# *E*-POLYNOMIALS AND GEOMETRY OF CHARACTER VARIETIES

# Alfonso Zamora<sup>1</sup>

Universidad Politécnica de Madrid, Spain

Seminario *Geometria em Lisboa* IST Lisboa, November 30, 2021

<sup>&</sup>lt;sup>1</sup>joint work with Carlos Florentino (U. Lisboa, Portugal) and Azizeh Nozad (IPM Tehran, Iran)

# Index



# PRELIMINARIES

- Mixed Hodge Structures and *E*-polynomials
- Character Varieties
- 2 ARITHMETIC-GEOMETRIC METHODS FOR GL<sub>n</sub>-CHARACTER VARIETIES
  - Stratifications by polystability type
  - Generating functions of E-polynomials
  - Explicit combinatorial formulae

# EXPLICIT COMPUTATIONS FOR $GL_n$ -CHARACTER VARIETIES

- (4)  $SL_n$  and  $PGL_n$ -character varieties
  - Conjecture for Langlands dual groups SL<sub>n</sub> and PGL<sub>n</sub>
  - Computations for  $SL_n$  and  $PGL_n$ -character varieties of the free group

## Index



# PRELIMINARIES

- Mixed Hodge Structures and E-polynomials
- Character Varieties
- 2 ARITHMETIC-GEOMETRIC METHODS FOR GL<sub>n</sub>-CHARACTER VARIETIES
  - Stratifications by polystability type
  - Generating functions of E-polynomials
  - Explicit combinatorial formulae

# **EXPLICIT COMPUTATIONS FOR** $GL_n$ -CHARACTER VARIETIES

- 4)  $SL_n$  and  $PGL_n$ -character varieties
  - Conjecture for Langlands dual groups SL<sub>n</sub> and PGL<sub>n</sub>
  - Computations for  $SL_n$  and  $PGL_n$ -character varieties of the free group

### **Clasical Hodge Theory**

• A (pure) Hodge structure (of weight k) on a  $\mathbb{Z}$ -module  $V_{\mathbb{Z}}$  is

$$V_{\mathbb{C}} := V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} = \bigoplus_{p+q=k} V^{p,q}, \quad V^{p,q} = \overline{V^{q,p}}$$

## **Clasical Hodge Theory**

• A (pure) Hodge structure (of weight k) on a  $\mathbb{Z}$ -module  $V_{\mathbb{Z}}$  is

$$V_{\mathbb{C}} \coloneqq V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} = \bigoplus_{p+q=k} V^{p,q}, \quad V^{p,q} = \overline{V^{q,p}}$$

• Alternatively, define Hodge filtration:

$$V_{\mathbb{C}} \supset \cdots \supset F^{p}(V) \supset F^{p+1}(V) \supset \cdots$$
  
with  $F^{p}(V) \cap \overline{F^{q}(V)} = V^{p,q}$  and  $F^{p}(V) = \bigoplus_{i \ge p} V^{i,k-i}$ .

### **Clasical Hodge Theory**

• A (pure) Hodge structure (of weight k) on a  $\mathbb{Z}$ -module  $V_{\mathbb{Z}}$  is

$$V_{\mathbb{C}} := V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} = \bigoplus_{p+q=k} V^{p,q}, \quad V^{p,q} = \overline{V^{q,p}}$$

• Alternatively, define Hodge filtration:

$$V_{\mathbb{C}} \supset \cdots \supset F^p(V) \supset F^{p+1}(V) \supset \cdots$$

with 
$$F^p(V) \cap \overline{F^q(V)} = V^{p,q}$$
 and  $F^p(V) = \bigoplus_{i \ge p} V^{i,k-i}$ .

#### HODGE DECOMPOSITION

X is a compact Kähler variety,  $k^{th}$ -cohomology carries (pure) Hodge structure of weight k:

$$H^k_{DR}(X) \otimes \mathbb{C} = \bigoplus_{p+q=k} H^{p,q}(X), \ H^{p,q}(X) = \overline{H^{q,p}(X)}$$

where  $h^{p,q} = \dim_{\mathbb{C}} H^{p,q}(X)$  are the Hodge numbers.

### Hodge diamond

Using  $H^{p,q}(X) \simeq H^q(X, \Omega^p)$ , Serre duality  $(h^{p,q} = h^{n-p,n-q})$ , Hodge symmetry  $(h^{p,q} = h^{q,p})$ , Hodge numbers of a compact Kähler variety of dimension *n* are displaced in the Hodge diamond with symmetries:

• Gives Betti numbers as sum of rows:

$$b_k = \dim H^k(X, \mathbb{C}) = \sum_{p+q=k} h^{p,q}$$

# **Examples of Hodge structures**

# (SMOOTH $\mathbb{C}$ -PROJECTIVE GENUS *g* CURVE OR COMPACT RIEMANN SURF.)

$$h^{1,1} = 1$$
  
 $h^{1,0} = g$ 
 $h^{0,0} = 1$ 
 $h^{0,1} = g$ 

with Betti numbers  $b_0 = 1$ ,  $b_1 = 2g$ ,  $b_2 = 1$ .

## **Examples of Hodge structures**

### (Smooth $\mathbb{C}$ -projective genus g curve or compact Riemann surf.)

$$h^{1,1} = 1$$
  
 $h^{1,0} = g$ 
 $h^{0,0} = 1$ 
 $h^{0,1} = g$ 

with Betti numbers  $b_0 = 1$ ,  $b_1 = 2g$ ,  $b_2 = 1$ .

# (COMPLEX PROJECTIVE SPACE $\mathbb{P}^n_{\mathbb{C}}$ )

$$h^{n,n} = 1$$

$$h^{n-1,1} = 0 \qquad h^{n,n-1} = 0$$

$$\therefore \qquad h^{n-1,n-1} = 1 \qquad \ddots$$

$$h^{i,0} = 0 \qquad \vdots \qquad h^{0,i} = 0$$

$$\therefore \qquad h^{1,1} = 1 \qquad \therefore$$

$$h^{1,0} = 0 \qquad h^{0,1} = 0$$

$$h^{0,0} = 1$$

*with Betti numbers*  $b_{2k} = 1$ , k = 0, 1, ..., n.

#### **Mixed Hodge Structures**

• On  $V_{\mathbb{C}}$  with decreasing Hodge filtration  $F^{\bullet}(V)$ , add weight filtration

$$0 \subset \cdots W_{k-1} \subset W_k \subset \cdots \subset V$$

such that  $F^{\bullet}(V)$  induces weight *k* Hodge structure on  $Gr_k^W(V) \coloneqq W_k/W_{k-1}$ , defining  $V^{p,q} \coloneqq Gr_F^pGr_{p+1}^W(V)$ 

- $h^{k,p,q} = \dim_{\mathbb{C}} V^{p,q}(X)$  are the mixed Hodge numbers with  $h^{k,p,q} = h^{k,q,p}$
- *k*-weights are (p,q) with  $h^{k,p,q} \neq 0$  (it can be  $p + q \neq k$ )

### **Mixed Hodge Structures**

• On  $V_{\mathbb{C}}$  with decreasing Hodge filtration  $F^{\bullet}(V)$ , add weight filtration

$$0 \subset \cdots W_{k-1} \subset W_k \subset \cdots \subset V$$

such that  $F^{\bullet}(V)$  induces weight *k* Hodge structure on  $Gr_k^W(V) \coloneqq W_k/W_{k-1}$ , defining  $V^{p,q} \coloneqq Gr_F^p Gr_{p+1}^W(V)$ 

- $h^{k,p,q} = \dim_{\mathbb{C}} V^{p,q}(X)$  are the mixed Hodge numbers with  $h^{k,p,q} = h^{k,q,p}$
- *k*-weights are (p,q) with  $h^{k,p,q} \neq 0$  (it can be  $p + q \neq k$ )

#### MIXED HODGE STRUCTURES ON COHOMOLOGY BY DELIGNE

X quasi-projective algebraic variety (not necessarily smooth nor complete nor irreducible).

Singular compactly supported cohomology  $H_c^k(X)$  carry mixed Hodge structures.

Yield compactly supported Betti numbers  $\dim H_c^k(X) = \sum_{p,q} h^{k,p,q}$ . Also give usual Betti numbers by Poincaré duality in the smooth case.

#### MIXED HODGE POLYNOMIAL

 $\mu(X;t,u,v) = \sum_{k,p,q} h^{k,p,q} t^k u^p v^q$ 

#### MIXED HODGE POLYNOMIAL

 $\mu(X;t,u,v) = \sum_{k,p,q} h^{k,p,q} t^k u^p v^q$ 

#### POINCARÉ POLYNOMIAL

 $P^c(X;t) = \mu(X;t,1,1) = \sum_k \dim H^k_c(X) t^k$ 

MIXED HODGE POLYNOMIAL

 $\mu(X;t,u,v) = \sum_{k,p,q} h^{k,p,q} t^k u^p v^q$ 

POINCARÉ POLYNOMIAL

 $P^c(X;t) = \mu(X;t,1,1) = \sum_k \dim H^k_c(X) t^k$ 

HODGE-DELIGNE-SERRE OR E-POLYNOMIAL

 $E(X;u,v)=\mu(X;-1,u,v)=\sum_{k,p,q}h^{k,p,q}(-1)^ku^pv^q\in\mathbb{Z}[u,v]$ 

• Hodge-Tate or balanced varieties: MHS only weights (p, p), then E(X; u, v) = E(X; uv) = E(X; x) polynomial in 1 variable. Converse unknown!

#### MIXED HODGE POLYNOMIAL

 $\mu(X;t,u,v) = \sum_{k,p,q} h^{k,p,q} t^k u^p v^q$ 

#### POINCARÉ POLYNOMIAL

 $P^c(X;t) = \mu(X;t,1,1) = \sum_k \dim H^k_c(X) t^k$ 

#### HODGE-DELIGNE-SERRE OR E-POLYNOMIAL

$$E(X; u, v) = \mu(X; -1, u, v) = \sum_{k, p, q} h^{k, p, q} (-1)^k u^p v^q \in \mathbb{Z}[u, v]$$

• Hodge-Tate or balanced varieties: MHS only weights (p, p), then E(X; u, v) = E(X; uv) = E(X; x) polynomial in 1 variable. Converse unknown!

