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Motivation

• The revolution in sensing, with the emergence of 
many new sensing and imaging techniques, 
offers the possibility of gaining unprecedented 
access to the physical world

• In order to fully exploit these advances, it is 
necessary to rethink imaging as an integrated 
sensing and inference model



Outline

In this talk we will cover two research areas where Computational Imaging can have an impact:

Technical Study of Old Masters Paintings Microscopy and Neuroscience
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Technical Examination of Paintings

Images © The National Gallery, London
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Leonardo, The Virgin of the Rocks,
about 1491/2-9 and 1506-8
National Gallery (NG1093)
© The National Gallery, London



Traditional Non-Invasive Imaging Methods

INFRARED VISIBLE ULTRAVIOLET X-RAY

Images © The National Gallery, London



Macro X-Ray Fluorescence (MA-XRF)
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XRF spectrum collected at each 
pixel
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Macro X-Ray Fluorescence (MA-XRF)
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Energy
0-40 keV
4096 
channels

MA-XRF Datacube and Spectrum
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• Macro X-ray provides volumetric data and the locations of the 
pulses in the energy direction are related to the chemical 
elements present in the painting.

• This potentially allows us to create maps that show the 
distribution of different chemical elements

Images © The National Gallery, London



MA-XRF Datacube and Spectrum
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• Macro X-ray provides volumetric data and the locations of the 
pulses in the energy direction are related to the chemical 
elements present in the painting.

• This potentially allows us to create maps that show the 
distribution of different chemical elements
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Fig. 18: Combined Zn K↵ quantity map produced by our algorithm for the
three scanned regions of ‘The Virgin of the Rocks’ revealing sketches of an
abandoned composition.

Finally, a combined Zn K↵ quantity map produced by our
algorithm for the three scanned regions of ‘The Virgin of the

Rocks’ is shown in Fig. 18 and reveals the complexity of
the abandoned composition with sketches of the Virgin and
Christ Child also appearing. More importantly, the patches
have consistent results so that they can be combined easily,
showing no obvious borders or discontinuities, which is further
evidence of the stability and accuracy of the proposed method.

V. CONCLUSION

In this paper, we have proposed an automatic approach for
extracting elemental maps from MA-XRF datasets of easel
paintings. Two distribution maps, confidence and quantity
map, are introduced to quantify and display the presence
of chemical elements in the paintings. To demonstrate the
performance of the proposed approach, we tested it on MA-
XRF datasets of three easel paintings and the resulting dis-
tribution maps are compared with those produced by Bruker
M6 software. The results confirm the ability of our method to
extract automatically the elemental maps also when detecting
weak element signals and when extracting elements with over-

lapping pulses. Furthermore, the zinc-containing underdrawing
hidden in ‘The Virgin of the Rocks’ by Leonardo da Vinci is
successfully revealed by our approach with great clarity and
without any additional user intervention.

APPENDIX A

ܭ series ܮ series ܯ
series

ఈܭ group ఉܭ group ௟ܮ
group ఈܮ group ఉܮ group ఊܮ

group
ఈܯ

group

Element Atomic 
No. ఈଵܭ ఈଶܭ ఉଵܭ ఉଶܭ ௟ܮ ఈଵܮ ఈଶܮ ఉଵܮ ఉଶܮ ఊଵܮ ఈଵܯ

Al 13 1487 / 1557 / / / / / / / /
Si 14 1740 / 1836 / / / / / / / /
P 15 2014 / 2139 / / / / / / / /
S 16 2307 / 2464 / / / / / / / /
Cl 17 2622 / 2816 / / / / / / / /
Ar 18 2957 / 3191 / / / / / / / /
K 19 3313 / 3590 / / / / / / / /

Ca 20 3690 / 4013 / / / / / / / /
Ti 22 4509 / 4932 / / / / / / / /
V 23 4950 / 5427 / / / / / / / /
Cr 24 5412 / 5947 / / / / / / / /

Mn 25 5895 / 6490 / / / / / / / /
Fe 26 6400 / 7058 / / / / / / / /
Co 27 6925 / 7649 / / / / / / / /
Ni 28 7472 / 8265 / / / / / / / /
Cu 29 8041 / 8905 / / / / / / / /
Zn 30 8631 / 9572 / / / / / / / /
As 33 10544 10508 11726 11864 / / / / / / /
Br 35 11924 11878 13291 13470 / / / / / / /
Sr 38 14165 14098 15836 16085 1582 1806 / 1872 / / /
Rh 45 20216 20074 22724 23173 2377 2695 / 2834 3001 3144 /
Ag 47 22163 21990 24942 25456 2634 2982 / 3151 3348 3520 /
Cd 48 23174 22984 26096 26644 2767 3131 / 3317 3528 3717 /
Sn 50 25271 25044 28486 29109 3045 3441 / 3663 3905 4131 /
Sb 51 26359 26111 29726 30390 3189 3602 / 3844 4101 4348 /
I 53 28612 28317 32295 33042 3485 3934 / 4221 4508 4801 /

Ba 56 32194 31817 36378 37257 3954 4466 4451 4828 5157 5531 /
Au 79 68804 66990 77984 80150 8494 9713 9628 11442 11585 13382 2123
Hg 80 70819 68895 80253 82515 8721 9989 9898 11823 11924 13830 2195
Pb 82 74969 72804 84936 87320 9185 10552 10450 12614 12623 14764 2346
Bi 83 77108 74815 87343 89830 9420 10839 10731 13024 12980 15248 2423

TABLE I: Characteristic X-rays of 32 chemical elements commonly present
in historical paintings such as those considered in this study. Table taken from
[32].

