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Preliminaries Mixed Hodge Structures and E-polynomials

Clasical Hodge Theory

A (pure) Hodge structure (of weight k) on a Z-module VZ is

VC ∶= VZ ⊗Z C = ⊕
p+q=k

Vp,q, Vp,q = Vq,p

Alternatively, define Hodge filtration:

VC ⊃ ⋯ ⊃ Fp(V) ⊃ Fp+1(V) ⊃ ⋯

with Fp(V) ∩ Fq(V) = Vp,q and Fp(V) = ⊕i≥p V i,k−i.

HODGE DECOMPOSITION

X is a compact Kähler variety, kth-cohomology carries (pure) Hodge structure
of weight k:

Hk
DR(X) ⊗C = ⊕

p+q=k
Hp,q(X), Hp,q(X) = Hq,p(X)

where hp,q = dimC Hp,q(X) are the Hodge numbers.
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Preliminaries Mixed Hodge Structures and E-polynomials

Hodge diamond

Using Hp,q(X) ≃ Hq(X,Ωp), Serre duality (hp,q = hn−p,n−q), Hodge symmetry
(hp,q = hq,p), Hodge numbers of a compact Kähler variety of dimension n are
displaced in the Hodge diamond with symmetries:

hn,n

hn,n−1 hn−1,n

⋰ ⋱
hn,0 hn−1,1 ⋯ h1,n−1 h0,n

⋱ ⋰
h1,0 h0,1

h0,0

Gives Betti numbers as sum of rows:

bk = dim Hk(X,C) = ∑
p+q=k

hp,q
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Preliminaries Mixed Hodge Structures and E-polynomials

Examples of Hodge structures

(SMOOTH C-PROJECTIVE GENUS g CURVE OR COMPACT RIEMANN SURF.)

h1,1 = 1
h1,0 = g h0,1 = g

h0,0 = 1

with Betti numbers b0 = 1, b1 = 2g, b2 = 1.

(COMPLEX PROJECTIVE SPACE Pn
C)

hn,n = 1
hn−1,1 = 0 hn,n−1 = 0

⋰ hn−1,n−1 = 1 ⋱
hi,0 = 0 ⋮ h0,i = 0

⋱ h1,1 = 1 ⋰
h1,0 = 0 h0,1 = 0

h0,0 = 1

with Betti numbers b2k = 1, k = 0,1, . . . ,n.
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Preliminaries Mixed Hodge Structures and E-polynomials

Mixed Hodge Structures

On VC with decreasing Hodge filtration F●(V), add weight filtration

0 ⊂ ⋯Wk−1 ⊂ Wk ⊂ ⋯ ⊂ V

such that F●(V) induces weight k Hodge structure on
GrW

k (V) ∶= Wk/Wk−1, defining Vp,q ∶= Grp
FGrW

p+1(V)
hk,p,q = dimC Vp,q(X) are the mixed Hodge numbers with hk,p,q = hk,q,p

k-weights are (p,q) with hk,p,q ≠ 0 (it can be p + q ≠ k)

MIXED HODGE STRUCTURES ON COHOMOLOGY BY DELIGNE

X quasi-projective algebraic variety (not necessarily smooth nor complete nor
irreducible).
Singular compactly supported cohomology Hk

c(X) carry mixed Hodge
structures.
Yield compactly supported Betti numbers dim Hk

c(X) = ∑p,q hk,p,q.
Also give usual Betti numbers by Poincaré duality in the smooth case.
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Preliminaries Mixed Hodge Structures and E-polynomials

Topological and geometrical invariants from MHS

MIXED HODGE POLYNOMIAL

µ(X; t, u, v) = ∑k,p,q hk,p,qtkupvq

POINCARÉ POLYNOMIAL

Pc(X; t) = µ(X; t, 1, 1) = ∑k dim Hk
c(X)tk

HODGE-DELIGNE-SERRE OR E-POLYNOMIAL

E(X; u, v) = µ(X;−1, u, v) = ∑k,p,q hk,p,q(−1)kupvq ∈ Z[u, v]

Hodge-Tate or balanced varieties: MHS only weights (p, p), then E(X; u, v) = E(X; uv) = E(X; x)
polynomial in 1 variable. Converse unknown!

EQUIVARIANT E-POLYNOMIAL

If W finite group acting on X algebraically: EW(X; u, v) = ∑k,p,q[Hk,p,q(X)]W(−1)kupvq ∈ R(W)[u, v],
coefficients in the representation ring of W.