#### EQUIVARIANT E-POLYNOMIAL

If W finite group acting on X algebraically:  $E^W(X; u, v) = \sum_{k,p,q} [H^{k,p,q}(X)]_W(-1)^k u^p v^q \in R(W)[u, v]$ , coefficients in the representation ring of W.

#### MIXED HODGE POLYNOMIAL

 $\mu(X;t,u,v) = \sum_{k,p,q} h^{k,p,q} t^k u^p v^q$ 

#### POINCARÉ POLYNOMIAL

 $P^c(X;t) = \mu(X;t,1,1) = \sum_k \dim H^k_c(X) t^k$ 

#### HODGE-DELIGNE-SERRE OR E-POLYNOMIAL

$$E(X; u, v) = \mu(X; -1, u, v) = \sum_{k, p, q} h^{k, p, q} (-1)^k u^p v^q \in \mathbb{Z}[u, v]$$

• Hodge-Tate or balanced varieties: MHS only weights (p, p), then E(X; u, v) = E(X; uv) = E(X; x) polynomial in 1 variable. Converse unknown!

#### EQUIVARIANT E-POLYNOMIAL

If W finite group acting on X algebraically:  $E^W(X; u, v) = \sum_{k,p,q} [H^{k,p,q}(X)]_W(-1)^k u^p v^q \in R(W)[u, v]$ , coefficients in the representation ring of W.

#### COMPACTY SUPPORTED EULER CHARACTERISTIC

 $\chi^{c}(X) = E(X; 1, 1) = \mu(X; -1, 1, 1) = P^{c}(X; -1) = \sum_{k} (-1)^{k} \dim H_{c}^{k}(X)$ Coincides with  $\chi(X)$  for X quasi-projective.

### **Properties of the** *E***-polynomial**

MULTIPLICATIVITY (KÜNNETH)

 $E(X \times Y) = E(X) \cdot E(Y)$ 

### **Properties of the** *E***-polynomial**

MULTIPLICATIVITY (KÜNNETH)  $E(X \times Y) = E(X) \cdot E(Y)$ 

#### ADDITIVITY

 $X = Z \sqcup (X \setminus Z)$  locally closed  $\Rightarrow E(X) = E(Z) + E(X \setminus Z)$ 

### **Properties of the** *E***-polynomial**

MULTIPLICATIVITY (KÜNNETH)  $E(X \times Y) = E(X) \cdot E(Y)$ 

#### ADDITIVITY

 $X = Z \sqcup (X \setminus Z)$  locally closed  $\Rightarrow E(X) = E(Z) + E(X \setminus Z)$ 

PROPOSITION (DIMCA-LEHRER ('97), LOGARES-MUÑOZ-NEWSTEAD ('13), FLORENTINO-NOZAD-Z. ('19))

Let  $F \to {}^{W \sim} X \to B$  be a fibration with group W preserving fibers  $\pi^{-1}(b)$  and verifying any of

- A) Locally Zariski trivial (LZT)
- B) Smooth, locally analytic trivial and  $\pi_1(B) \sim H_c^*(F)$  trivially
- C) X, B smooth and F complex connected Lie group
- D) F is special (F special if all principal F-bundles are LZT)
- E) X = G reductive, F = Z(G) connected center, B = PG = G/Z adjoint group

then, 
$$E^{W}(X) = E^{W}(F) \cdot E(B)$$
.

Moreover, if W is trivial,  $E(X) = E(F) \cdot E(B)$ .

(Riemann surface  $\Sigma_g$  carry pure not Hodge-Tate structure)

$$\mu(\Sigma_g; t, u, v) = 1 + gt(u + v) + t^2 uv \quad P(\Sigma_g; t) = 1 + 2gt + t^2$$
$$E(\Sigma_g; u, v) = 1 - g(u + v) + uv \quad \chi(\Sigma_g) = 2 - 2g$$

(Riemann surface  $\Sigma_g$  carry pure not Hodge-Tate structure)

$$\mu(\Sigma_g; t, u, v) = 1 + gt(u + v) + t^2 uv \quad P(\Sigma_g; t) = 1 + 2gt + t^2$$
$$E(\Sigma_g; u, v) = 1 - g(u + v) + uv \quad \chi(\Sigma_g) = 2 - 2g$$

#### (PROJECTIVE SPACE CARRY PURE AND HODGE-TATE STRUCTURE)

$$\mu(\mathbb{P}^{n}_{\mathbb{C}}; t, u, v) = 1 + t^{2}uv + t^{4}u^{2}v^{2} + \dots + t^{2n}u^{n}v^{n}$$

$$P(\mathbb{P}^{n}_{\mathbb{C}}; t) = 1 + t^{2} + t^{4} + \dots + t^{2n}$$

$$E(\mathbb{P}^{n}_{\mathbb{C}}; u, v) = 1 + uv + u^{2}v^{2} + \dots + u^{n}v^{n} = 1 + x + x^{2} + \dots + x^{n}$$

$$\chi(\mathbb{P}^{n}_{\mathbb{C}}) = n + 1$$

(RIEMANN SURFACE  $\Sigma_g$  CARRY PURE NOT HODGE-TATE STRUCTURE)

$$\mu(\Sigma_g; t, u, v) = 1 + gt(u + v) + t^2 uv \quad P(\Sigma_g; t) = 1 + 2gt + t^2$$
$$E(\Sigma_g; u, v) = 1 - g(u + v) + uv \quad \chi(\Sigma_g) = 2 - 2g$$

#### (PROJECTIVE SPACE CARRY PURE AND HODGE-TATE STRUCTURE)

$$\mu(\mathbb{P}^{n}_{\mathbb{C}}; t, u, v) = 1 + t^{2}uv + t^{4}u^{2}v^{2} + \dots + t^{2n}u^{n}v^{n}$$

$$P(\mathbb{P}^{n}_{\mathbb{C}}; t) = 1 + t^{2} + t^{4} + \dots + t^{2n}$$

$$E(\mathbb{P}^{n}_{\mathbb{C}}; u, v) = 1 + uv + u^{2}v^{2} + \dots + u^{n}v^{n} = 1 + x + x^{2} + \dots + x^{n}$$

$$\chi(\mathbb{P}^{n}_{\mathbb{C}}) = n + 1$$

(LOCALLY CLOSED DECOMPOSITION  $\mathbb{C} = \mathbb{C}^* \sqcup \{pt\}$ )

 $E(\mathbb{C}; u, v) = E(\mathbb{C}^*; u, v) + E(\{pt\}; u, v) = (uv - 1) + 1 = (x - 1) + 1 = x$ 

## (LZT FIBRATION)

$$\operatorname{GL}_2(\mathbb{C}) \twoheadrightarrow \mathbb{C}^2 \setminus \{(0,0)\}, \ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (a,c)$$

fiber is  $\simeq \mathbb{C}^2 \setminus \mathbb{C}$  =vectors (b, d) linearly independent with (a, c).

Then 
$$E(\operatorname{GL}_2(\mathbb{C}); u, v) =$$
  
 $E(\mathbb{C}^2 \setminus \mathbb{C}; u, v) \cdot E(\mathbb{C}^2 \setminus \{(0,0)\}; u, v) = (u^2v^2 - uv) \cdot (u^2v^2 - 1) =$   
 $(x^2 - x) \cdot (x^2 - 1) = x^4 - x^3 - x^2 + x$ 

#### (LZT FIBRATION)

$$\operatorname{GL}_2(\mathbb{C}) \twoheadrightarrow \mathbb{C}^2 \setminus \{(0,0)\}, \ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (a,c)$$

fiber is  $\simeq \mathbb{C}^2 \setminus \mathbb{C}$  =vectors (b, d) linearly independent with (a, c).

Then 
$$E(\operatorname{GL}_2(\mathbb{C}); u, v) =$$
  
 $E(\mathbb{C}^2 \setminus \mathbb{C}; u, v) \cdot E(\mathbb{C}^2 \setminus \{(0, 0)\}; u, v) = (u^2v^2 - uv) \cdot (u^2v^2 - 1) =$   
 $(x^2 - x) \cdot (x^2 - 1) = x^4 - x^3 - x^2 + x$ 

#### (FIBER NEEDS TO BE CONNECTED)

$$\mathbb{Z}_2 \to \mathbb{P}^1_{\mathbb{C}} \times \mathbb{P}^1_{\mathbb{C}} \to \operatorname{Sym}^2(\mathbb{P}^1_{\mathbb{C}})$$
$$(1 + uv)^2 \neq 2 \cdot (1 + uv + u^2v^2)$$

#### **Character varieties**

- $\Gamma$  finitely presented group,  $\Gamma = \langle \gamma_1, \gamma_2, \dots, \gamma_r : r_1, r_2, \dots, r_s \rangle$
- *G* complex reductive affine algebraic group (for this talk *G* = GL<sub>n</sub>(ℂ), PGL<sub>n</sub>(ℂ), SL<sub>n</sub>(ℂ))

#### Character Varieties

### **Character varieties**

- $\Gamma$  finitely presented group,  $\Gamma = \langle \gamma_1, \gamma_2, \dots, \gamma_r : r_1, r_2, \dots, r_s \rangle$
- *G* complex reductive affine algebraic group (for this talk *G* = GL<sub>n</sub>(C), PGL<sub>n</sub>(C), SL<sub>n</sub>(C))

#### **REPRESENTATION VARIETY**

 $\mathcal{R}_{\Gamma}G := \operatorname{Hom}(\Gamma, G) = \{\rho(\gamma) = (\rho(\gamma_1), \dots, \rho(\gamma_r)) : r_j(\rho) = 1, j = 1, \dots, s\} \text{ is an affine algebraic variety}$ 

#### Character Varieties

## **Character varieties**

- $\Gamma$  finitely presented group,  $\Gamma = \langle \gamma_1, \gamma_2, \dots, \gamma_r : r_1, r_2, \dots, r_s \rangle$
- *G* complex reductive affine algebraic group (for this talk *G* = GL<sub>n</sub>(C), PGL<sub>n</sub>(C), SL<sub>n</sub>(C))

