Multiunitary matrices and their applications

Karol Życzkowski Jagiellonian University, Cracow, & Polish Academy of Sciences, Warsaw

*QM*³, Quantum Matter meets Math Lisbon, November 29, 2021 .

KŻ (UJ/CFT)

Multi-unitary matrices

29.11.2019 1 / 34

we analyze

a) distinguished subsets of the set of unitary matrices $U(d^k)$ of a power dimension $N = d^k$

b) corresponding discrete structures in a finite Hilbert space \mathcal{H}_{N^2} relevant for the standard Quantum Theory,

for instance:

- Absolutely Maximally Entangled (AME) states of 2k subsystems with d levels each
- Why we do it ? Because we
- a) do not fully understand these structures relevant for quantum theory !
- b) wish to construct novel schemes of generalized measurements,
- c) construct original models of quantum dynamics,
- d) quantum error correction codes

Composed systems & entangled states

bi-partite systems: $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

- separable pure states: $|\psi\rangle = |\phi_A\rangle \otimes |\phi_B\rangle$
- entangled pure states: all states not of the above product form.

Two–qubit system: $2 \times 2 = 4$

Maximally entangled **Bell state**
$$|arphi^+
angle:=rac{1}{\sqrt{2}}\Big(|00
angle+|11
angle\Big)$$

Schmidt decomposition & Entanglement measures

Any pure state from $\mathcal{H}_A \otimes \mathcal{H}_B$ can be written as

$$|\psi\rangle = \sum_{ij} G_{ij}|i\rangle \otimes |j\rangle = \sum_{i} \sqrt{\lambda_{i}}|i'\rangle \otimes |i''\rangle,$$

where $|\psi|^{2} = \operatorname{Tr} G G^{\dagger} = 1$. The partial trace, $\sigma = \operatorname{Tr}_{B}|\psi\rangle\langle\psi| = G G^{\dagger}$, has
spectrum given by the **Schmidt vector** $\{\lambda_{i}\}$ = squared **singular values** of
G. Linear entanglement entropy of $|\psi\rangle$ is equal to **linear entropy** of the
reduced state σ , $E_{L}(|\psi\rangle) := 1 - \operatorname{Tr} \sigma^{2} = 1 - \sum_{i} \lambda_{i}^{2}.$
The more **mixed** partial trace, the more **entangled** initial pure state...

Maximally entangled bi-partite quantum states

Bipartite systems $\mathcal{H} = \mathcal{H}^A \otimes \mathcal{H}^B = \mathcal{H}_d \otimes \mathcal{H}_d$

generalized Bell state (for two qudits),

$$|\psi^+_d
angle = rac{1}{\sqrt{d}}\sum_{i=1}^d |i
angle \otimes |i
angle$$

distinguished by the fact that all **singular values** are equal, $\lambda_i = 1/d$,

hence the reduced state is maximally mixed,

$$\rho_A = \mathrm{Tr}_B |\psi_d^+\rangle \langle \psi_d^+| = \mathbb{1}_d/d.$$

This property holds for all locally equivalent states, $(U_A \otimes U_B)|\psi_d^+\rangle$.

Observations:

A) State |ψ⟩ is maximally entangled if ρ_A = GG[†] = 1_d/d, which is the case if the matrix U = G/√d of size d is unitary, (and all its singular values are equal to 1).
B) For a bipartite state the singular values of G characterize entanglement of the state |ψ⟩ = ∑_{i,j} G_{ij}|i, j⟩.

Bipartite quantum gates: unitary $U \in U(d^2)$

bi-partite systems: $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

• local gates
$$U_{
m loc} = V_A \otimes V_B$$

• non-local gates: all unitaries not of the above product form.

Let $|m\rangle \otimes |\mu\rangle$ be a product basis in $\mathcal{H}_A \otimes \mathcal{H}_B$. For any operator X with entries $X_{\substack{m\mu\\n\nu}} = \langle m\mu | X | n\nu \rangle$ define reshuffled matrix X^R with entries $X_{\substack{m\mu\\n\nu}}^R = X_{\substack{mn\\\mu\nu}}^R = \langle mn | X | \mu\nu \rangle$.

Operator Schmidt decomposition of a unitary U of size d^2

$$U = d^2 \sum_{i=1}^{d^2} \sqrt{\lambda_i} A_i \otimes B_i$$
, where $\operatorname{Tr}\left\{A_i^{\dagger} A_j\right\} = \operatorname{Tr}\left\{B_i^{\dagger} B_j\right\} = \delta_{ij}$.

Then the Schmidt vector λ normalized as $\sum_{i=1}^{d^2} \lambda_i = 1$ is given by the spectrum of a positive matrix $\sigma = \frac{1}{d^2} U^R (U^R)^{\dagger}$

a) local $U_{\text{loc}} = V_A \otimes V_B$, $\lambda = (1, 0, ..., 0)$; entropy $E(U) = E(\lambda) = 0$ b) U^R is unitary, $\lambda = (1, 1, ..., 1)/d^2$; entropy $E(U) = E(\lambda) = 1 - 1/d^2$

Two-qubit quantum gates: unitary $U \in U(4)$

Reshuffled matrix: blocks converted into vectors - color entries exchanged:

$$X_{kj}^{R} := \begin{bmatrix} \mathbf{X}_{11} & \mathbf{X}_{12} & \mathbf{X}_{21} & \mathbf{X}_{22} \\ \mathbf{X}_{13} & \mathbf{X}_{14} & \mathbf{X}_{23} & \mathbf{X}_{24} \\ \hline \mathbf{X}_{31} & \mathbf{X}_{32} & \mathbf{X}_{41} & \mathbf{X}_{42} \\ \mathbf{X}_{33} & \mathbf{X}_{34} & \mathbf{X}_{43} & \mathbf{X}_{44} \end{bmatrix}$$