COMPACTY SUPPORTED EULER CHARACTERISTIC

χc(X) = E(X; 1, 1) = µ(X;−1, 1, 1) = Pc(X;−1) = ∑k(−1)k dim Hk
c(X)

Coincides with χ(X) for X quasi-projective.
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Preliminaries Mixed Hodge Structures and E-polynomials

Properties of the E-polynomial

MULTIPLICATIVITY (KÜNNETH)

E(X × Y) = E(X) ⋅ E(Y)

ADDITIVITY

X = Z ⊔ (X/Z) locally closed⇒ E(X) = E(Z) + E(X/Z)

PROPOSITION (DIMCA-LEHRER (’97), LOGARES-MUÑOZ-NEWSTEAD (’13),
FLORENTINO-NOZAD-Z. (’19))

Let F →W↷ X → B be a fibration with group W preserving fibers π−1(b) and verifying any of

A) Locally Zariski trivial (LZT)

B) Smooth, locally analytic trivial and π1(B) ↷ H∗
c (F) trivially

C) X, B smooth and F complex connected Lie group

D) F is special (F special if all principal F-bundles are LZT)

E) X = G reductive, F = Z(G) connected center, B = PG = G/Z adjoint group

then, EW(X) = EW(F) ⋅ E(B) .
Moreover, if W is trivial, E(X) = E(F) ⋅ E(B).
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Preliminaries Mixed Hodge Structures and E-polynomials

Examples of E-polynomials

(RIEMANN SURFACE Σg CARRY PURE NOT HODGE-TATE STRUCTURE)

µ(Σg; t,u, v) = 1 + gt(u + v) + t2uv P(Σg; t) = 1 + 2gt + t2

E(Σg; u, v) = 1 − g(u + v) + uv χ(Σg) = 2 − 2g

(PROJECTIVE SPACE CARRY PURE AND HODGE-TATE STRUCTURE)

µ(Pn
C; t,u, v) = 1 + t2uv + t4u2v2 +⋯ + t2nunvn

P(Pn
C; t) = 1 + t2 + t4 +⋯ + t2n

E(Pn
C; u, v) = 1 + uv + u2v2 +⋯ + unvn = 1 + x + x2 +⋯ + xn

χ(Pn
C) = n + 1

(LOCALLY CLOSED DECOMPOSITION C = C∗ ⊔ {pt})

E(C; u, v) = E(C∗; u, v) + E({pt}; u, v) = (uv − 1) + 1 = (x − 1) + 1 = x
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Preliminaries Mixed Hodge Structures and E-polynomials

Examples of E-polynomials

(LZT FIBRATION)

GL2(C) ↠ C2/{(0,0)}, ( a b
c d

) ↦ (a, c)

fiber is ≃ C2/C =vectors (b,d) linearly independent with (a, c).

Then E(GL2(C); u, v) =

E(C2/C; u, v) ⋅ E(C2/{(0,0)}; u, v) = (u2v2 − uv) ⋅ (u2v2 − 1) =

(x2 − x) ⋅ (x2 − 1) = x4 − x3 − x2 + x

(FIBER NEEDS TO BE CONNECTED)

Z2 → P1
C × P1

C → Sym2(P1
C)

(1 + uv)2 ≠ 2 ⋅ (1 + uv + u2v2)
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Preliminaries Character Varieties

Character varieties

Γ finitely presented group, Γ = ⟨γ1, γ2, . . . , γr ∶ r1, r2, . . . , rs⟩
G complex reductive affine algebraic group (for this talk
G = GLn(C),PGLn(C),SLn(C))

REPRESENTATION VARIETY

RΓG ∶= Hom(Γ,G) = {ρ(γ) = (ρ(γ1), . . . , ρ(γr)) ∶ rj(ρ) = 1, j = 1, . . . , s} is
an affine algebraic variety

ACTION OF G ON RΓG BY CONJUGATION

For ρ ∈ RΓG, g ∈ G, γ ∈ Γ:

(g ⋅ ρ)(γ) ∶= gρ(γ)g−1 = (gρ(γ1)g−1, . . . ,gρ(γr)g−1)

G-CHARACTER VARIETY OF Γ IS AFFINE GIT QUOTIENT

XΓG ∶= RΓG//G = SpecC[RΓG]G = Rps
Γ G/G

12/ 45
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Preliminaries Character Varieties

Some finitely presented groups Γ

SURFACE GROUPS

Fundamental group of Σg compact orientable Riemann surface

Γ = π1(Σg) = ⟨a1,b1 . . . ,ag,bg ∶
g

∏
i=1

[ai,bi] = 1⟩

(more generally, a central extension of π1(Σg)).

FREE GROUPS

Γ = Fr free group of rank r. The character variety is XrG ∶= XFrG ≃ Gr//G.

ABELIAN GROUPS

Γ = Zr, free abelian group of rank r. Also abelian groups with torsion.