APPENDIX B
CRAMÉR-RAO LOWER BOUND FOR GAUSSIAN PULSE

ESTIMATION WITH POISSON NOISE

We leverage Cramér-Rao lower bounding techniques [18] to
determine the uncertainty factor ⌧k in Eq. (6). In this paper, the
amplitudes (ak) and locations (tk) of the element pulses are the
parameters to be estimated and the Cramér-Rao lower bound
(CRLB) provides the best achievable estimation performance.

Let Y = (Yn)
L�1
n=0 and y = (y[n])L�1

n=0 denote the random
spectrum and the observation in one window with size L

respectively. According to Section III-B, the observed XRF
spectrum in each window can be modelled as the combination
of several shifted Gaussian pulses with the same pulse shape
plus random noise:

y[n] = x[n,✓] + ✏[n] =
KX

k=1

ak'j [n� tk] + ✏[n], (9)

where n = 0, 1, ..., L � 1, x[n,✓] represents the theoretical
noiseless spectrum, ✓ represents the set of parameters to be
estimated given by:

✓ = (✓i)
2K
i=1 = (a1, a2, ..., aK , t1, t2, ..., tK)T , (10)



Calcium
Manganese

Iron
Copper

Mercury
Lead

XRF

Deconvolution

Portrait of Doña Isabel de Porcel, © National Gallery, London (Francisco Goya)

Energy (keV)

Extraction of Elemental Maps



Challenges in XRF Deconvolution

• Objective:
– To develop a fully automatic method for processing MA-XRF datacube of 

the painting which is able to
• detect and locate the pulses from the MA-XRF spectra
• identify existing elements and show their distribution maps.

• Challenges:
– Pulses overlap 
– Important pulses are buried in noise

14



Overview of our proposed method
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Proposed Method

• The XRF spectrum can be seen as the sum of 𝐾 pulses with the same pulse shape 𝜑 #
plus the noise 𝜖,

𝑦[𝑛] = *
!"#

$

𝑎!𝜑 𝑛 − 𝑡! + 𝜖[𝑛],

where 𝑛 = 0,1, … , 𝑙 − 1 represents 
the energy channels.

• We need to retrieve amplitudes 𝑎! and locations 𝑡! of the pulses
• The pulse shape is known a-priori
• The amplitude of the pulses must be positive

16



Proposed Method

• The key idea is to connect our problem to a method broadly used in 
engineering and known as Prony’s method

• Retrieving the pulse locations 𝑢! and the amplitudes 𝑎! from 𝑠[𝑚] is a 
classical problem first solved by Baron de Prony in 1795.

17

𝑦 𝑛 → 𝑠 𝑚 = +
!"#

$

𝑏!𝑢!% ,

where 𝑏! = 𝑎!𝑒&'!(", 𝑢! = 𝑒&)("



• We find coefficients 𝑐%,+ such that the weighed sum of the pulses 𝜑 𝑡 can  
approximately reproduce complex exponentials:

+
+

𝑐%,+𝜑(𝑡 − 𝑛) ≈ 𝑒&'#(

• For 𝜔% = 𝜔, +𝑚𝜆, 𝑚 = 0,1, … ,𝑀, where 𝑀 is the number of exponentials we 
aim to reproduce and 𝜔, is arbitrary.

18

Proposed Method



+
+

𝑐%,+𝜑(𝑡 − 𝑛) ≈ 𝑒&'#(

19

Proposed Method

Pulse shape Reproduction of exponentials
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• We want to find coefficients c!,# such that 
∑# c!,#φ(t − n) ≈ f! t in the least-square sense.

• We need to compute the orthogonal projection of f!(t) onto 
V = span φ t − n #

• This means ⟨f! t − ∑# c!,#φ t − n , φ t − k ⟩ = 0
(orthogonality principle)

• Leveraging the fact that we are considering uniform shifts of 
φ t and that in our case f! t = e$%!&, we end-up with an 
exact expression1:

c!,# =
6φ ω! e$%!#

8a'(e$%!)

where 8a' e$%! is the z-transform of ⟨φ t − n , φ t ⟩
at z = e$%! .

Computation of the coefficients 𝒄𝒎,𝒏

𝑓!(𝑡)

Subspace 𝑉

𝜑(𝑡 − 𝑛)

𝜑(𝑡)

𝜑(𝑡 − 1)
𝜑(𝑡 − 𝑛 + 1)

…

1J. Urigüen, T. Blu, and P. Dragotti, “FRI sampling with arbitrary kernels,” IEEE Transactions on Signal Processing, vol. 61, no. 21, pp. 5310–5323, 2013.