#### **REPRESENTATION VARIETY**

 $\mathcal{R}_{\Gamma}G := \operatorname{Hom}(\Gamma, G) = \{\rho(\gamma) = (\rho(\gamma_1), \dots, \rho(\gamma_r)) : r_j(\rho) = 1, j = 1, \dots, s\} \text{ is an affine algebraic variety}$ 

## Action of G on $\mathcal{R}_{\Gamma}G$ by conjugation

For  $\rho \in \mathcal{R}_{\Gamma}G$ ,  $g \in G$ ,  $\gamma \in \Gamma$ :

$$(g \cdot \rho)(\gamma) \coloneqq g\rho(\gamma)g^{-1} = (g\rho(\gamma_1)g^{-1}, \dots, g\rho(\gamma_r)g^{-1})$$

#### Character Varieties

### **Character varieties**

- $\Gamma$  finitely presented group,  $\Gamma = \langle \gamma_1, \gamma_2, \dots, \gamma_r : r_1, r_2, \dots, r_s \rangle$
- *G* complex reductive affine algebraic group (for this talk *G* = GL<sub>n</sub>(C), PGL<sub>n</sub>(C), SL<sub>n</sub>(C))

#### **REPRESENTATION VARIETY**

 $\mathcal{R}_{\Gamma}G := \operatorname{Hom}(\Gamma, G) = \left\{ \rho(\gamma) = \left( \rho(\gamma_1), \dots, \rho(\gamma_r) \right) : r_j(\rho) = 1, j = 1, \dots, s \right\}$ is an affine algebraic variety

### Action of G on $\mathcal{R}_{\Gamma}G$ by conjugation

For  $\rho \in \mathcal{R}_{\Gamma}G$ ,  $g \in G$ ,  $\gamma \in \Gamma$ :

$$(g \cdot \rho)(\gamma) \coloneqq g\rho(\gamma)g^{-1} = (g\rho(\gamma_1)g^{-1}, \dots, g\rho(\gamma_r)g^{-1})$$

G-Character variety of  $\Gamma$  is affine GIT quotient

$$\mathcal{X}_{\Gamma}G \coloneqq \mathcal{R}_{\Gamma}G / / G = \operatorname{Spec} \mathbb{C}[\mathcal{R}_{\Gamma}G]^G = \mathcal{R}_{\Gamma}^{ps}G / G$$

#### SURFACE GROUPS

Fundamental group of  $\Sigma_g$  compact orientable Riemann surface

$$\Gamma = \pi_1(\Sigma_g) = \left(a_1, b_1, \dots, a_g, b_g : \prod_{i=1}^g [a_i, b_i] = 1\right)$$

(more generally, a central extension of  $\pi_1(\Sigma_g)$ ).

#### SURFACE GROUPS

Fundamental group of  $\Sigma_g$  compact orientable Riemann surface

$$\Gamma = \pi_1(\Sigma_g) = \left(a_1, b_1, \dots, a_g, b_g : \prod_{i=1}^g [a_i, b_i] = 1\right)$$

(more generally, a central extension of  $\pi_1(\Sigma_g)$ ).

#### FREE GROUPS

 $\Gamma = F_r$  free group of rank r. The character variety is  $\mathcal{X}_r G := \mathcal{X}_{Fr} G \simeq G^r / / G$ .

#### SURFACE GROUPS

Fundamental group of  $\Sigma_g$  compact orientable Riemann surface

$$\Gamma = \pi_1(\Sigma_g) = \left(a_1, b_1, \dots, a_g, b_g : \prod_{i=1}^g [a_i, b_i] = 1\right)$$

(more generally, a central extension of  $\pi_1(\Sigma_g)$ ).

#### FREE GROUPS

 $\Gamma = F_r$  free group of rank r. The character variety is  $\mathcal{X}_r G \coloneqq \mathcal{X}_{Fr} G \simeq G^r / / G$ .

#### ABELIAN GROUPS

 $\Gamma = \mathbb{Z}^r$ , free abelian group of rank *r*. Also abelian groups with torsion.

#### SURFACE GROUPS

Fundamental group of  $\Sigma_g$  compact orientable Riemann surface

$$\Gamma = \pi_1(\Sigma_g) = \left(a_1, b_1, \dots, a_g, b_g : \prod_{i=1}^g [a_i, b_i] = 1\right)$$

(more generally, a central extension of  $\pi_1(\Sigma_g)$ ).

#### FREE GROUPS

 $\Gamma = F_r$  free group of rank r. The character variety is  $\mathcal{X}_r G \coloneqq \mathcal{X}_{Fr} G \simeq G^r // G$ .

### ABELIAN GROUPS

 $\Gamma = \mathbb{Z}^r$ , free abelian group of rank *r*. Also abelian groups with torsion.

#### OTHER GROUPS

Twisted surface groups, torus knot groups, non-orientable surface groups.

# Example: surface group $\operatorname{GL}_2\text{-}character$ variety

For 
$$\Gamma = \pi_1(\Sigma_g)$$
,  $G = \operatorname{GL}_2$ , representation variety is  
 $\mathcal{R}_{\Gamma}G = \{(A_1, B_1, \dots, A_g, B_g) \in G^{2g} : A_1B_1A_1^{-1}B_1^{-1} \cdots A_gB_gA_g^{-1}B_g^{-1} = I\}$ 

and character variety  $\mathcal{X}_{\Gamma}G$  is the GIT quotient of  $\mathcal{R}_{\Gamma}G$  by action given by simultaneous conjugation:

$$(A_1, B_1, \dots, A_g, B_g) \sim (CA_1C^{-1}, CB_1C^{-1}, \dots, CA_gC^{-1}, CB_gC^{-1}), \ C \in G$$

• Reducible representations  $\mathcal{X}_{\Gamma}^{red}G$  are those simultaneously conjugated to

$$\left( \left( \begin{array}{cc} \lambda_1 & 0 \\ 0 & \mu_1 \end{array} \right), \dots, \left( \begin{array}{cc} \lambda_{2g} & 0 \\ 0 & \mu_{2g} \end{array} \right) \right)$$

$$\in (\mathbb{C}^*)^{4g}/(\lambda_1,\mu_1,\ldots,\lambda_{2g},\mu_{2g}) \sim (\mu_1,\lambda_1,\ldots,\mu_{2g},\lambda_{2g})$$

• *Irreducible representations form smooth locus*  $\mathcal{X}_{\Gamma}^{irr}G := \mathcal{R}_{\Gamma}^{irr}G/G$ .

## Motivation

For surface groups Γ := π<sub>1</sub>(Σ<sub>g</sub>), Σ<sub>g</sub> a Riemann surface, character varieties are related to moduli spaces of Higgs bundles through non-abelian Hodge correspondence (Hitchin, Donaldson, Corlette, Simpson):

 $\mathcal{X}_{\Gamma}G = \mathcal{R}_{\Gamma}G/\!\!/G \approx \text{moduli space of } G\text{-Higgs bundles over } \Sigma_g$ 

- QFT interpretation of geometric Langlands program in mirror symmetry (Simpson, Kapustin-Witten).
- In SYZ mirror symmetry, hyperkähler nature of Hitchin systems allows topological criterion for mirror symmetry: same/mirror Hodge numbers for *G* and <sup>*L*</sup>*G*.
- (Hausel-Thaddeus, Groechenig-Wyss-Ziegler) establish topological mirror simmetry for SL<sub>n</sub> and PGL<sub>n</sub> (smooth/orbifold case, pure HS).

For other  $\Gamma$ , character varieties more singular, Hodge structure not pure, we expect other topological mirror symmetries.

# **Results on topological invariants of character varieties**

For  $\Gamma$  surface group (related with smooth varieties):

- Poincaré polynomials for surface groups: Hitchin ('87), Gothen ('94) for  $G = SL_2$ ,  $SL_3$ , García-Prada-Heinloth-Schmitt ('13, '14), Schiffman ('16), Mellit ('17) for  $G = SL_n$ , PGL<sub>n</sub>.
- Mixed Hodge polynomials with arithmetic methods: Hausel-Rodriguez-Villegas ('08): for *G* = GL<sub>n</sub>, Mereb ('10): *G* = SL<sub>n</sub>.

For other  $\Gamma$  (singular character varieties) computations of E -polynomials are harder. Geometric approach:

- Logares, Muñoz, Newstead, Martínez ('13,'14,'17), surface groups for  $G = SL_2$ , PGL<sub>2</sub>.
- Cavazos, Lawton, Muñoz, Porti ('14,'15,'17): free groups for *G* = SL<sub>2</sub>, SL<sub>3</sub> and torus knot groups for *G* = GL<sub>3</sub>, SL<sub>3</sub>, PGL<sub>3</sub>.
- Florentino-Lawton-Casimiro-Oliveira ('09,'15), free group retraction of *G*-character variety to *K*-character variety (*K* maximal compact).

Arithmetic approach:

- Mozgovoy-Reineke: ('15) compute points of  $\mathcal{X}_r \operatorname{GL}_n$  over  $\mathbb{F}_q$  and Baraglia-Hekmati ('17) E-polynomials for  $G = \operatorname{SL}_2$ ,  $\operatorname{GL}_2$ .
- Florentino-Silva ('18): Combined methods for abelian character varieties X<sub>Z<sup>r</sup></sub>G, G = GL<sub>n</sub>, SL<sub>n</sub>, Sp<sub>n</sub>.

# Index



- Mixed Hodge Structures and *E*-polynomials
- Character Varieties
- 2 ARITHMETIC-GEOMETRIC METHODS FOR GL<sub>n</sub>-CHARACTER VARIETIES
  - Stratifications by polystability type
  - Generating functions of E-polynomials
  - Explicit combinatorial formulae

# EXPLICIT COMPUTATIONS FOR $GL_n$ -CHARACTER VARIETIES

- 4)  $SL_n$  and  $PGL_n$ -character varieties
  - Conjecture for Langlands dual groups SL<sub>n</sub> and PGL<sub>n</sub>
  - Computations for  $SL_n$  and  $PGL_n$ -character varieties of the free group
### **Geometric methods**

### **GEOMETRIC METHODS**

Based on decomposing the character variety into strata with different stabilizers and use additivity (stratifications) and multiplicativity (fibrations with stabilizer as the fiber) to compute *E*-polynomials.

