. M. Stojanović, PRA 99, 012345 (2019).

W -to-GHZ conversion in the RB regime of neutral-atom system
possible with time-independent Rabi frequencies of external lasers;
much faster than STA-based protocol with time-dependent ones.

T. Haase, G. Alber, and V. M. Stojanović, PRA 103, 032427 (2021);

generalization: twisted-W to GHZ – arXiv:2111.09718.

Further applications of Lie-algebraic concepts in quantum-state
control (W -to-GHZ conversion for other types of qubit-qubit
interactions and for N > 3; engineering of entangled states, etc.).

V. M. Stojanović (in preparation).

Acknowledgment: support by DFG – SFB 1119 – 236615297.



Optical lattices vs. arrays of individual dipole traps

common schemes for optical trapping of neutral-atom ensembles:

optical lattices ( period a = λL/2 < 1 µm )

arrays of individual optical dipole traps (tweezers)
( period 3 µm ≲ a ≲ 25 µm )

D. Ohl de Mello et al., PRL (2019)



Generalization to graphs

Local controllability on a graph G = (S,E) by acting on C ⊆ S

H = HS +

p∑
j=1

fC
j (t)HC

j HS =
∑

n,m∈E

Hnm

graph criterion of controllability (sufficient condition):
algebraic property of Hnm + topological property of G

HS is algebraically propagating if for all n ∈ S and (n,m) ∈ E

⟨[iHnm,L(n)],L(n)⟩ = L(n,m)

Heisenberg and Affleck-Kennedy-Lieb-Tasaki (AKLT) couplings are A.P. !

S is controllable by acting on C if HS is A.P. and C is infecting

D. Burgarth et. al., PRA 79, 060305(R) (2009)