• Moments 𝑠 𝑚 are computed as follows:

𝑠 𝑚 = +
+",

-.#

𝑐%,+𝑦 𝑛 = +
!"#

$

𝑎! +
+",

-.#

𝑐%,+𝜑 𝑡! − 𝑛

≈ +
!"#

$

𝑎!𝑒&'#(" = +
!"#

$

𝑎!𝑒&'!(" 𝑒&)(" % = +
!"#

$

𝑏!𝑢!% ,

where 𝑏! = 𝑎!𝑒&'!(", 𝑢! = 𝑒&)("
• The amplitudes 𝑎! and locations 𝑡! can now be retrieved using Prony’s 

method.
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Proposed Method
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Prony’s Method
Overview of Prony’s Method

Assume: sm =
PK

k=1 bku
m
k and consider the polynomial:

P(x) =
KY

k=1

(x � uk ) = xK + h1x
K�1 + h2x

K�2 + . . .+ hK�1x + hK .

It is easy to verify that

sn+K + h1sn+K�1 + h2sn+K�2 + . . .+ hK sn =
X

1kK

bku
n
kP(uk ) = 0.

In matrix-vector form for indices n such that `  n < `+ K , we get
2

66666664

s`+K s`+K�1 · · · s`
s`+K+1 s`+K · · · s`+1

...
. . .

. . .
...

s`+2K�2

. . .
. . .

...
s`+2K�1 s`+2K�2 · · · s`+K�1

3

77777775

2

666664

1
h1
h2
...
hK

3

777775
= TK ,`h = 0

Pier Luigi Dragotti
Sampling and Reconstruction driven by Sparsity Models: Theory and Applications
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Prony’s Method
Overview of Prony’s Method

The vector of polynomial coe�cients h = [1, h1, ..., hK ]T is in the null space of TK ,`.
Moreover, TK ,` has size K ⇥ (K + 1) and has full row rank when the uk ’s are distinct.
Therefore h is unique.
Prony’s method summary:

1. Given the input sm, build the Toeplitz matrix TK ,` and solve for h. This can be
achieved by taking the SVD of TK ,`.

2. Find the roots of P(x) = 1 +
PK

n=1 hkx
K�k . These roots are exactly the

exponentials {uk}Kk=1.

3. Given the {uk}Kk=1, find the corresponding amplitudes {bk}Kk=1 by solving K
linear equations.

Many robust versions of Prony’s exist, e.g., Cadzow, matrix pencil etc.

Pier Luigi Dragotti
Sampling and Reconstruction driven by Sparsity Models: Theory and Applications



• Prony’s method requires the number of pulses 𝐾 to be known.
• In our case, 𝐾, which is related to the elements in the painting, is unknown 

and need  to be estimated automatically.
• The algorithm tries different possible 𝐾s and picks the one which leads to a 

result which is consistent with the physics of the data (all positive pulses) 
and sufficiently close to the raw data (energy of error ≈ energy of 
background signal). 

24

Estimating the number of  pulses



• Once the pulse locations are estimated they are assigned to the chemical elements
• Allocation and confidence depend on the amplitude of the pulse and its distance to 

the closest emission line

• Uncertainty determined using Cramer-Rao bounding techniques 

Allocating Pulses to Elements

Element emission lines

Detected pulses



Uncertainty factor

• Uncertainty factor depends on the 
amplitude of the detected pulse 𝑎!, and 
is proportional to Cramér-Rao Lower 
Bound of  one pulse
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• Confidence score and quantity score

Element Distribution Maps
Detected pulse
Element line
Score

Confidence Quantity
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Our XRF
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Vincent van Gogh, “Sunflowers (NG3863)”, © The National Gallery, London.



Leonardo da Vinci’s “The Virgin of the 
Rocks”

Highlighted is the region of an XRF dataset collected on the painting with an M6
Bruker JETSTREAM instrument (30 W Rh anode at 50 kV and 600 µA, 60 mm2 Si drift
detector, and data collected with 350 µm beam and pixel size and 10 ms dwell time).

Leonardo da Vinci, “The Virgin of the Rocks (NG1093),” about 1491/2-9 and 1506-8, oil on poplar, 189.5 x 120 cm, The National 
Gallery, London.
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Results



Copper (Cu) distribution maps

Cu confidence map Cu quantity map
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Results



Zinc (Zn) distribution maps

Zn confidence map Zn quantity map

Cu confidence 
map

Cu quantity 
map
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Results



Zn quantity map

Pulse detection result of Pixel A on the angel wing

Pulse detection result of Pixel B on the draperyZn confidence map

Cu confidence 
map

Cu quantity 
map

Element 𝐾( 𝐾)
Copper (Cu) 901 986

Zinc (Zn) 960
X-ray characteristic lines
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Sample Results

S. Yan, J. Huang, N. Daly, C. Higgitt and P. L. Dragotti, “Revealing Hidden Drawings in Leonardo’s ‘the Virgin of the Rocks’ from Macro X-Ray Fluorescence 
Scanning Data through Element Line Localisation”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2020.





Francisco de Goya, Dona Isabel de Porcel (NG1473),
before 1805. Oil on canvas. (a). RGB image. (b). X-ray image.