## **Geometric methods**

### **GEOMETRIC METHODS**

Based on decomposing the character variety into strata with different stabilizers and use additivity (stratifications) and multiplicativity (fibrations with stabilizer as the fiber) to compute *E*-polynomials.

- $\Gamma = \langle \gamma_1, \gamma_2, \dots, \gamma_r : r_1, \dots, r_s \rangle$ , a finitely presented group and *G* complex reductive algebraic group.
- Locally closed stratification by stabilizer dimension

$$\mathcal{X}_{\Gamma}G = \bigsqcup_{m \ge m_0} \mathcal{X}_{\Gamma}^m G$$

where  $m_0 = \dim \bigcap_{\rho \in \mathcal{R}_{\Gamma}G} \operatorname{Stab}(\rho)$ , center of the action of G on  $\mathcal{R}_{\Gamma}G$ .

# **Geometric methods**

# GEOMETRIC METHODS

Based on decomposing the character variety into strata with different stabilizers and use additivity (stratifications) and multiplicativity (fibrations with stabilizer as the fiber) to compute *E*-polynomials.

- $\Gamma = \langle \gamma_1, \gamma_2, \dots, \gamma_r : r_1, \dots, r_s \rangle$ , a finitely presented group and *G* complex reductive algebraic group.
- Locally closed stratification by stabilizer dimension

$$\mathcal{X}_{\Gamma}G = \bigsqcup_{m \ge m_0} \mathcal{X}_{\Gamma}^m G$$

where  $m_0 = \dim \bigcap_{\rho \in \mathcal{R}_{\Gamma}G} \operatorname{Stab}(\rho)$ , center of the action of G on  $\mathcal{R}_{\Gamma}G$ .

In the linear case  $G = GL_n$ , can perform a refinement by polystability type, connected to affine GIT and representation theory of symmetric group (=Weyl of  $GL_n$ ).

#### PARTITION

 $[k] = [1^{k_1} 2^{k_2} \cdots n^{k_n}] \in \mathcal{P}_n, \sum_{j=1}^n j \cdot k_j = n, \text{ with length (number of blocks)} |[k]| = \sum_{j=1}^n k_j.$ 

• For example  $[1^2 2 4] \in \mathcal{P}_8$  with length 4.

#### PARTITION

 $[k] = [1^{k_1} 2^{k_2} \cdots n^{k_n}] \in \mathcal{P}_n, \sum_{j=1}^n j \cdot k_j = n, \text{ with length (number of blocks)} |[k]| = \sum_{j=1}^n k_j.$ 

• For example  $[1^2 2 4] \in \mathcal{P}_8$  with length 4.

#### [k]-STRATA

 $\rho \in \mathcal{R}_{\Gamma} \operatorname{GL}_{n}$  is [k]-polystable if  $\mathcal{R}_{\Gamma}^{[k]} \operatorname{GL}_{n} \ni \rho \sim_{conj} \bigoplus_{j=1}^{n} \rho_{j}$ , where  $\rho_{j} \in \mathcal{R}_{\Gamma}^{irr}(\operatorname{GL}_{j}^{\oplus k_{j}})$ .

#### PARTITION

 $[k] = [1^{k_1} 2^{k_2} \cdots n^{k_n}] \in \mathcal{P}_n, \sum_{j=1}^n j \cdot k_j = n, \text{ with length (number of blocks)} |[k]| = \sum_{j=1}^n k_j.$ 

• For example  $[1^2 2 4] \in \mathcal{P}_8$  with length 4.

#### [k]-STRATA

 $\rho \in \mathcal{R}_{\Gamma} \operatorname{GL}_{n} \text{ is } [k] \text{-polystable if } \mathcal{R}_{\Gamma}^{[k]} \operatorname{GL}_{n} \ni \rho \sim_{conj} \bigoplus_{j=1}^{n} \rho_{j}, \text{ where } \rho_{j} \in \mathcal{R}_{\Gamma}^{irr}(\operatorname{GL}_{j}^{\oplus k_{j}}).$ Define  $\mathcal{X}_{\Gamma}^{[k]} \operatorname{GL}_{n} \coloneqq \mathcal{R}_{\Gamma}^{[k]} \operatorname{GL}_{n} / / \operatorname{GL}_{n}, \text{ the } [k] \text{-stratum of } \mathcal{X}_{\Gamma} \operatorname{GL}_{n}.$ 

#### PARTITION

 $[k] = [1^{k_1} 2^{k_2} \cdots n^{k_n}] \in \mathcal{P}_n, \sum_{j=1}^n j \cdot k_j = n, \text{ with length (number of blocks)} |[k]| = \sum_{j=1}^n k_j.$ 

• For example  $[1^2 2 4] \in \mathcal{P}_8$  with length 4.

#### [k]-STRATA

 $\rho \in \mathcal{R}_{\Gamma} \operatorname{GL}_{n} \text{ is } [k] \text{-polystable if } \mathcal{R}_{\Gamma}^{[k]} \operatorname{GL}_{n} \ni \rho \sim_{conj} \bigoplus_{j=1}^{n} \rho_{j}, \text{ where } \rho_{j} \in \mathcal{R}_{\Gamma}^{irr}(\operatorname{GL}_{j}^{\oplus k_{j}}).$ Define  $\mathcal{X}_{\Gamma}^{[k]} \operatorname{GL}_{n} \coloneqq \mathcal{R}_{\Gamma}^{[k]} \operatorname{GL}_{n} / / \operatorname{GL}_{n}, \text{ the } [k] \text{-stratum of } \mathcal{X}_{\Gamma} \operatorname{GL}_{n}.$  Particular cases:

- Abelian stratum:  $\mathcal{X}_{\Gamma}^{[1^n]} \operatorname{GL}_n \simeq \mathcal{X}_{\Gamma_{Ab}} \operatorname{GL}_n$  (of maximal length *n*).
- Irreducible stratum:  $\mathcal{X}_{\Gamma}^{[n]} \operatorname{GL}_n = \mathcal{X}_{\Gamma}^{irr} \operatorname{GL}_n$  (of minimal length 1), equals smooth locus for  $\operatorname{GL}_n$ .

#### PARTITION

 $[k] = [1^{k_1} 2^{k_2} \cdots n^{k_n}] \in \mathcal{P}_n, \sum_{j=1}^n j \cdot k_j = n, \text{ with length (number of blocks)} |[k]| = \sum_{j=1}^n k_j.$ 

• For example  $[1^2 2 4] \in \mathcal{P}_8$  with length 4.

#### [k]-STRATA

 $\rho \in \mathcal{R}_{\Gamma} \operatorname{GL}_{n} \text{ is } [k] \text{-polystable if } \mathcal{R}_{\Gamma}^{[k]} \operatorname{GL}_{n} \ni \rho \sim_{conj} \bigoplus_{j=1}^{n} \rho_{j}, \text{ where } \rho_{j} \in \mathcal{R}_{\Gamma}^{irr}(\operatorname{GL}_{j}^{\oplus k_{j}}).$ Define  $\mathcal{X}_{\Gamma}^{[k]} \operatorname{GL}_{n} \coloneqq \mathcal{R}_{\Gamma}^{[k]} \operatorname{GL}_{n} / / \operatorname{GL}_{n}, \text{ the } [k] \text{-stratum of } \mathcal{X}_{\Gamma} \operatorname{GL}_{n}.$  Particular cases:

- Abelian stratum:  $\mathcal{X}_{\Gamma}^{[1^n]} \operatorname{GL}_n \simeq \mathcal{X}_{\Gamma_{Ab}} \operatorname{GL}_n$  (of maximal length *n*).
- Irreducible stratum:  $\mathcal{X}_{\Gamma}^{[n]} \operatorname{GL}_n = \mathcal{X}_{\Gamma}^{irr} \operatorname{GL}_n$  (of minimal length 1), equals smooth locus for  $\operatorname{GL}_n$ .

#### THEOREM (FLORENTINO-NOZAD-Z. ('19))

There exists a locally closed stratification by partition type:

$$\mathcal{X}_{\Gamma} \operatorname{GL}_{n} = \bigsqcup_{[k] \in \mathcal{P}_{n}} \mathcal{X}_{\Gamma}^{[k]} \operatorname{GL}_{n}.$$

### **Arithmetic methods**

#### POLYNOMIAL COUNT

*X* is of polynomial type if there is a counting polynomial  $C_X(t) \in \mathbb{Z}[t]$  such that  $|X/\mathbb{F}_q| = C_X(q)$ , for almost every prime *p*, with  $|\mathbb{F}_q| = p^m$ .

• (Katz ('08)) If X is of polynomial type then  $E(X; u, v) = C_X(uv)$ .

### **Arithmetic methods**

#### POLYNOMIAL COUNT

*X* is of polynomial type if there is a counting polynomial  $C_X(t) \in \mathbb{Z}[t]$  such that  $|X/\mathbb{F}_q| = C_X(q)$ , for almost every prime *p*, with  $|\mathbb{F}_q| = p^m$ .

• (Katz ('08)) If X is of polynomial type then  $E(X; u, v) = C_X(uv)$ .

#### PLETHYSTIC OPERATORS

Let  $f(x, y, z) = \sum_n f_n(x, y) z^n \in \mathbb{Q}[x, y][[z]]$  be a formal power series. Define plethystic exponential  $\operatorname{PExp}(f) = e^{\Psi(f)}$ , where  $\Psi(x^i y^j z^k) = \sum_l \frac{x^{li} y^{lj} z^{lk}}{l}$  is the Adams operator.

• Particularly, 
$$\operatorname{PExp}\left(\left(\sum_{p,q\geq 0}a_{p,q}u^{p}v^{q}\right)y\right) = \prod_{p,q\geq 0}\left(1-u^{p}v^{q}y\right)^{-a_{p,q}}$$
.

## **Arithmetic methods**

#### POLYNOMIAL COUNT

*X* is of polynomial type if there is a counting polynomial  $C_X(t) \in \mathbb{Z}[t]$  such that  $|X/\mathbb{F}_q| = C_X(q)$ , for almost every prime *p*, with  $|\mathbb{F}_q| = p^m$ .