OTHER GROUPS

Twisted surface groups, torus knot groups, non-orientable surface groups.
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Preliminaries Character Varieties

Example: surface group GL2-character variety

For Γ = π1(Σg), G = GL2, representation variety is

RΓG = {(A1,B1, . . . ,Ag,Bg) ∈ G2g ∶ A1B1A−1
1 B−1

1 ⋯AgBgA−1
g B−1

g = I}

and character variety XΓG is the GIT quotient ofRΓG by action given by
simultaneous conjugation:

(A1,B1, . . . ,Ag,Bg) ∼ (CA1C−1,CB1C−1, . . . ,CAgC−1,CBgC−1), C ∈ G

Reducible representations X red
Γ G are those simultaneously conjugated to

(( λ1 0
0 µ1

) , . . . ,( λ2g 0
0 µ2g

))

∈ (C∗)4g/(λ1, µ1, . . . , λ2g, µ2g) ∼ (µ1, λ1, . . . , µ2g, λ2g)

Irreducible representations form smooth locus X irr
Γ G ∶= Rirr

Γ G/G.
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Preliminaries Character Varieties

Motivation

For surface groups Γ ∶= π1(Σg), Σg a Riemann surface, character
varieties are related to moduli spaces of Higgs bundles through
non-abelian Hodge correspondence (Hitchin, Donaldson, Corlette,
Simpson):

XΓG = RΓG//G ≈ moduli space of G-Higgs bundles over Σg

QFT interpretation of geometric Langlands program in mirror symmetry
(Simpson, Kapustin-Witten).
In SYZ mirror symmetry, hyperkähler nature of Hitchin systems allows
topological criterion for mirror symmetry: same/mirror Hodge numbers
for G and LG.
(Hausel-Thaddeus, Groechenig-Wyss-Ziegler) establish topological
mirror simmetry for SLn and PGLn (smooth/orbifold case, pure HS).

For other Γ, character varieties more singular, Hodge structure not pure, we
expect other topological mirror symmetries.
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Preliminaries Character Varieties

Results on topological invariants of character varieties

For Γ surface group (related with smooth varieties):

Poincaré polynomials for surface groups: Hitchin (’87), Gothen (’94) for G = SL2, SL3,
García-Prada-Heinloth-Schmitt (’13, ’14), Schiffman (’16), Mellit (’17) for
G = SLn,PGLn.

Mixed Hodge polynomials with arithmetic methods: Hausel-Rodriguez-Villegas (’08):
for G = GLn, Mereb (’10): G = SLn.

For other Γ (singular character varieties) computations of E-polynomials are harder.
Geometric approach:

Logares, Muñoz, Newstead, Martínez (’13,’14,’17), surface groups for G = SL2, PGL2.

Cavazos, Lawton, Muñoz, Porti (’14,’15,’17): free groups for G = SL2,SL3 and torus
knot groups for G = GL3,SL3,PGL3.

Florentino-Lawton-Casimiro-Oliveira (’09,’15), free group retraction of G-character
variety to K-character variety (K maximal compact).

Arithmetic approach:

Mozgovoy-Reineke: (’15) compute points of Xr GLn over Fq and Baraglia-Hekmati
(’17) E-polynomials for G = SL2,GL2.

Florentino-Silva (’18): Combined methods for abelian character varieties XZr G,
G = GLn,SLn,Spn.
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Arithmetic-Geometric methods for GLn-character varieties

Index

1 PRELIMINARIES
Mixed Hodge Structures and E-polynomials
Character Varieties

2 ARITHMETIC-GEOMETRIC METHODS FOR GLn-CHARACTER
VARIETIES

Stratifications by polystability type
Generating functions of E-polynomials
Explicit combinatorial formulae

3 EXPLICIT COMPUTATIONS FOR GLn-CHARACTER VARIETIES

4 SLn AND PGLn-CHARACTER VARIETIES
Conjecture for Langlands dual groups SLn and PGLn

Computations for SLn and PGLn-character varieties of the free group
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Arithmetic-Geometric methods for GLn-character varieties Stratifications by polystability type

Geometric methods

GEOMETRIC METHODS

Based on decomposing the character variety into strata with different
stabilizers and use additivity (stratifications) and multiplicativity (fibrations
with stabilizer as the fiber) to compute E-polynomials.

Γ = ⟨γ1, γ2, . . . , γr ∶ r1, . . . , rs⟩, a finitely presented group and G complex
reductive algebraic group.
Locally closed stratification by stabilizer dimension

XΓG = ⊔
m≥m0

Xm
Γ G

where m0 = dim⋂ρ∈RΓG Stab(ρ), center of the action of G onRΓG.

In the linear case G = GLn, can perform a refinement by polystability type,
connected to affine GIT and representation theory of symmetric group (=Weyl
of GLn).
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Arithmetic-Geometric methods for GLn-character varieties Stratifications by polystability type

Stratification by polystability type for G = GLn

PARTITION

[k] = [1k1 2k2⋯nkn] ∈ Pn, ∑n
j=1 j ⋅ kj = n, with length (number of blocks) ∣[k]∣ = ∑n

j=1 kj.

For example [12 2 4] ∈ P8 with length 4.

[k]-STRATA

ρ ∈ RΓ GLn is [k]-polystable ifR[k]
Γ GLn ∋ ρ ∼conj ⊕n

j=1 ρj, where ρj ∈ Rirr
Γ (GL

⊕kj
j ).