On-going work

Machine Learning to extract painting underneath (project lead by UCL1) 

(a) (b)

Fig. 1. Francisco de Goya, Doña Isabel de Porcel (NG1473),
before 1805. Oil on canvas. (a). RGB image. (b). X-ray im-
age. Images copyright of the The National Gallery, London.

applied to Francisco de Goya’s portrait of Doña Isabel de Por-
cel, illustrated in Fig. 1, that has been painted directly on top
of another portrait of a male figure [9]. An improved visual-
isation and a greater understanding of the underlying portrait
has been possible through the use of macro X-ray fluores-
cence scanning, but it is also of great interest to attempt to
obtain a clearer image of just the lower figure [15].

We note in passing that X-ray image separation ap-
proaches have already been proposed in a series of works
such as [10-14]. However, such approaches apply to double
sided panels where – in addition to the mixed X-ray image
– one also has access to two RGB images associated with
the front and back sides of the artwork. Our new approach
applies however to a much more challenging scenario where
one has access only to the mixed X-ray image (Fig. 1 b) plus
a single RGB image associated with the visible portion of the
painting (Fig. 1a).

2. PROPOSED APPROACH

2.1. Problem Formulation

Our goal is to separate the mixed X-ray image associated with
a painting with a concealed design into its hypothetical com-
ponent X-ray images – where one component would contain
information related to the visible painting and the other com-
ponent would contain information related to the hidden paint-
ing – by leveraging the availability of the RGB image of the
visible painting. We carry out this task by dividing these im-
ages into smaller patches that overlap with respect to the verti-
cal and horizontal dimensions of the image. In particular, sup-
pose x denotes a mixed X-ray image patch and let x1 and x2

denote the hypothetical separated X-ray image patches cor-
responding to the surface and hidden paintings, respectively.
We then assume that x can be approximated as the sum of the
individual X-ray patches:

x ⇡ x1 + x2. (1)

Fig. 2. The proposed connected auto-encoder network for ini-
tial separated X-ray image estimation.

This linear mixing assumption is motivated by the fact that
canvas paintings (and works on panel) can be quite thin so
that higher-order attenuation effects can be neglected.

We next propose a two-step approach to separate each X-
ray image patch x onto its constituents x1 and x2 given the
corresponding RGB image patch r1. The first step yields
initial estimates of individual X-ray images x1 and x2, and
whereas the second step produces a refined version of these
images.

2.2. Approach

2.2.1. Step 1: Individual X-Ray Images Estimation

In the first step, we propose to obtain initial estimates of the
individual X-ray images of the surface and the hidden paint-
ings using the connected auto-encoder structure shown in Fig.
2.1 We build the connected auto-encoder that performs vari-
ous operations:

• It extracts feature f1 from the RGB image patch r1 us-
ing an encoder Er (represented by the green arrow).

• It extracts features f from the mixed X-ray image patch
x by encoder Ex (represented by the red arrow).

• It derives latent features f2 corresponding to the hidden
painting using a computing f2 = f � f1 (represented
by the yellow arrows).2

1The motivation for adopting a connected auto-encoder structure derives
from the fact that such an architecture has been shown to yield very good
X-ray image separation results in other art investigation problems [13,14]

2This operation is motivated by the success of similar operations in our
previous work [13,14]
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Fig. 1. Francisco de Goya, Doña Isabel de Porcel (NG1473),
before 1805. Oil on canvas. (a). RGB image. (b). X-ray im-
age. Images copyright of the The National Gallery, London.

applied to Francisco de Goya’s portrait of Doña Isabel de Por-
cel, illustrated in Fig. 1, that has been painted directly on top
of another portrait of a male figure [9]. An improved visual-
isation and a greater understanding of the underlying portrait
has been possible through the use of macro X-ray fluores-
cence scanning, but it is also of great interest to attempt to
obtain a clearer image of just the lower figure [15].

We note in passing that X-ray image separation ap-
proaches have already been proposed in a series of works
such as [10-14]. However, such approaches apply to double
sided panels where – in addition to the mixed X-ray image
– one also has access to two RGB images associated with
the front and back sides of the artwork. Our new approach
applies however to a much more challenging scenario where
one has access only to the mixed X-ray image (Fig. 1 b) plus
a single RGB image associated with the visible portion of the
painting (Fig. 1a).

2. PROPOSED APPROACH

2.1. Problem Formulation

Our goal is to separate the mixed X-ray image associated with
a painting with a concealed design into its hypothetical com-
ponent X-ray images – where one component would contain
information related to the visible painting and the other com-
ponent would contain information related to the hidden paint-
ing – by leveraging the availability of the RGB image of the
visible painting. We carry out this task by dividing these im-
ages into smaller patches that overlap with respect to the verti-
cal and horizontal dimensions of the image. In particular, sup-
pose x denotes a mixed X-ray image patch and let x1 and x2

denote the hypothetical separated X-ray image patches cor-
responding to the surface and hidden paintings, respectively.
We then assume that x can be approximated as the sum of the
individual X-ray patches:

x ⇡ x1 + x2. (1)

Green Arrow: Encoder !" to extract feature from rgb image patch

Blue Arrow: Decoder #" to transform feature into rgb image patch

Purple Arrow: Decoder #$ to transform feature into xray image patch

Red Arrow: Encoder !$ to extract feature from xray image patch

Orange Arrow: Addition

Yellow Arrow: Subtraction

Fig. 2. The proposed connected auto-encoder network for ini-
tial separated X-ray image estimation.