• (Katz ('08)) If X is of polynomial type then  $E(X; u, v) = C_X(uv)$ .

#### PLETHYSTIC OPERATORS

Let  $f(x, y, z) = \sum_n f_n(x, y) z^n \in \mathbb{Q}[x, y][[z]]$  be a formal power series. Define plethystic exponential  $\operatorname{PExp}(f) = e^{\Psi(f)}$ , where  $\Psi(x^i y^j z^k) = \sum_l \frac{x^{li} y^{lj} z^{lk}}{l}$  is the Adams operator.

• Particularly, 
$$\operatorname{PExp}\left(\left(\sum_{p,q\geq 0}a_{p,q}u^{p}v^{q}\right)y\right) = \prod_{p,q\geq 0}(1-u^{p}v^{q}y)^{-a_{p,q}}$$
.

#### THEOREM (MOZGOVOY-REINEKE ('15))

For  $\Gamma = F_r$ ,  $GL_n$ -character varieties are of polynomial type and

$$\sum_{n\geq 0} A_n^r(q) z^n = \operatorname{PExp}\left(\sum_{n\geq 1} B_n^r(q) z^n\right), \text{ where }$$

 $A_n^r(q) \coloneqq |\mathcal{X}_r \operatorname{GL}_n/\mathbb{F}_q| = E(\mathcal{X}_r \operatorname{GL}_n; q) \quad and \quad B_n^r(q) \coloneqq |\mathcal{X}_r^{irr} \operatorname{GL}_n/\mathbb{F}_q| = E(\mathcal{X}_r^{irr} \operatorname{GL}_n; q).$ 

20/45

$$\begin{split} & [k]\text{-Levy and } [k]\text{-symmetric group} \\ & L_{[k]} \coloneqq \operatorname{GL}_{1}^{k_{1}} \times \operatorname{GL}_{2}^{k_{2}} \times \cdots \times \operatorname{GL}_{n}^{k_{n}} \subset \operatorname{GL}_{n}, \quad S_{[k]} \coloneqq S_{k_{1}} \times S_{k_{2}} \times \cdots \times S_{k_{n}} \subset S_{n} \end{split}$$

$$\begin{split} &[k]\text{-LEVY AND }[k]\text{-SYMMETRIC GROUP} \\ &L_{[k]} \coloneqq \operatorname{GL}_{1}^{k_{1}} \times \operatorname{GL}_{2}^{k_{2}} \times \cdots \times \operatorname{GL}_{n}^{k_{n}} \subset \operatorname{GL}_{n}, \quad S_{[k]} \coloneqq S_{k_{1}} \times S_{k_{2}} \times \cdots \times S_{k_{n}} \subset S_{n} \\ &\bullet \ \mathcal{R}_{\Gamma}^{[k]} \operatorname{GL}_{n} /\!/ L_{[k]} \simeq \times_{j=1}^{n} (\mathcal{X}_{\Gamma}^{irr} \operatorname{GL}_{j})^{\times k_{j}} \end{split}$$

$$\begin{split} & [k] \text{-LEVY AND } [k] \text{-SYMMETRIC GROUP} \\ & L_{[k]} \coloneqq \operatorname{GL}_{1}^{k_{1}} \times \operatorname{GL}_{2}^{k_{2}} \times \cdots \times \operatorname{GL}_{n}^{k_{n}} \subset \operatorname{GL}_{n}, \quad S_{[k]} \coloneqq S_{k_{1}} \times S_{k_{2}} \times \cdots \times S_{k_{n}} \subset S_{n} \\ & \bullet \ \mathcal{R}_{\Gamma}^{[k]} \operatorname{GL}_{n} /\!/ L_{[k]} \simeq \times_{j=1}^{n} (\mathcal{X}_{\Gamma}^{irr} \operatorname{GL}_{j})^{\times k_{j}} \end{split}$$

#### PROPOSITION (FLORENTINO-NOZAD-Z. ('19))

A) 
$$\mathcal{X}_{\Gamma}^{[k]} \operatorname{GL}_{n} \simeq \left( \mathcal{R}_{\Gamma}^{[k]} \operatorname{GL}_{n} // L_{[k]} \right) / S_{[k]} \simeq \times_{j=1}^{n} \operatorname{Sym}^{k_{j}} (\mathcal{X}_{\Gamma}^{irr} \operatorname{GL}_{j}).$$

B) 
$$\sum_{n\geq 0} E(\operatorname{Sym}^n(X); u, v)y^n = \operatorname{PExp}(E(X; u, v)y).$$

$$\begin{split} & [k] \text{-LEVY AND } [k] \text{-SYMMETRIC GROUP} \\ & L_{[k]} \coloneqq \operatorname{GL}_{1}^{k_{1}} \times \operatorname{GL}_{2}^{k_{2}} \times \cdots \times \operatorname{GL}_{n}^{k_{n}} \subset \operatorname{GL}_{n}, \quad S_{[k]} \coloneqq S_{k_{1}} \times S_{k_{2}} \times \cdots \times S_{k_{n}} \subset S_{n} \\ & \bullet \ \mathcal{R}_{\Gamma}^{[k]} \operatorname{GL}_{n} /\!/ L_{[k]} \simeq \times_{j=1}^{n} (\mathcal{X}_{\Gamma}^{irr} \operatorname{GL}_{j})^{\times k_{j}} \end{split}$$

#### PROPOSITION (FLORENTINO-NOZAD-Z. ('19))

A) 
$$\mathcal{X}_{\Gamma}^{[k]} \operatorname{GL}_{n} \simeq \left( \mathcal{R}_{\Gamma}^{[k]} \operatorname{GL}_{n} // L_{[k]} \right) / S_{[k]} \simeq \times_{j=1}^{n} \operatorname{Sym}^{k_{j}} (\mathcal{X}_{\Gamma}^{irr} \operatorname{GL}_{j}).$$
  
B)  $\sum_{n>0} E(\operatorname{Sym}^{n}(X); u, v) y^{n} = \operatorname{PExp}(E(X; u, v)y).$ 

### THEOREM (FLORENTINO-NOZAD-Z. ('19))

If  $\Gamma$  is finitely presented,

$$\sum_{n\geq 0} A_n^{\Gamma}(u,v)t^n = \operatorname{PExp}\left(\sum_{n\geq 1} B_n^{\Gamma}(u,v)t^n\right)$$

 $A_n^\Gamma(u,v)=E(\mathcal{X}_\Gamma\operatorname{GL}_n;u,v)\quad and\quad B_n^\Gamma(u,v)=E(\mathcal{X}_\Gamma^{irr}\operatorname{GL}_n;u,v).$ 

21/45

# **Rectangular partitions**

• Further combinatorial analysis allows to relate  $A_n^{\Gamma}$  with  $B_l^{\Gamma}$ ,  $l \leq n$ .

### **Rectangular partitions**

• Further combinatorial analysis allows to relate  $A_n^{\Gamma}$  with  $B_l^{\Gamma}$ ,  $l \le n$ .

#### **RECTANGULAR PARTITION**

Idea: For a partition  $[k] = [1^{k_1} \cdots n^{k_n}]$  choose a partition  $[l] \in \mathcal{P}_{k_j}$  for each  $k_j$ .

$$[[k]] = [(1 \times 1)^{k_{1,1}} (1 \times 2)^{k_{1,2}} \cdots (1 \times n)^{k_{1,n}} \cdots (n \times n)^{k_{n,n}}] \in \mathcal{RP}_n$$

satisfying  $n = \sum_{l,h=1}^{n} lh k_{l,h}$ .

### GLUING MAP

$$\pi : \mathcal{RP}_n \to \mathcal{P}_n$$
$$[[k]] \mapsto [m] = [1^{m_1} \cdots n^{m_n}]$$

defined by  $m_l \coloneqq \sum_{h=1}^n h \cdot k_{l,h}$ 

#### **Example** n = 3



5 rectangular partitions of n = 3. Gluing map  $\pi$  takes the first one to the Young diagram of the partition [3], the second one to [12] and the last three to [1<sup>3</sup>].

#### **Rectangular partitions for** n = 4



11 rectangular partitions of n = 4. Gluing map  $\pi$  takes the first one to the Young diagram of the partition [4], the second one to [13], the third and fourth ones to  $[2^2]$ , the fifth and sixth to  $[1^2 2]$  and the last five to  $[1^4]$ .

# E-polynomials of CVs in terms of irreducible lower dimensional strata

• Use plethystic exponential relations + rectangular partitions:

THEOREM (FLORENTINO-NOZAD-Z. ('19))

Let  $\Gamma$  be a finitely presented group. Then,

$$E(\mathcal{X}_{\Gamma} \operatorname{GL}_{n}; u, v) = \sum_{[[k]] \in \mathcal{RP}_{n}} \prod_{l,h=1}^{n} \frac{B_{l}^{\Gamma}(u^{h}, v^{h})^{k_{l,h}}}{k_{l,h}! h^{k_{l,h}}}$$

Moreover, for a given  $[m] \in \mathcal{P}_n$ , the *E*-polynomial of the corresponding stratum is:

$$E(\mathcal{X}_{\Gamma}^{[m]}\operatorname{GL}_{n}; u, v) = \sum_{[[k]]\in\pi^{-1}[m]} \prod_{l,h=1}^{n} \frac{B_{l}^{\Gamma}(u^{h}, v^{h})^{k_{l,h}}}{k_{l,h}! h^{k_{l,h}}}$$

where  $B_l^{\Gamma}(u, v) \coloneqq E(\mathcal{X}_{\Gamma}^{irr} \operatorname{GL}_l; u, v).$ 

# **Example for** n = 4

•  $A_4^{\Gamma}(u, v) = E(\mathcal{X}_{\Gamma} \operatorname{GL}_4; u, v)$  is the sum of these 5 strata comprising the 11 terms coming from the rectangular partitions in the previous figure.