Define X [k]
Γ GLn ∶= R[k]

Γ GLn //GLn, the [k]-stratum of XΓ GLn. Particular cases:

Abelian stratum: X [1n]
Γ GLn ≃ XΓAb GLn (of maximal length n).

Irreducible stratum: X [n]
Γ GLn = X irr

Γ GLn (of minimal length 1), equals smooth locus for
GLn.

THEOREM (FLORENTINO-NOZAD-Z. (’19))

There exists a locally closed stratification by partition type:

XΓ GLn = ⊔
[k]∈Pn

X [k]
Γ GLn .
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Arithmetic-Geometric methods for GLn-character varieties Generating functions of E-polynomials

Arithmetic methods

POLYNOMIAL COUNT

X is of polynomial type if there is a counting polynomial CX(t) ∈ Z[t] such that
∣X/Fq∣ = CX(q), for almost every prime p, with ∣Fq∣ = pm.

(Katz (’08)) If X is of polynomial type then E(X; u, v) = CX(uv).

PLETHYSTIC OPERATORS

Let f (x, y, z) = ∑n fn(x, y)zn ∈ Q[x, y][[z]] be a formal power series.
Define plethystic exponential PExp(f ) = eΨ(f), where Ψ(xiyjzk) = ∑l

xliyljzlk

l is the Adams
operator.

Particularly, PExp ((∑p,q≥0 ap,qupvq) y) = ∏p,q≥0(1 − upvqy)−ap,q .

THEOREM (MOZGOVOY-REINEKE (’15))

For Γ = Fr, GLn-character varieties are of polynomial type and

∑
n≥0

Ar
n(q)zn = PExp(∑

n≥1
Br

n(q)zn) , where

Ar
n(q) ∶= ∣Xr GLn /Fq∣ = E(Xr GLn; q) and Br

n(q) ∶= ∣X irr
r GLn /Fq∣ = E(X irr

r GLn; q).
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Arithmetic-Geometric methods for GLn-character varieties Generating functions of E-polynomials

Generalization to Γ finitely presented (even if X is not of polynomial type)

[k]-LEVY AND [k]-SYMMETRIC GROUP

L[k] ∶= GLk1
1 ×GLk2

2 ×⋯ ×GLkn
n ⊂ GLn, S[k] ∶= Sk1 × Sk2 ×⋯ × Skn ⊂ Sn

R[k]
Γ GLn //L[k] ≃ ×n

j=1(X
irr
Γ GLj)×kj

PROPOSITION (FLORENTINO-NOZAD-Z. (’19))

A) X [k]
Γ GLn ≃ (R[k]

Γ GLn //L[k])/S[k] ≃ ×n
j=1 Symkj(X irr

Γ GLj).

B) ∑n≥0 E(Symn(X); u, v)yn = PExp(E(X; u, v)y).

THEOREM (FLORENTINO-NOZAD-Z. (’19))
If Γ is finitely presented,

∑
n≥0

AΓ
n (u, v)tn = PExp(∑

n≥1
BΓ

n (u, v)tn)

AΓ
n (u, v) = E(XΓ GLn; u, v) and BΓ

n (u, v) = E(X irr
Γ GLn; u, v).
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Arithmetic-Geometric methods for GLn-character varieties Explicit combinatorial formulae

Rectangular partitions

Further combinatorial analysis allows to relate AΓ
n with BΓ

l , l ≤ n.

RECTANGULAR PARTITION

Idea: For a partition [k] = [1k1⋯nkn] choose a partition [l] ∈ Pkj for each kj.

[[k]] = [(1 × 1)k1,1 (1 × 2)k1,2⋯(1 × n)k1,n⋯(n × n)kn,n] ∈ RPn

satisfying n = ∑n
l,h=1 l h kl,h.

GLUING MAP

π ∶ RPn → Pn

[[k]] ↦ [m] = [1m1⋯nmn]

defined by ml ∶= ∑n
h=1 h ⋅ kl,h
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n with BΓ
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Arithmetic-Geometric methods for GLn-character varieties Explicit combinatorial formulae

Example n = 3

k3,1 = 1 k2,1 = k1,1 = 1 k1,3 = 1 k1,2 = k1,1 = 1 k1,1 = 3

5 rectangular partitions of n = 3. Gluing map π takes the first one to the Young
diagram of the partition [3], the second one to [1 2] and the last three to [13].
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Arithmetic-Geometric methods for GLn-character varieties Explicit combinatorial formulae