This linear mixing assumption is motivated by the fact that
canvas paintings (and works on panel) can be quite thin so
that higher-order attenuation effects can be neglected.

We next propose a two-step approach to separate each X-
ray image patch x onto its constituents x1 and x2 given the
corresponding RGB image patch r1. The first step yields
initial estimates of individual X-ray images x1 and x2, and
whereas the second step produces a refined version of these
images.

2.2. Approach

2.2.1. Step 1: Individual X-Ray Images Estimation

In the first step, we propose to obtain initial estimates of the
individual X-ray images of the surface and the hidden paint-
ings using the connected auto-encoder structure shown in Fig.
2.1 We build the connected auto-encoder that performs vari-
ous operations:

• It extracts feature f1 from the RGB image patch r1 us-
ing an encoder Er (represented by the green arrow).

• It extracts features f from the mixed X-ray image patch
x by encoder Ex (represented by the red arrow).

• It derives latent features f2 corresponding to the hidden
painting using a computing f2 = f � f1 (represented
by the yellow arrows).2

1The motivation for adopting a connected auto-encoder structure derives
from the fact that such an architecture has been shown to yield very good
X-ray image separation results in other art investigation problems [13,14]

2This operation is motivated by the success of similar operations in our
previous work [13,14]

1W. Pu, J. Huang, B. Sober, N. Daly, C. Higgitt, P.L. Dragotti, I. Daubechies and M. Rodrigues, “A Learning Based Approach to Separate Mixed X-
Ray Images Associated with Artwork with Concealed Designs”,  EUSIPCO 2021.



On-going work

Machine Learning to extract painting underneath
(a) (b) (c)

Fig. 4. Detail of Isabel’s face in Doña Isabel de Porcel : (a)
Visual RGB image of the surface painting. (b) Mixed X-ray
image. (c) Labeled X-ray image of the surface painting.

image disappear in the separation results of the first step. This
refinement operation remedies this issue by producing more
realistic X-ray image separations as shown in the subsequent
results.

3. EXPERIMENTAL RESULTS

We now showcase that our proposed approach can lead to a
plausible decompositions of mixed X-ray images of paintings
with hidden decompositions by applying it to the painting
Doña Isabel de Porcel by Franciscode Goya shown in Fig.
1. In particular, in this experiment a small area of the whole
painting, wherein both the content of surface painting and hid-
den painting are obvious in the X-ray image, is utilized to test
the proposed method (see Fig. 4). The size of the images
in Fig. 4 is 500 ⇥ 1000 pixels. The patch size is set to be
50 ⇥ 50, and we have 45 overlapping pixels associated with
both horizontal and vertical dimensions, resulting overall in
roughly 17381 patches.

Fig. 5 (a) and (b) shows the separation results after the
first stage of the calculation. The re-synthesized mixed X-ray
– obtained by adding the individual ones in Fig 5(a) and (b)
– together with the error map – obtained by subtracting the
re-synthesized mixed-X-ray image from the original mixed
X-ray – are shown in Fig. 5 (c) and (d). After dividing the
detailed information in Fig. 5 (d) into x1 and x2, the final
separation results after the second, refinement step are shown
in Fig. 5 (e) and (f). It is clear there are still some remaining
issues with the image separation, particularly around Isabel’s
headdress, but these final images have more of the character
that would be anticipated for X-ray images and are likely to
feel more familiar and therefore be more appealing to end
users.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Separation results. (a) Initial separated X-ray image of
the surface painting. (b) Initial separated X-ray image of the
hidden painting. (c) Synthetic mixed X-ray image using (a)
and (b). (d) Error map of the synthetic mixed X-ray image.
(e) Refined separated X-ray image of the surface painting. (f)
Refined separated X-ray image of the hidden painting.

4. CONCLUSION

X-radiography is a useful tool in the technical study of art-
works as, amongst its other benefits, it is capable of provid-
ing insights into hidden compositions and pentimenti. How-
ever, when hidden designs exist under the visible surface the
resulting X-ray images contain features associated with de-
signs (they are ’mixed’) and, as a result, they present difficul-
ties to experts visually interpreting these images. To improve
the utility of these X-ray images, it is desirable to separate
the content into two (hypothetical) images, each pertaining to
only one layer or composition. This paper proposed a novel
self-supervised learning algorithm based on a two-step proce-
dure. In the first step, a connected auto-encoder structure as
well as joint reconstruction loss and exclusion loss are pro-
posed to separate the mixed X-ray image. In the second step,
the error map is evenly allocated into the separated images to
produce more natural separated X-ray images. This proposed
method is demonstrated with the experiments on images from
the painting Doña Isabel de Porcel by Francisco de Goya.

(a) (b) (c)

Fig. 4. Detail of Isabel’s face in Doña Isabel de Porcel : (a)
Visual RGB image of the surface painting. (b) Mixed X-ray
image. (c) Labeled X-ray image of the surface painting.

image disappear in the separation results of the first step. This
refinement operation remedies this issue by producing more
realistic X-ray image separations as shown in the subsequent
results.