$$\begin{split} E(\mathcal{X}_{\Gamma}^{[4]} \operatorname{GL}_{4}; u, v) &= B_{4}^{\Gamma}(u, v) \\ E(\mathcal{X}_{\Gamma}^{[13]} \operatorname{GL}_{4}; u, v) &= B_{3}^{\Gamma}(u, v) B_{1}^{\Gamma}(u, v) \\ E(\mathcal{X}_{\Gamma}^{[2^{2}]} \operatorname{GL}_{4}); u, v &= \frac{B_{2}^{\Gamma}(u, v)^{2}}{2} + \frac{B_{2}^{\Gamma}(u^{2}v^{2})}{2} \\ E(\mathcal{X}_{\Gamma}^{[1^{2}2]} \operatorname{GL}_{4}; u, v) &= \frac{B_{2}^{\Gamma}(u, v) B_{1}^{\Gamma}(u^{2}v^{2})}{2} + \frac{B_{2}^{\Gamma}(u, v) B_{1}^{\Gamma}(u, v)^{2}}{2} \\ E(\mathcal{X}_{\Gamma}^{[1^{4}]} \operatorname{GL}_{4}; u, v) &= \frac{B_{1}^{\Gamma}(u^{4}v^{4})}{4} + \frac{B_{1}^{\Gamma}(u^{3}v^{3}) B_{1}^{\Gamma}(u, v)}{3} + \frac{B_{1}^{\Gamma}(u^{2}v^{2})^{2}}{8} \\ &+ \frac{B_{1}^{\Gamma}(u^{2}v^{2}) B_{1}^{\Gamma}(u, v)^{2}}{4} + \frac{B_{1}^{\Gamma}(u, v)^{4}}{24} \end{split}$$

# Explicit computations in the free group case

• Furthermore, for  $\Gamma = F_r$ , GL<sub>n</sub>-character varieties are of polynomial type, then use Katz-Mozgovoy-Reineke to get combinatorial formulae for irreducible polynomials  $B_n^r(u, v) = B_n^r(x) = E(\mathcal{X}_r^{irr} \operatorname{GL}_n; x)$ .

PROPOSITION (MOZGOVOY-REINEKE ('15), FLORENTINO-NOZAD-Z. ('19))

For  $r, n \ge 2$ , we have  $E(\mathcal{X}_r^{irr} \operatorname{GL}_n; x) =$ 

$$(x-1)\sum_{d|n}\frac{\mu(n/d)}{n/d}\sum_{[k]\in\mathcal{P}_d}\frac{(-1)^{|[k]|}}{|[k]|}\binom{|[k]|}{k_1,\cdots,k_d}\prod_{j=1}^d b_j(x^{n/d})^{k_j}x^{\frac{n(r-1)k_j}{d}\binom{j}{2}},$$

where  $\mu$  is the Möbius function, and the  $b_j(x)$  are polynomials defined by

$$(1+\sum_{n\geq 1}b_n(x)t^n)\left(1+\sum_{n\geq 1}\left((x-1)(x^2-1)\dots(x^n-1)\right)^{r-1}t^n\right)=1.$$

# **Explicit expressions for** $B_n^r(x) = E(\mathcal{X}_r^{irr} \operatorname{GL}_n; x), \quad n \le 4, \quad (s = r - 1)$

$$\begin{split} \frac{B_1^r(x)}{x-1} &= (x-1)^s, \\ \frac{B_2^r(x)}{x-1} &= (x-1)^s \Big( (x-1)^s x^s ((x+1)^s-1) + \frac{1}{2} (x-1)^s - \frac{1}{2} (x+1)^s \Big), \\ \frac{B_3^r(x)}{x-1} &= (x-1)^s \Big( -\frac{1}{3} (x^2+x+1)^s + (x-1)^{2s} (\frac{1}{3} - x^s + x^s (x+1)^s, \\ &+ x^{3s} + x^{3s} (x+1)^s (x^2+x+1)^s - 2x^{3s} (x+1)^s ) \Big) \\ \frac{B_4^r(x)}{x-1} &= (x-1)^{2s} \Big( \frac{1}{4} (x-1)^{2s} - \frac{1}{4} (x+1)^{2s} + (x^2-1)^s x^s (1-(x+1)^s), \\ &+ \frac{1}{2} (x+1)^{2s} x^{2s} (1-(x^2+1)^s) + \frac{1}{2} (x-1)^{2s} x^{2s} (1-(x+1)^s)^2 \\ &- (x-1)^{2s} x^{3s} (-(x+1)^s (x^2+x+1)^s + 2(x+1)^s - 1) \\ &- (x-1)^{2s} x^{6s} (-(x+1)^s (x^2+x+1)^s (x^3+x^2+x+1)^s \\ &+ 2(x+1)^s (x^2+x+1)^s + (x+1)^{2s} - 3(x+1)^s + 1) \Big). \end{split}$$

28/45

# Index



- Mixed Hodge Structures and *E*-polynomials
- Character Varieties
- 2 ARITHMETIC-GEOMETRIC METHODS FOR GL<sub>n</sub>-CHARACTER VARIETIES
  - Stratifications by polystability type
  - Generating functions of E-polynomials
  - Explicit combinatorial formulae

# EXPLICIT COMPUTATIONS FOR $GL_n$ -CHARACTER VARIETIES

- $SL_n$  and  $PGL_n$ -character varieties
  - Conjecture for Langlands dual groups SL<sub>n</sub> and PGL<sub>n</sub>
  - Computations for  $SL_n$  and  $PGL_n$ -character varieties of the free group

### Consequences

This analysis allows to:

- Recover arithmetic computations of  $E(\mathcal{X}_r \operatorname{GL}_n; x)$ .
- Use locally closed stratification by partition type

$$\mathcal{X}_{\Gamma} \operatorname{GL}_{n} = \bigsqcup_{[k] \in \mathcal{P}_{n}} \mathcal{X}_{\Gamma}^{[k]} \operatorname{GL}_{n}$$

to relate computations and geometry of  $E(\mathcal{X}_{\Gamma} \operatorname{GL}_{n}; x)$  to each stratum  $E(\mathcal{X}_{\Gamma}^{[k]} \operatorname{GL}_{n}; x)$ .

• In particular, compute  $E(\mathcal{X}_{\Gamma}^{[1^n]} \operatorname{GL}_n; x)$  (abelian stratum, abelian character varieties) and  $E(\mathcal{X}_{\Gamma}^{[n]} \operatorname{GL}_n; x)$  (irreducible stratum, smooth).

# **Recovering arithmetic computations of** $E(\mathcal{X}_r \operatorname{GL}_n; x)$

 For s ≥ 0, the E-polynomial of the GL<sub>3</sub>-character variety of the free group Γ = F<sub>s+1</sub> is:

$$\frac{E(\mathcal{X}_{s+1} \operatorname{GL}_3; x)}{(x-1)^{s+1}} = \frac{1}{2}(x-1)^{s+1}(x+1)^s x + \frac{1}{3}(x^2+x+1)^s x(x+1) + (x-1)^{2s} \Big( (x+1)^s [x^{3s}(x^2+x+1)^s+x^{s+1}-2x^{3s}] + x^{3s} - x^{s+1} + \frac{x}{6}(x+1) \Big).$$

• Every [k]-polystable stratum  $\mathcal{X}_r^{[k]} \operatorname{GL}_n$  is irreducible and has zero Euler characteristic:

$$\chi(\mathcal{X}_r^{[k]}\operatorname{GL}_n) = 0, \quad \chi(\mathcal{X}_r\operatorname{GL}_n) = 0.$$

# Computations for $\operatorname{GL}_2$

# STRATIFICATION FOR n = 2

$$\mathcal{X}_{\Gamma} \operatorname{GL}_{2} = \mathcal{X}_{\Gamma}^{[2]} \operatorname{GL}_{2} \sqcup \mathcal{X}_{\Gamma}^{[1^{2}]} \operatorname{GL}_{2} \cong \mathcal{X}_{\Gamma}^{irr} \operatorname{GL}_{2} \sqcup \mathcal{X}_{\Gamma_{Ab}} \operatorname{GL}_{2}$$
  
where use  $\mathcal{X}_{\Gamma}^{[1^{n}]} \operatorname{GL}_{n} \simeq \mathcal{X}_{\Gamma_{Ab}} \operatorname{GL}_{n}$ .

# Computations for $\operatorname{GL}_2$

### STRATIFICATION FOR n = 2

$$\mathcal{X}_{\Gamma} \operatorname{GL}_{2} = \mathcal{X}_{\Gamma}^{[2]} \operatorname{GL}_{2} \sqcup \mathcal{X}_{\Gamma}^{[1^{2}]} \operatorname{GL}_{2} \cong \mathcal{X}_{\Gamma}^{irr} \operatorname{GL}_{2} \sqcup \mathcal{X}_{\Gamma_{Ab}} \operatorname{GL}_{2}$$
  
where use  $\mathcal{X}_{\Gamma}^{[1^{n}]} \operatorname{GL}_{n} \simeq \mathcal{X}_{\Gamma_{Ab}} \operatorname{GL}_{n}$ .