Rectangular partitions for n = 4

k4,1 = 1 k3,1 = k1,1 = 1 k2,2 = 1 k2,1 = 2 k2,1 = k1,2 = 1 k2,1 = 1, k1,1 = 2

k1,4 = 1 k1,3 = k1,1 = 1 k1,2 = 2 k1,2 = 1, k1,1 = 2 k1,1 = 4

11 rectangular partitions of n = 4. Gluing map π takes the first one to the
Young diagram of the partition [4], the second one to [1 3], the third and
fourth ones to [22], the fifth and sixth to [12 2] and the last five to [14].
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Arithmetic-Geometric methods for GLn-character varieties Explicit combinatorial formulae

E-polynomials of CVs in terms of irreducible lower dimensional strata

Use plethystic exponential relations + rectangular partitions:

THEOREM (FLORENTINO-NOZAD-Z. (’19))
Let Γ be a finitely presented group. Then,

E(XΓ GLn; u, v) = ∑
[[k]]∈RPn

n

∏
l,h=1

BΓ
l (uh, vh)kl,h

kl,h! hkl,h

Moreover, for a given [m] ∈ Pn, the E-polynomial of the corresponding
stratum is:

E(X [m]
Γ GLn; u, v) = ∑

[[k]]∈π−1[m]

n

∏
l,h=1

BΓ
l (uh, vh)kl,h

kl,h! hkl,h

where BΓ
l (u, v) ∶= E(X irr

Γ GLl; u, v).
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Arithmetic-Geometric methods for GLn-character varieties Explicit combinatorial formulae

Example for n = 4

AΓ
4 (u, v) = E(XΓ GL4; u, v) is the sum of these 5 strata comprising the 11

terms coming from the rectangular partitions in the previous figure.

E(X [4]
Γ GL4; u, v) = BΓ

4 (u, v)

E(X [1 3]
Γ GL4; u, v) = BΓ

3 (u, v)BΓ
1 (u, v)

E(X [22]
Γ GL4); u, v =

BΓ
2 (u, v)2

2
+

BΓ
2 (u2v2)

2

E(X [122]
Γ GL4; u, v) =

BΓ
2 (u, v)BΓ

1 (u2v2)
2

+
BΓ

2 (u, v)BΓ
1 (u, v)2

2

E(X [14]
Γ GL4; u, v) =

BΓ
1 (u4v4)

4
+

BΓ
1 (u3v3)BΓ

1 (u, v)
3

+
BΓ

1 (u2v2)2

8

+
BΓ

1 (u2v2)BΓ
1 (u, v)2

4
+

BΓ
1 (u, v)4

24
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Arithmetic-Geometric methods for GLn-character varieties Explicit combinatorial formulae

Explicit computations in the free group case

Furthermore, for Γ = Fr, GLn-character varieties are of polynomial type,
then use Katz-Mozgovoy-Reineke to get combinatorial formulae for
irreducible polynomials Br

n(u, v) = Br
n(x) = E(X irr

r GLn; x).

PROPOSITION (MOZGOVOY-REINEKE (’15), FLORENTINO-NOZAD-Z.
(’19))

For r,n ≥ 2, we have E(X irr
r GLn; x) =

(x − 1)∑
d∣n

µ(n/d)
n/d ∑

[k]∈Pd

(−1)∣[k]∣

∣[k]∣
( ∣[k]∣

k1,⋯, kd
)

d

∏
j=1

bj(xn/d)kjx
n(r−1)kj

d ( j
2) ,

where µ is the Möbius function, and the bj(x) are polynomials defined by

(1 +∑
n≥1

bn(x) tn)(1 +∑
n≥1

((x − 1)(x2 − 1) . . . (xn − 1))r−1
tn) = 1.
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Arithmetic-Geometric methods for GLn-character varieties Explicit combinatorial formulae

Explicit expressions for Br
n(x) = E(X irr

r GLn; x), n ≤ 4, (s = r − 1)

Br
1(x)

x − 1
=(x − 1)s,

Br
2(x)

x − 1
=(x − 1)s((x − 1)sxs((x + 1)s − 1) + 1

2
(x − 1)s − 1

2
(x + 1)s),

Br
3(x)

x − 1
=(x − 1)s( − 1

3
(x2 + x + 1)s + (x − 1)2s(1

3
− xs + xs(x + 1)s,

+ x3s + x3s(x + 1)s(x2 + x + 1)s − 2x3s(x + 1)s))

Br
4(x)

x − 1
=(x − 1)2s(1

4
(x − 1)2s − 1

4
(x + 1)2s + (x2 − 1)sxs(1 − (x + 1)s),

+ 1
2
(x + 1)2sx2s(1 − (x2 + 1)s) + 1

2
(x − 1)2sx2s(1 − (x + 1)s)2

− (x − 1)2sx3s(−(x + 1)s(x2 + x + 1)s + 2(x + 1)s − 1)
− (x − 1)2sx6s(−(x + 1)s(x2 + x + 1)s(x3 + x2 + x + 1)s

+ 2(x + 1)s(x2 + x + 1)s + (x + 1)2s − 3(x + 1)s + 1)).
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Explicit computations for GLn-character varieties

Index

1 PRELIMINARIES
Mixed Hodge Structures and E-polynomials
Character Varieties

2 ARITHMETIC-GEOMETRIC METHODS FOR GLn-CHARACTER
VARIETIES

Stratifications by polystability type
Generating functions of E-polynomials
Explicit combinatorial formulae

3 EXPLICIT COMPUTATIONS FOR GLn-CHARACTER VARIETIES

4 SLn AND PGLn-CHARACTER VARIETIES
Conjecture for Langlands dual groups SLn and PGLn

Computations for SLn and PGLn-character varieties of the free group
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Explicit computations for GLn-character varieties

Consequences

This analysis allows to:

Recover arithmetic computations of E(Xr GLn; x).