3. EXPERIMENTAL RESULTS

We now showcase that our proposed approach can lead to a
plausible decompositions of mixed X-ray images of paintings
with hidden decompositions by applying it to the painting
Doña Isabel de Porcel by Franciscode Goya shown in Fig.
1. In particular, in this experiment a small area of the whole
painting, wherein both the content of surface painting and hid-
den painting are obvious in the X-ray image, is utilized to test
the proposed method (see Fig. 4). The size of the images
in Fig. 4 is 500 ⇥ 1000 pixels. The patch size is set to be
50 ⇥ 50, and we have 45 overlapping pixels associated with
both horizontal and vertical dimensions, resulting overall in
roughly 17381 patches.

Fig. 5 (a) and (b) shows the separation results after the
first stage of the calculation. The re-synthesized mixed X-ray
– obtained by adding the individual ones in Fig 5(a) and (b)
– together with the error map – obtained by subtracting the
re-synthesized mixed-X-ray image from the original mixed
X-ray – are shown in Fig. 5 (c) and (d). After dividing the
detailed information in Fig. 5 (d) into x1 and x2, the final
separation results after the second, refinement step are shown
in Fig. 5 (e) and (f). It is clear there are still some remaining
issues with the image separation, particularly around Isabel’s
headdress, but these final images have more of the character
that would be anticipated for X-ray images and are likely to
feel more familiar and therefore be more appealing to end
users.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Separation results. (a) Initial separated X-ray image of
the surface painting. (b) Initial separated X-ray image of the
hidden painting. (c) Synthetic mixed X-ray image using (a)
and (b). (d) Error map of the synthetic mixed X-ray image.
(e) Refined separated X-ray image of the surface painting. (f)
Refined separated X-ray image of the hidden painting.

4. CONCLUSION

X-radiography is a useful tool in the technical study of art-
works as, amongst its other benefits, it is capable of provid-
ing insights into hidden compositions and pentimenti. How-
ever, when hidden designs exist under the visible surface the
resulting X-ray images contain features associated with de-
signs (they are ’mixed’) and, as a result, they present difficul-
ties to experts visually interpreting these images. To improve
the utility of these X-ray images, it is desirable to separate
the content into two (hypothetical) images, each pertaining to
only one layer or composition. This paper proposed a novel
self-supervised learning algorithm based on a two-step proce-
dure. In the first step, a connected auto-encoder structure as
well as joint reconstruction loss and exclusion loss are pro-
posed to separate the mixed X-ray image. In the second step,
the error map is evenly allocated into the separated images to
produce more natural separated X-ray images. This proposed
method is demonstrated with the experiments on images from
the painting Doña Isabel de Porcel by Francisco de Goya.

Separation Results



Two-Photon Microscopy for Neuroscience

• Goal of Neuroscience: to study how 
information is processed in the brain

• Neurons  communicate through pulses  called 
Action Potentials (AP)

• Need to measure in-vivo the activity of large 
populations of neurons at cellular level 
resolution

• Two-photon microscopy combined with right 
indicators is the most promising technology 
to achieve that 



Two-Photon Microscopy

• Fluorescent sensors within tissues 
• Highly localized laser excites fluorescence 

from sensors
• Photons emitted from tissue are collected
• Focal spot sequentially scanned across 

samples to form image

A. J. FOUST, Fast Light Field Neural Circuit Readout, Page 5
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Figure 2: A: optical system schematic; B, scanning modes; C, experiment work flow

fluorescencephotonsfromanextendeddepthoffield,andtodeducethepositionfromwhichtheyoriginatebasedon
fluorescence amplitude and incidence angle [9], [10]. In contrast with previous light field implementations,
we will excite fluorescence in two-photon mode with an infrared wavelength that penetrates deeper
into scattering mammalian brain than the visible wavelengths used to excite fluorescence in one-
photon mode. Unlike traditional 2PLSM, here instead of focusing the laser beam to a diffraction-limited
spot, our goal is to implement wide-field excitation for light field volume acquisition. Due to two-photon’s
squared dependence of fluorescence on excitation intensity, wide-field two-photon excitation requires high pulse
energy and decreased repetition rates to excite fluorescence efficiently throughout the volume while keeping the
average power low enough to avoid tissue heating. Exciting two-photon fluorescence throughout our 200-micron-
diameter cross-sectional area requires approximately 10 microjoules of pulse energy for a 660 kHz repetition rate.
We have selected the Coherent Opera-F Optical Parametric Amplifier pumped by the Monaco Amplifier as this
combination provides pulse energies in the 10 microjoule range of near infrared wavelengths (650 - 900 nm, 1035
nm, and 1200 to 2500 nm). The flexibility to tune the laser’s wavelength will enable us evaluate different calcium
indicators in terms of their signal-to-noise, temporal fidelity, and depth penetration during WP2.

Path (C) will serve as a control by exciting calcium-indicator fluorescence in axially-confined “pancakes” by
replacing the mirror with a reflective ruled diffraction grating [3]. In this configuration, two-photon excitation
will be temporally focused to a plane 5 microns thick (inset Figure 2A). The “pancake” plane will by scanned
remotelybyanelectrically tunable lens (ETL)conjugate to theobjectivebackaperture. Wewill use the“pancake”
excitationmode to evaluatehowwhole-volume2PELF illumination compares to the spatial specificity of selected-
plane excitation.