### Use

- (Baraglia-Heckmati ('17)) use arithmetic arguments to compute  $E(\mathcal{X}_{\Gamma} \operatorname{GL}_2; x)$  for various  $\Gamma$ .
- (Florentino-Silva ('19)) compute *E*-polynomials of abelian character varieties *E*(*X*<sub>Z<sup>r</sup></sub> GL<sub>n</sub>; *x*) through symmetric functions.

to calculate:

$$E(\mathcal{X}_{\Gamma}^{irr}\operatorname{GL}_{2};x)=E(\mathcal{X}_{\Gamma}\operatorname{GL}_{2};x)-E(\mathcal{X}_{\Gamma_{Ab}}\operatorname{GL}_{2};x).$$

# E-polynomials of irreducible loci of $GL_2$ -character varieties

#### THEOREM (FLORENTINO-NOZAD-Z. ('19))

For free groups F<sub>s+1</sub>:

$$\frac{E(\mathcal{X}_{s+1}^{inr}\operatorname{GL}_2;x)}{(x-1)^{s+1}} = (x-1)^s x^s ((x+1)^s - 1) - \frac{1}{2}(x+1)^s + \frac{1}{2}(x-1)^s$$

2 For surface goups  $\Gamma_g = \pi_1(\Sigma_g)$ , with c = 2g - 2,

$$\frac{E(\mathcal{X}_{\Gamma_g}^{ur}\operatorname{GL}_2;x)}{(x-1)^{c+2}} = (x^2-1)^c(x^c+1) + \frac{(x^{c+1}-x-1)}{2}(x+1)^c - \frac{(x^{c+1}-x+1)}{2}(x-1)^c - x^c.$$

For non-orientable surface groups  $\hat{\Gamma}_k = \pi_1(\hat{\Sigma}_g)$ , with h = k - 2,

$$\frac{E(\mathcal{X}_{\Gamma_k}^{ur}\operatorname{GL}_2;x)}{(x-1)^{h+1}} = 2(x^h+1)(x^2-1)^h + x^h(x-1)\frac{(x-1)^h + (x+1)^h}{2} + (2-4x^h)(x-1)^h - (x+1)^h - 2x^h.$$

For torus knot groups  $\Gamma_{a,b}$  we have:

$$\frac{E(\mathcal{X}_{\Gamma_{a,b}}^{urr} \operatorname{GL}_2; x)}{x-1} = \begin{cases} \frac{1}{4}(a-1)(b-1)(x-2), & a, b \text{ both odd} \\ \frac{1}{4}(b-1)(ax-3a+4), & a \text{ even, } b \text{ odd} \end{cases}$$

33/45

# E-polynomial of irreducible $GL_3$ -character variety of surface group

#### STRATIFICATION FOR n = 3

$$\mathcal{X}_{\Gamma}\operatorname{GL}_3 = \mathcal{X}_{\Gamma}^{[3]}\operatorname{GL}_3 \sqcup \mathcal{X}_{\Gamma}^{[1\,2]}\operatorname{GL}_3 \sqcup \mathcal{X}_{\Gamma}^{[1^3]}\operatorname{GL}_3$$

 $E(\mathcal{X}_{\Gamma_g}\operatorname{GL}_3;x) = E(\mathcal{X}_{\Gamma_g}^{irr}\operatorname{GL}_3;x) + E(\mathcal{X}_{\Gamma_g}^{irr}\operatorname{GL}_1;x) \cdot E(\mathcal{X}_{\Gamma_g}^{irr}\operatorname{GL}_2;x) + E(\mathcal{X}_{\Gamma_g^{ab}}\operatorname{GL}_3;x)$ 

#### THEOREM (FLORENTINO-NOZAD-Z. ('19))

The E-polynomial of the irreducible GL<sub>3</sub>-character variety of  $\Gamma_g$ , setting c = 2g - 2, is

$$\begin{aligned} \frac{E(\mathcal{X}_{\Gamma_g}^{irr}\operatorname{GL}_3;x)}{(x-1)^{c+2}} &= (x-1)^{2c+2} [x^{3c} - \frac{x^{c+1}}{2} - (x+1)^c (x^c+1) + \frac{1}{3}] \\ &+ (x-1)^{2c+1} (x-2x^{2c}) [\frac{x^c (x-2)}{2} + (x+1)^c (x^c+1)] \\ &+ (x-1)^{2c} (x^2+x+1)^c [(x+1)^c (x^{3c}+1) + x^{2c}] \\ &+ (x-1)^{2c} (x-2)x^{2c} [(x+1)^c (x^c+1) + \frac{x^c (x-3)}{6}] + \frac{(x-1)^{c+1} (x+1)^c}{2} [x^{c+1} - x^{3c+1}] \\ &+ (x-1)^c (x^c-1) [x^{c-2} + x^{c+1} - 2] + (x-1)^{c+2} [x^{2c-2} - x^{c-2}] \\ &+ \frac{(x^2+x+1)^c}{3} [x^{3c+1} (x+1) - (x^2+x+1)] - x^{3c}. \end{aligned}$$

# Index



# PRELIMINARIES

- Mixed Hodge Structures and *E*-polynomials
- Character Varieties
- 2 ARITHMETIC-GEOMETRIC METHODS FOR GL<sub>n</sub>-CHARACTER VARIETIES
  - Stratifications by polystability type
  - Generating functions of E-polynomials
  - Explicit combinatorial formulae

# 3 EXPLICIT COMPUTATIONS FOR $GL_n$ -CHARACTER VARIETIES

# $SL_n$ and $PGL_n$ -character varieties

- Conjecture for Langlands dual groups SL<sub>n</sub> and PGL<sub>n</sub>
- Computations for  $SL_n$  and  $PGL_n$ -character varieties of the free group

• From  $\mathbb{C}^* \to \operatorname{GL}_n \to \operatorname{PGL}_n$ , get  $E(\operatorname{GL}_n; u, v) = (1 - uv) \cdot E(\operatorname{PGL}_n; u, v)$ .

#### PROPOSITION (FLORENTINO-NOZAD-Z. ('19))

The fibration

$$\mathcal{R}_r \mathbb{C}^* \to \mathcal{X}_r^{[k]} \operatorname{GL}_n \to \mathcal{X}_r^{[k]} \operatorname{PGL}_n$$

is special, therefore

$$E(\mathcal{X}_r^{[k]} \operatorname{GL}_n; x) = (x-1)^r E(\mathcal{X}_r^{[k]} \operatorname{PGL}_n; x)$$
$$E(\mathcal{X}_r \operatorname{GL}_n; x) = (x-1)^r E(\mathcal{X}_r \operatorname{PGL}_n; x).$$

#### **PROPOSITION (FLORENTINO-NOZAD-Z. ('19))**

The fibration

$$\mathcal{R}_r \mathbb{C}^* \to \mathcal{X}_r^{[k]} \operatorname{GL}_n \to \mathcal{X}_r^{[k]} \operatorname{PGL}_n$$

is special, therefore

$$E(\mathcal{X}_r^{[k]} \operatorname{GL}_n; x) = (x-1)^r E(\mathcal{X}_r^{[k]} \operatorname{PGL}_n; x)$$
$$E(\mathcal{X}_r \operatorname{GL}_n; x) = (x-1)^r E(\mathcal{X}_r \operatorname{PGL}_n; x).$$

• Also  $E(\operatorname{GL}_n; u, v) = (1 - uv) \cdot E(\operatorname{SL}_n; u, v) \Rightarrow E(\operatorname{SL}_n; x) = E(\operatorname{PGL}_n; x)$ but hard to prove  $E(\mathcal{X}_r \operatorname{GL}_n; x) = (x - 1)^r E(\mathcal{X}_r \operatorname{SL}_n; x)$ .

# Solution of conjecture for Langlands dual groups $PGL_n$ and $SL_n$

# THEOREM (FLORENTINO-NOZAD-Z. ('19))

For  $\Gamma = F_r$ ,  $E(\mathcal{X}_r \operatorname{SL}_n; x) = E(\mathcal{X}_r \operatorname{PGL}_n; x)$ .
#### Solution of conjecture for Langlands dual groups $PGL_n$ and $SL_n$

#### THEOREM (FLORENTINO-NOZAD-Z. ('19))

For  $\Gamma = F_r$ ,  $E(\mathcal{X}_r \operatorname{SL}_n; x) = E(\mathcal{X}_r \operatorname{PGL}_n; x)$ .

• Try to imitate the PGL<sub>n</sub>-fibration:

$$\mathbb{Z}_n^r \to \mathcal{X}_r \operatorname{SL}_n \to \mathcal{X}_r \operatorname{PGL}_n$$

but the fiber is not connected, then we cannot directly apply multiplicative property for *E*-polynomials!

#### Solution of conjecture for Langlands dual groups $PGL_n$ and $SL_n$

#### THEOREM (FLORENTINO-NOZAD-Z. ('19))

For  $\Gamma = F_r$ ,  $E(\mathcal{X}_r \operatorname{SL}_n; x) = E(\mathcal{X}_r \operatorname{PGL}_n; x)$ .

• Try to imitate the PGL<sub>n</sub>-fibration:

$$\mathbb{Z}_n^r \to \mathcal{X}_r \operatorname{SL}_n \to \mathcal{X}_r \operatorname{PGL}_n$$

but the fiber is not connected, then we cannot directly apply multiplicative property for *E*-polynomials!

• We prove the Theorem by distinguishing between partitions of two or more blocks ([k] of length > 1, reducible) and the irreducible case ([k] = [n] of length = 1).

#### PROPOSITION (FLORENTINO-NOZAD-Z. ('19))

If length  $[k] \in \mathcal{P}_n$  is > 1, then  $E(\mathcal{X}_r^{[k]} \operatorname{GL}_n; x) = (x-1)^r E(\mathcal{X}_r^{[k]} \operatorname{SL}_n; x)$ . Therefore  $E(\mathcal{X}_r^{[k]} \operatorname{SL}_n; x) = E(\mathcal{X}_r^{[k]} \operatorname{PGL}_n; x)$ .

#### **Sketch of the proof for** |[k]| > 1

- Let [k] a partition whose blocks have size  $n_1, n_2, \ldots, n_s, s > 1$ , and  $g.c.d(n_1, \ldots, n_s) = d$ .
- Let  $m(\sigma_1, \ldots, \sigma_s) \mapsto \sigma_1^{m_1}, \ldots, \sigma_s^{m_s}$ , with  $m_i = n_i/d$

- *H* is abelian, connected and reductive, then  $H \simeq (\mathbb{C}^*)^{r(s-1)}$ .
- Fibrations are special and enjoy multiplicative property for *E*-polynomials.
- Take quotients by actions of symetric groups *S*<sub>[*k*]</sub> (permuting blocks) and take invariant parts of the equivariant *E*-polynomials.

#### Main theorem: Irreducible locus [n]

#### THEOREM (FLORENTINO-NOZAD-Z. ('19))

The quotient map

$$\mathcal{X}_r^{irr} \operatorname{SL}_n \to \mathcal{X}_r^{irr} \operatorname{PGL}_n$$

given by the central action of  $\mathbb{Z}_n^r$  on  $\mathcal{X}_r^{irr} \operatorname{SL}_n$  induces an isomorphism of mixed Hodge structures

$$H_c^*(\mathcal{X}_r^{irr}\operatorname{SL}_n)\cong H_c^*(\mathcal{X}_r^{irr}\operatorname{PGL}_n).$$

Therefore,

$$E(\mathcal{X}_r^{irr}\operatorname{SL}_n;x)=E(\mathcal{X}_r^{irr}\operatorname{PGL}_n;x).$$

• Define 
$$C_{r,n} = \operatorname{Hom}(F_r, \mathbb{Z}_n)$$
.