Use locally closed stratification by partition type

XΓ GLn = ⊔
[k]∈Pn

X [k]
Γ GLn

to relate computations and geometry of E(XΓ GLn; x) to each stratum
E(X [k]

Γ GLn; x).

In particular, compute E(X [1n]
Γ GLn; x) (abelian stratum, abelian

character varieties) and E(X [n]
Γ GLn; x) (irreducible stratum, smooth).
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Explicit computations for GLn-character varieties

Recovering arithmetic computations of E(Xr GLn; x)

For s ≥ 0, the E-polynomial of the GL3-character variety of the free
group Γ = Fs+1 is:

E(Xs+1 GL3; x)
(x − 1)s+1 = 1

2(x − 1)s+1(x + 1)sx + 1
3(x2 + x + 1)sx(x + 1)+

+ (x − 1)2s((x + 1)s[x3s(x2 + x + 1)s + xs+1 − 2x3s]

+ x3s − xs+1 + x
6(x + 1)).

Every [k]-polystable stratum X [k]
r GLn is irreducible and has zero Euler

characteristic:

χ(X [k]
r GLn) = 0, χ(Xr GLn) = 0.
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Explicit computations for GLn-character varieties

Computations for GL2

STRATIFICATION FOR n = 2

XΓ GL2 = X [2]
Γ GL2 ⊔ X [12]

Γ GL2 ≅ X irr
Γ GL2 ⊔XΓAb GL2

where use X [1n]
Γ GLn ≃ XΓAb GLn.

Use

(Baraglia-Heckmati (’17)) use arithmetic arguments to compute
E(XΓ GL2; x) for various Γ.

(Florentino-Silva (’19)) compute E-polynomials of abelian character
varieties E(XZr GLn; x) through symmetric functions.

to calculate:

E(X irr
Γ GL2; x) = E(XΓ GL2; x) − E(XΓAb GL2; x).
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Explicit computations for GLn-character varieties

E-polynomials of irreducible loci of GL2-character varieties

THEOREM (FLORENTINO-NOZAD-Z. (’19))

1 For free groups Fs+1:

E(X irr
s+1 GL2; x)

(x − 1)s+1
= (x − 1)sxs((x + 1)s − 1) −

1
2
(x + 1)s +

1
2
(x − 1)s.

2 For surface goups Γg = π1(Σg), with c = 2g − 2,

E(X irr
Γg

GL2; x)

(x − 1)c+2
= (x2 − 1)c(xc + 1) +

(xc+1 − x − 1)
2

(x + 1)c −
(xc+1 − x + 1)

2
(x − 1)c − xc.

3 For non-orientable surface groups Γ̂k = π1(Σ̂g), with h = k − 2,

E(X irr
Γk

GL2; x)

(x − 1)h+1
= 2(xh+1)(x2−1)h+xh(x−1)

(x − 1)h + (x + 1)h

2
+(2−4xh)(x−1)h−(x+1)h−2xh.

4 For torus knot groups Γa,b we have:

E(X irr
Γa,b

GL2; x)

x − 1
=
⎧⎪⎪⎨⎪⎪⎩

1
4 (a − 1)(b − 1)(x − 2), a, b both odd
1
4 (b − 1)(ax − 3a + 4), a even, b odd.
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Explicit computations for GLn-character varieties

E-polynomial of irreducible GL3-character variety of surface group

STRATIFICATION FOR n = 3

XΓ GL3 = X
[3]
Γ GL3 ⊔X

[1 2]
Γ GL3 ⊔X

[13]
Γ GL3

E(XΓg GL3; x) = E(X irr
Γg

GL3; x) + E(X irr
Γg

GL1; x) ⋅ E(X irr
Γg

GL2; x) + E(XΓab
g

GL3; x)

THEOREM (FLORENTINO-NOZAD-Z. (’19))

The E-polynomial of the irreducible GL3-character variety of Γg, setting c = 2g − 2, is

E(X irr
Γg

GL3; x)

(x − 1)c+2
= (x − 1)2c+2[x3c −

xc+1

2
− (x + 1)c(xc + 1) +

1
3
]

+ (x − 1)2c+1(x − 2x2c)[
xc(x − 2)

2
+ (x + 1)c(xc + 1)]