We will assess 2PELF’s axial and lateral spatial resolution as a function of depth by imaging 10-micron
red fluorescent beads seeded in agarose either weakly or strongly scattering (mean free path 200 microns, like
mammaliancortex [14]). Wewillfirst imagethebeadswithpath(A)toacquireahighresolution3Dreconstruction
ofbead location. Thenwewill acquire lightfieldswith thebeadsusingpath (C)andassess thefidelityandcontrast
with which 2PELF can resolve single beads and infer their position as a function of depth, scattering strength,
and bead concentration. We will compare the depth at which single beads can be resolved between 2PELF and
“pancake mode” as a function of agarose scattering coefficient and bead density.

Milestones/deliverables: (a) Four optical paths aligned and parfocal (Month 6); (b) Fluorescent bead dis-
criminability quantified as a function of depth and scattering (Month 10). (c) Develop software for integrated
2PELF data acquisition and analysis (Month 12).



Two-Photon Microscopy

• Fluorescent sensors within tissues 
• Highly localized laser excites fluorescence 

from sensors
• Photons emitted from tissue are collected
• Focal spot sequentially scanned across 

samples to form image
• Two-photon microscopes in raster scan 

modality can go deep in the tissue but are 
slow



Two-Photon Microscopy

• In order to speed up acquisition one can change the illumination strategy
• This mitigates the issue but does not fix it 



Light-field Microscopy

Light-Field Microscopy (LFM) is a high-
speed imaging technique that uses a 
simple modification of a standard 
microscope to capture a 3D image of an 
entire volume in a single camera snapshot



Light-field Microscopy and EPI



The Light Field
• First introduced in [LevoyH96]
• Light rays are characterized by their intersection with the camera plane and the image 

plane
• 4D parameterization of the lightfield



IBR Results on the Lightfield

Pearson et al. IEEE TIP 2013



Light-field Microscopy and Illumination 
Strategies



Real Lightfield Images and EPIs Click to edit Master title styleReal Light-field images, sub-aperture images, EPIs

Real LFM for a bead in different depths ranging 
from 0 to 32 um EPIs from real LFM data. i-k direction (left) and j-l direction (right)

Sub-aperture images along vertical and horizontal directions



Neuron Localization Approach



Dictionary of EPI from Simulated 
Lightfield MicroscopeClick to edit Master title style

Simulated EPI dictionary. Each atom corresponds to a specific depth

EPI dictionary constructed from simulated LFM



Convolutional Sparse Coding via ADMMClick to edit Master title style

We develop a convolutional sparse coding algorithm to decompose the input EPI into latent factors to estimate 
depth and spatial locations.

Convolutional Sparse Coding via ADMM

ADMM algorithm for solving CSC
Objective in image domain:

Objective in Fourier domain:

Objective in matrix format:

Lagrangian



Location Estimation Algorithm  Click to edit Master title style

Reconstructed EPIs

Location detection via convolutional sparse coding

Depth estimation

Convolutional 
sparse coding

Simulated EPI dictioary

Input EPI
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Fig. 11. Scattering case. (a) Raw LFM images of a neuronal cell (from a genetically encoded mouse) at different depths away from the focal plane. The pattern
is expanded when the neuronal cell is far away from the focus plane. Due to scattering and blurring, the cell images have a bright background and those for deeper
positions have a weaker intensity contrast, thus making post-processing challenging. In each raw LFM image, we can see an array of small round spots which are
the back-aperture of lenslets recorded in micro-images. (b) Sub-aperture image arrays for different depths. After a raw LFM image is converted into the standard
4D format, pixels can be re-arranged into sub-aperture images. Each sub-aperture image is composed of pixels that share the same relative position (i, j) in behind
each lenslet, indicating a specific view. All the sub-aperture images are tiled into an array with k-l as the inside axes, and i-j as the outside axes. (c) The separated
foreground and background of a sub-aperture image array via matrix factorization. (d) From a column of the sub-aperture image array, it is noticed that the positions
of the bright area are shifting, which means the view direction is changing vertically. Such view changing accounts for the slope of epipolar lines in the EPIs. The
corresponding purified versions do not suffer from scattering as the background has been effectively removed by matrix factorization. (f) Constructed j − l space
EPIs and corresponding purified versions. Best seen by zooming on a computer screen.

problem (3):

min
z

1

2
‖Y −

M∑

m=1

dm ∗ zm‖22 + β
M∑

m=1

‖zm‖1 (3)

where,dm ∈ Rn(n < N) is them-th atom of the EPI dictionary
{d1, . . . ,dM} where each atom represents a vectorized EPI
containing a single epipolar line associated with a specific depth.
Moreover, zm ∈ RN is the corresponding coefficient map.