• Define  $U_{r,n}^* = \text{Hom}^{irr}(F_r, U(n)) \subset U_{r,n} = \text{Hom}(F_r, U(n))$  and similarly  $SU_{r,n}^*, SU_{r,n}, PU_{r,n}^*, PU_{r,n}$  for representations into  $SL_n$  and  $PGL_n$ .

Get stratifications

$$U_{r,n} = \bigsqcup_{[k] \in \mathcal{P}_n} U_r^{[k]}, \qquad SU_{r,n} = \bigsqcup_{[k] \in \mathcal{P}_n} SU_r^{[k]}, \qquad PU_{r,n} = \bigsqcup_{[k] \in \mathcal{P}_n} PU_r^{[k]}.$$

• Define 
$$C_{r,n} = \operatorname{Hom}(F_r, \mathbb{Z}_n)$$
.

• Define  $U_{r,n}^* = \text{Hom}^{irr}(F_r, U(n)) \subset U_{r,n} = \text{Hom}(F_r, U(n))$  and similarly  $SU_{r,n}^*, SU_{r,n}, PU_{r,n}^*, PU_{r,n}$  for representations into  $SL_n$  and  $PGL_n$ .

Get stratifications

$$U_{r,n} = \bigsqcup_{[k] \in \mathcal{P}_n} U_r^{[k]}, \qquad SU_{r,n} = \bigsqcup_{[k] \in \mathcal{P}_n} SU_r^{[k]}, \qquad PU_{r,n} = \bigsqcup_{[k] \in \mathcal{P}_n} PU_r^{[k]}.$$

Step 1

For the stratification  $SU_{r,n} = \bigsqcup_{[k] \in \mathcal{P}_n} SU_r^{[k]}$ :

- If length [k] > 1, action C<sub>r,n</sub> ∼ H<sup>\*</sup>(SU<sup>[k]</sup><sub>r,n</sub>) is trivial (construct homotopies to the identity).
- Given that  $C_{r,n} \subset SU_{r,n}$  connected, action  $C_{r,n} \curvearrowright H^*(SU_{r,n})$  is trivial.
- 5-lemma on stratification to conclude action  $C_{r,n} \sim H^*(SU_{r,n}^*)$  is trivial.

### STEP 2 $\pi: \mathrm{SU}_{r,n}^* \to \mathrm{PU}_{r,n}^* = \mathrm{SU}_{r,n}^* / C_{r,n}$ is $\mathrm{PU}(n)$ -equivariant, then

 $H^*(\operatorname{Hom}^{irr}(F_r,\operatorname{SL}_n)) \stackrel{ret}{\simeq} H^*(\operatorname{SU}_{r,n}^*) \simeq H^*(\operatorname{PU}_{r,n}^*) \stackrel{ret}{\simeq} H^*(\operatorname{Hom}^{irr}(F_r,\operatorname{PGL}_n))$ 

## STEP 2 $\pi: \mathrm{SU}_{r,n}^* \to \mathrm{PU}_{r,n}^* = \mathrm{SU}_{r,n}^* / C_{r,n} \text{ is } \mathrm{PU}(n) \text{-equivariant, then}$ $H^*(\mathrm{Hom}^{irr}(F_r, \mathrm{SL}_n)) \stackrel{ret}{\simeq} H^*(\mathrm{SU}_{r,n}^*) \simeq H^*(\mathrm{PU}_{r,n}^*) \stackrel{ret}{\simeq} H^*(\mathrm{Hom}^{irr}(F_r, \mathrm{PGL}_n))$

#### STEP 3

$$\operatorname{Hom}^{irr}(F_r, \operatorname{SL}_n) \to \operatorname{Hom}^{irr}(F_r, \operatorname{PGL}_n) = \operatorname{Hom}^{irr}(F_r, \operatorname{SL}_n)/C_{r,n}$$

is PGL(n)-equivariant between orbifolds, then (similar to Step 2):

$$H_c^*(\mathcal{X}_r^{irr}\operatorname{SL}_n)\cong H_c^*(\mathcal{X}_r^{irr}\operatorname{PGL}_n).$$

It is an algebraic map + inducing an isomorphism in cohomology  $\Rightarrow$  Mixed Hodge structures coincide.

#### $\mathit{E}\text{-polynomial}$ of the $\mathrm{SL}_4$ and $\mathrm{PGL}_4\text{-character}$ varieties of the free group

#### THEOREM (FLORENTINO-NOZAD-Z. ('19))

The E-polynomials of the SL<sub>4</sub> (and PGL<sub>4</sub>)-character varietes of the free group  $\Gamma = F_{s+1}$  are equal to

$$\begin{split} E(\mathcal{X}_{s+1} \operatorname{SL}_4; x) &= \\ & \frac{1}{24} (x-1)^{3s+3} + (x-1)^{3s+1} \Big[ (x+1)^{2s} \frac{x^{2s}}{2} + (x+1)^s \big( x^{3s} (x^2+x+1)^s - 2x^{3s} - x^{2s} + \frac{3x^s}{2} \big) \Big] \\ &+ (x-1)^{3s+1} \Big[ x^{3s} + \frac{x^{2s}}{2} - \frac{3x^s}{2} + \frac{11}{24} \Big] + (x-1)^{3s} (x+1)^{2s} (-x^{6s} + \frac{x^{2s}}{2}) \\ &+ (x-1)^{3s} (x+1)^s x^{6s} \Big[ (x^2+x+1)^s (x^3+x^2+x+1)^s - 2(x^2+x+1)^s + 3 \Big] \\ &+ (x-1)^{3s} (x+1)^s \Big[ x^{3s} \big( (x^2+x+1)^s - 2 \big) - x^{2s} + \frac{x^s}{2} \Big] + (x-1)^{3s} (-x^{6s} + x^{3s} + \frac{x^{2s}}{2} - \frac{x^s}{2} + \frac{1}{2}) \\ &+ (x-1)^{2s+2} \frac{(x-1)^{s+1}}{4} + (x-1)^{2s+1} \frac{(x+1)^s}{2} (-(x+1)^s x^s + x^s - \frac{1}{2}) + (x-1)^{2s} (x+1)^s \frac{x^s}{2} (1 - (x+1)^s) \\ &+ (x-1)^{s+1} \Big[ (x+1) \frac{x}{3} (x^2+x+1)^s + \frac{(x+1)^{2s}}{8} (x^2+2x+2) \Big] \\ &+ (x-1)^s (x+1)^{2s} \Big[ \frac{x^{2s+1}}{2} ((x^2+1)^s - 1) + \frac{x-1}{4} \Big] - \frac{1}{4} (x+1)^{s+1} (x^2+1)^s + \frac{1}{4} (x^3+x^2+x+1)^{s+1}. \end{split}$$

# Euler characteristics of ${\rm SL}_4$ and ${\rm PGL}_4\mbox{-character varieties of the free group}$

#### THEOREM (FLORENTINO-NOZAD-Z. ('19))

The Euler characteristics of the  $PGL_n$  and  $SL_n$ -character varieties of the free group are

$$\chi(\mathcal{X}_r \operatorname{PGL}_n) = \chi(\mathcal{X}_r \operatorname{SL}_n) = \phi(n)n^{r-2}$$
,

where  $\phi(n)$  is the arithmetic Euler function. For  $[d^{n/d}] \in \mathcal{P}_n$ ,

$$\chi(\mathcal{X}_r^{[d^{n/d}]}\operatorname{PGL}_n) = \chi(\mathcal{X}_r^{[d^{n/d}]}\operatorname{SL}_n) = \frac{\mu(d)}{d}n^{r-1},$$

otherwise 
$$\chi(\mathcal{X}_r^{[k]} \operatorname{PGL}_n) = \chi(\mathcal{X}_r^{[k]} \operatorname{SL}_n) = 0$$
,

where  $\mu(n)$  is the arithmetic Möebius function.

#### **Further conjectures**

#### CONJECTURES ON TOPOLOGICAL MIRROR SYMMETRY

For other pairs of Langlands dual groups G and  ${}^{L}G$ , and  $\Gamma = F_{r}$ , are

- $\mathcal{X}_r G$  and  $\mathcal{X}_r {}^L G$  Hodge-Tate ?
- $\mathcal{X}_r G$  and  $\mathcal{X}_r {}^L G$  polynomial type?
- $E(\mathcal{X}_rG;x) = E(\mathcal{X}_r^LG;x)?$

#### **Publications**

- D. Baraglia and P. Hekmati, *Arithmetic of singular character varieties and their E-polynomials*, P. Lond. Math. Soc. **114** (2) (2017) 293-332.

C. Florentino and S. Lawton, *The topology of moduli spaces of free group representations*, Math. Annalen **345** (2009) 453-489.



C. Florentino, A. Nozad, J. Silva and A. Zamora, *On Hodge polynomials of singular character varieties*, To appear in the Proceedings of the Special Session on Complex Geometry of the ISAAC conference, Aveiro, Portugal (2019).



C. Florentino, A. Nozad and A. Zamora, *Generating series for the E-polynomials of*  $GL_n$ -character Varieties, arXiv:1902.06837 (2019) To appear in Math. Nach.



C. Florentino, A. Nozad and A. Zamora, *Hodge-Euler polynomials of*  $SL_n$  and  $PGL_n$ -character Varieties of the free group, J. Geom. Phys. **161** 104008 (2021).



T. Hausel and F. Rodriguez-Villegas, *Mixed Hodge polynomials of character varieties, with an appendix by N. M. Katz*, Invent. Math. **174** (3) (2008) 555-624.



S. Lawton and V. Muñoz, *E-polynomial of the*  $SL(3, \mathbb{C})$ -*character variety of free groups*, Pac. J. Math. **282** (1) (2016) 173-202.



S. Mozgovoy, M. Reineke, *Arithmetic of character varieties of free groups*. Int. J. Math. **26** 12 (2015).