+ (x − 1)2c(x2 + x + 1)c[(x + 1)c(x3c + 1) + x2c]

+ (x − 1)2c(x − 2)x2c[(x + 1)c(xc + 1) +
xc(x − 3)

6
] +

(x − 1)c+1(x + 1)c

2
[xc+1 − x3c+1]

+ (x − 1)c(xc − 1)[xc−2 + xc+1 − 2] + (x − 1)c+2[x2c−2 − xc−2]

+
(x2 + x + 1)c

3
[x3c+1(x + 1) − (x2 + x + 1)] − x3c.
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SLn and PGLn-character varieties

Index

1 PRELIMINARIES
Mixed Hodge Structures and E-polynomials
Character Varieties

2 ARITHMETIC-GEOMETRIC METHODS FOR GLn-CHARACTER
VARIETIES

Stratifications by polystability type
Generating functions of E-polynomials
Explicit combinatorial formulae

3 EXPLICIT COMPUTATIONS FOR GLn-CHARACTER VARIETIES

4 SLn AND PGLn-CHARACTER VARIETIES
Conjecture for Langlands dual groups SLn and PGLn

Computations for SLn and PGLn-character varieties of the free group
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SLn and PGLn-character varieties Conjecture for Langlands dual groups SLn and PGLn

PGLn and SLn fibrations for free group Γ = Fr

From C∗ → GLn → PGLn, get E(GLn; u, v) = (1 − uv) ⋅ E(PGLn; u, v).

ActionRrC∗ × Xr GLn → Xr GLn defines stratifications:
X [k]

r PGLn ∶= X [k]
r GLn /RrC∗ = X [k]

r GLn /(C∗)r

X [k]
r SLn ∶= {ρ ∈ X [k]

r GLn ∶ detρ = 1}

PROPOSITION (FLORENTINO-NOZAD-Z. (’19))
The fibration

RrC∗ → X [k]
r GLn → X [k]

r PGLn

is special, therefore

E(X [k]
r GLn; x) = (x − 1)rE(X [k]

r PGLn; x)

E(Xr GLn; x) = (x − 1)rE(Xr PGLn; x).

Also E(GLn; u, v) = (1 − uv) ⋅ E(SLn; u, v) ⇒ E(SLn; x) = E(PGLn; x)
but hard to prove E(Xr GLn; x) = (x − 1)rE(Xr SLn; x).
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SLn and PGLn-character varieties Conjecture for Langlands dual groups SLn and PGLn

Solution of conjecture for Langlands dual groups PGLn and SLn

THEOREM (FLORENTINO-NOZAD-Z. (’19))

For Γ = Fr, E(Xr SLn; x) = E(Xr PGLn; x).

Try to imitate the PGLn-fibration:

Zr
n → Xr SLn → Xr PGLn

but the fiber is not connected, then we cannot directly apply
multiplicative property for E-polynomials!
We prove the Theorem by distinguishing between partitions of two or
more blocks ([k] of length > 1, reducible) and the irreducible case
([k] = [n] of length = 1).

PROPOSITION (FLORENTINO-NOZAD-Z. (’19))

If length [k] ∈ Pn is > 1, then E(X [k]
r GLn; x) = (x − 1)rE(X [k]

r SLn; x).
Therefore E(X [k]

r SLn; x) = E(X [k]
r PGLn; x).
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SLn and PGLn-character varieties Conjecture for Langlands dual groups SLn and PGLn

Sketch of the proof for ∣[k]∣ > 1

Let [k] a partition whose blocks have size n1,n2, . . . ,ns, s > 1, and
g.c.d(n1, . . . ,ns) = d.

Let m(σ1, . . . , σs) ↦ σm1
1 , . . . , σms

s , with mi = ni/d

H ∶= ker m ⊂ J ∶= (RrC∗)s mÐ→ RrC∗

↓ ↓
SXn

r ∶= {x ∈ Xn
r ∣det(x) = 1} ⊂ Xn

r ∶= ×s
i=1X

irr
r GLni

↓ ↓
SXn

r /H = Xn
r /J,

H is abelian, connected and reductive, then H ≃ (C∗)r(s−1).

Fibrations are special and enjoy multiplicative property for
E-polynomials.

Take quotients by actions of symetric groups S[k] (permuting blocks) and
take invariant parts of the equivariant E-polynomials.
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SLn and PGLn-character varieties Conjecture for Langlands dual groups SLn and PGLn

Main theorem: Irreducible locus [n]

THEOREM (FLORENTINO-NOZAD-Z. (’19))
The quotient map

X irr
r SLn → X irr

r PGLn

given by the central action of Zr
n on X irr

r SLn induces an isomorphism of
mixed Hodge structures

H∗
c (X irr

r SLn) ≅ H∗
c (X irr

r PGLn).