To solve Problem (3) efficiently, we transform the variables
into the Fourier domain so that the convolutional operation in the

original domain becomes element-wise multiplication, similar
to [41]–[45]. Then, by exploiting the Parseval’s theorem, we
obtain:

min
zm

1

2
‖Ŷ −

M∑

m=1

d̂m % ẑm‖22 + β
M∑

m=1

‖zm‖1 (4)

where % is element-wise product, i.e. Hadamard product, which
corresponds to convolution in the original spatial domain. Here,
Ŷ = F(Y) ∈ RN , ẑm = F(zm) ∈ RN , d̂m = F(dm) ∈ RN ,
and F(·) indicates the Fourier transform operator.
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is expanded when the neuronal cell is far away from the focus plane. Due to scattering and blurring, the cell images have a bright background and those for deeper
positions have a weaker intensity contrast, thus making post-processing challenging. In each raw LFM image, we can see an array of small round spots which are
the back-aperture of lenslets recorded in micro-images. (b) Sub-aperture image arrays for different depths. After a raw LFM image is converted into the standard
4D format, pixels can be re-arranged into sub-aperture images. Each sub-aperture image is composed of pixels that share the same relative position (i, j) in behind
each lenslet, indicating a specific view. All the sub-aperture images are tiled into an array with k-l as the inside axes, and i-j as the outside axes. (c) The separated
foreground and background of a sub-aperture image array via matrix factorization. (d) From a column of the sub-aperture image array, it is noticed that the positions
of the bright area are shifting, which means the view direction is changing vertically. Such view changing accounts for the slope of epipolar lines in the EPIs. The
corresponding purified versions do not suffer from scattering as the background has been effectively removed by matrix factorization. (f) Constructed j − l space
EPIs and corresponding purified versions. Best seen by zooming on a computer screen.
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On-going work – CISTA for localization 

• The convolutional sparse model leads naturally to an iterative optimization strategy (ISTA) that can 
be unfolded

• Training based on synthetic data obtained using the Broxton forward model

Fig. 2. Proposed CISTA-net. An input EPI X containing two sources is mapped to sparse codes Z whose support indicates
depths. Cross-entropy loss between the estimation Z and the label Z? is computed and back-propagated to update parameters.

added in each layer facilitates information propagation from
the first layer directly to each hidden layer, thereby allevi-
ating information loss. This structure reveals certain resem-
blance to dense connectivity module used in DenseNet [22],
even though not each layer is receiving a connection from
all preceding layers. Even though some of these architecture
modules have been used in modern neural networks, we here
provide a new and interesting perspective to elaborate how
they can naturally derive from a well-designed model and cor-
responding iterative method, rather than pure intuition com-
monly used in general network design.

Rather than sticking to Model (3) rigidly, we also employ
some customized modifications to further enhance the capa-
bility of the network. For example, the size of filters S(i) and
W(i) increases across different layers so that the receptive
field increases gradually to facilitate capture of both local
details and global structure. In addition, a fully-connected
layer followed by sigmoid activation is added after the Glob-
alMaxPooling layer to perform non-linear transformation.
Such slight departures from the original convolutional ISTA
algorithm enable extended representation capability of the
network.

3. EXPERIMENT
In this section, we evaluate the performance of CISTA-net on
the 3D localization task. We also compare our approach with
the phase-space based method (Phase-Space for short) [6, 8]
and convolutional sparse coding based method (CSC for
short) [9] on light-field microscopy data obtained from scat-
tering specimens – genetically encoded fluorophore in mouse
brain tissues, as shown in Fig. 5 (a).

The raw light-field microscopy images were captured by
systematically changing the axial distance between the speci-
mens and the objective lens of LFM as in [9]. Therefore, each
light-field microscopy image captures a 3D volume at a speci-
fied depth. All the experiments were conducted in a computer
equipped with an Intel hexa-core i7-8700U CPU@3.20GHz
with 28GB of memory and a NVIDIA GTX 1080 Ti GPU.

Training settings. Figure 3 shows how we construct the la-
belled training datasets. Since the designed CISTA-net is ex-
pected to output sparse codes where the positions of non-zero
elements (i.e. support) indicate the depths corresponding to

Fig. 3. Illustration to the construction of soft-labels.

Fig. 4. Convergence curve of training and validation loss.

input EPIs, it needs to be trained on labelled data in order
to learn the mapping from an input EPI to the corresponding
sparse codes. However, coefficient values in sparse codes are
unknown. To handle this issue, we treat the task as a multi-
class, multi-label classification task where the support of the
sparse codes indicates target classes/categories while the co-
efficient values indicate probability or confidence of the in-
put signal falling into each class.1 In this way, we only need
weakly annotated sparse codes with roughly estimated coef-
ficient values. In addition, we found that EPIs corresponding
to adjacent depths tend to have similar patterns, and thus ex-
hibit high coherence and lead to group sparsity in CSC. Based
on this observation, we modified the sparse codes by con-
volving them with a Gaussian kernel so that the groundtruth
non-zero support is extended to neighbouring areas that cover
adjacent depths. We call the support-extended sparse codes
"soft-labels" in comparison with the sparse codes with exact
support, namely "hard-labels". Soft-labels give some training
benefits by incorporating data correlation as guidance infor-
mation and enforce group sparsity for the output of network.
Since our task is regarded as a multi-class, multi-label classi-
fication task, the loss function is set to be binary cross-entropy

1Note, if the task is treated as a regression task, the output of the network
will be a number that denotes the continuous depth, thus it can not handle
the case with multiple neurons in the region of interest as this gives multiple
lines in an EPI.



On-going work – CISTA for localization 



• Why Computational Imaging?

– It is fun 🙂

– It is inter-disciplinary

– It is the right way to handle ‘big data’: joint sensing, representation, 
analysis and inference

Conclusions   



Thank you!
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