Therefore,
E(X irr

r SLn; x) = E(X irr
r PGLn; x).
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SLn and PGLn-character varieties Conjecture for Langlands dual groups SLn and PGLn

Sketch of the proof for [n]

Define Cr,n = Hom(Fr,Zn).
Define U∗

r,n = Homirr(Fr,U(n)) ⊂ Ur,n = Hom(Fr,U(n)) and similarly
SU∗

r,n, SUr,n, PU∗
r,n, PUr,n for representations into SLn and PGLn.

Get stratifications

Ur,n = ⊔
[k]∈Pn

U[k]
r , SUr,n = ⊔

[k]∈Pn

SU[k]
r , PUr,n = ⊔

[k]∈Pn

PU[k]
r .

STEP 1

For the stratification SUr,n = ⊔[k]∈Pn SU
[k]
r :

If length [k] > 1, action Cr,n ↷ H∗(SU
[k]
r,n) is trivial (construct

homotopies to the identity).

Given that Cr,n ⊂ SUr,n connected, action Cr,n ↷ H∗(SUr,n) is trivial.

5-lemma on stratification to conclude action Cr,n ↷ H∗(SU∗
r,n) is trivial.
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SLn and PGLn-character varieties Conjecture for Langlands dual groups SLn and PGLn

Sketch of the proof for [n]

STEP 2
π ∶ SU∗

r,n → PU∗
r,n = SU∗

r,n /Cr,n is PU(n)-equivariant, then

H∗(Homirr(Fr,SLn))
ret≃ H∗(SU∗

r,n) ≃ H∗(PU∗
r,n)

ret≃ H∗(Homirr(Fr,PGLn))

STEP 3

Homirr(Fr,SLn) → Homirr(Fr,PGLn) = Homirr(Fr,SLn)/Cr,n

is PGL(n)-equivariant between orbifolds, then (similar to Step 2):

H∗
c (X irr

r SLn) ≅ H∗
c (X irr

r PGLn).

It is an algebraic map + inducing an isomorphism in cohomology⇒Mixed
Hodge structures coincide.
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E-polynomial of the SL4 and PGL4-character varieties of the free group

THEOREM (FLORENTINO-NOZAD-Z. (’19))

The E-polynomials of the SL4 (and PGL4)-character varietes of the free group Γ = Fs+1 are equal to

E(Xs+1 SL4; x) =

1
24

(x − 1)3s+3 + (x − 1)3s+1[(x + 1)2s x2s

2
+ (x + 1)s(x3s(x2 + x + 1)s − 2x3s − x2s +

3xs

2
)]

+(x − 1)3s+1[x3s +
x2s

2
−

3xs

2
+

11
24

] + (x − 1)3s(x + 1)2s(−x6s +
x2s

2
)

+(x − 1)3s(x + 1)sx6s[(x2 + x + 1)s(x3 + x2 + x + 1)s − 2(x2 + x + 1)s + 3]

+(x − 1)3s(x + 1)s[x3s((x2 + x + 1)s − 2) − x2s +
xs

2
] + (x − 1)3s(−x6s + x3s +

x2s

2
−

xs

2
+

1
2
)

+(x − 1)2s+2 (x − 1)s+1

4
+ (x − 1)2s+1 (x + 1)s

2
(−(x + 1)sxs + xs −

1
2
) + (x − 1)2s(x + 1)s xs

2
(1 − (x + 1)s)

+(x − 1)s+1[(x + 1)
x
3
(x2 + x + 1)s +

(x + 1)2s

8
(x2 + 2x + 2)]

+(x − 1)s(x + 1)2s[
x2s+1

2
((x2 + 1)s − 1) +

x − 1
4

] −
1
4
(x + 1)s+1(x2 + 1)s +

1
4
(x3 + x2 + x + 1)s+1.

42/ 45



SLn and PGLn-character varieties Conjecture for Langlands dual groups SLn and PGLn

Euler characteristics of SL4 and PGL4-character varieties of the free
group

THEOREM (FLORENTINO-NOZAD-Z. (’19))
The Euler characteristics of the PGLn and SLn-character varieties of the free
group are

χ(Xr PGLn) = χ(Xr SLn) = φ(n)nr−2 ,

where φ(n) is the arithmetic Euler function. For [dn/d] ∈ Pn,

χ(X [dn/d]
r PGLn) = χ(X [dn/d]

r SLn) =
µ(d)

d
nr−1 ,

otherwise χ(X [k]
r PGLn) = χ(X [k]

r SLn) = 0 ,

where µ(n) is the arithmetic Möebius function.

43/ 45



SLn and PGLn-character varieties Conjecture for Langlands dual groups SLn and PGLn

Further conjectures

CONJECTURES ON TOPOLOGICAL MIRROR SYMMETRY

For other pairs of Langlands dual groups G and LG, and Γ = Fr, are

XrG and Xr
LG Hodge-Tate ?

XrG and Xr
LG polynomial type?

E(XrG; x) = E(Xr
LG; x)?
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