Consider a unitary matrix invariant with respect to reshuffling:

$$U_{ heta} := egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & \cos heta & \sin heta \ \hline 0 & 1 & 0 & 0 \ 0 & 0 & -\sin heta & \cos heta \end{bmatrix} = U_{ heta}^R,$$

so that the Schmidt vector is uniform, $\lambda = (1, 1, 1, 1)/4$, and the entropy $E(\lambda)$ is maximal. For any phase θ these gates are **maximally nonlocal** (**Musz, Kuś, K.Ż.** 2013). For $\theta = 0$ we arrive at the SWAP gate *S*. The gates U_{θ} belong to the class of *dual unitary* gates, (Bertini, Kos, **Prosen** 2019), such that *U* and U^R are unitary.

Reshuffling of a matrix $U_D \in U(9)$

	(•	٠	٠	x	x	x	y	y	y `	١
	x	X	X	•	٠	•	z	Ζ	Ζ	
	у	у	у	z	Ζ	Ζ	•	٠	•	
	-	—	—	-	_	—	-	—	_	
	•	٠	٠	x	х	X	y y	y	у	
U =	x	X	X	•	٠	•	z	Ζ	Ζ	$\in U(9)$
	y	у	у	z	Ζ	Ζ	•	•	٠	
	_	_	_	-	_	_	-	_	_	
	•	•	•	x	X	x	y y	у	у	
	x	х	x	•	•	•	z	Ζ	Ζ	
	(y	у	y	z	Ζ	Ζ	•	٠	•	/

x, y, z denote entries exchanged by reshuffling,

so to arrive at $U = U^R$ they can be replaced by 0,

while • do not change,

so they can be filled in with numbers satisfying unitarity conditions,

Two-qutrit Dual unitary gate $U_D \in U(9)$

x, y, z = 0 denote entries exchanged by reshuffling which are set to zero

Two-qutrit Dual unitary gate $U_D \in U(9)$

determined by three unitary matrices $V, W, Y \in U(3)$

$$D_D = \begin{pmatrix} V_{11} & V_{12} & V_{13} & x & x & x & y & y & y \\ x & x & x & W_{11} & W_{12} & W_{13} & z & z & z \\ y & y & y & z & z & z & Y_{11} & Y_{12} & Y_{13} \\ - & - & - & - & - & - & - & - \\ V_{21} & V_{22} & V_{23} & x & x & x & y & y & y \\ x & x & x & W_{21} & W_{22} & W_{23} & z & z & z \\ y & y & y & y & z & z & z & Y_{21} & Y_{22} & Y_{23} \\ - & - & - & - & - & - & - & - \\ V_{31} & V_{32} & V_{33} & x & x & x & y & y & y \\ x & x & x & W_{31} & W_{32} & W_{33} & z & z & z \\ y & y & y & y & z & z & z & Y_{31} & Y_{32} & W_{33} \end{pmatrix} = D_D^R$$

x, y, z = 0 denote entries exchanged by reshuffling which are set to zero

KŻ (UJ/CFT)

29.11.2019 9 / 34

イロト イロト イヨト

Canonical form of Two-qubit gates

Any $U \in U(4)$ can be written in the **Cartan form**,

$$U = (V_1 \otimes V_2) \exp \left(i \sum_{j=1}^3 lpha_j \sigma_j \otimes \sigma_j \right) (V_3 \otimes V_3),$$

where V_i represent single-qubit gates and σ_j stand for 3 Pauli matrices. The vector *information content* α can be chosen from a Weyl chamber, $\pi/4 \ge \alpha_1 \ge \alpha_2 \ge \alpha_3 \ge 0$ (Kraus, Cirac 2001)

- maximaly nonlocal gates with $\alpha = (\pi/4, \pi/4, \alpha_3)$ interpolate between SWAP and DCNOT gates – blue line

- time evolution for $\alpha(V^t)$ leads to a billiard like trajectory in the chamber, ergodic for a generic initial point, (Mandarino, Linowski, K.Ż. 2018)

Entangling power of a bi-partite gate

Any local gate, $U_{loc} = V_A \otimes V_B$, cannot produce entanglement. Does it mean that any **strongly non-local** gate always produces entanglement?

Entangling power of a bi-partite gate

Any local gate, $U_{loc} = V_A \otimes V_B$, cannot produce entanglement. Does it mean that any **strongly non-local** gate always produces entanglement?

No! SWAP gate, $S|x, y\rangle = |y, x\rangle$ is maximally non-local, $E(S) = E_{max} = 1 - 1/d^2$ and it cannot change entanglement....

Another useful measure: **entangling power** $e_p(U) = \langle E_L(U|x, y\rangle) \rangle_{x,y}$ where the averaging is done over random product states $|x, y\rangle$.

Zanardi showed (2001) that

 $e_p(U) := [E(U) + E(US) - E(S)]/(d^2 - 1)^2.$

With gate typicality,

$$g_t(U) := d^2 [E(U) - E(US) + E(S)]/(d^2 - 1)^2$$

they span a plane, (e_p, g_t) , useful to study the set of all the gates, Jonnadula, Mandayam, K.Ż., Lakshminarayan (2017)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … の々で

Two-qubit gates:, $d^2 = 4$ no absolute maximum of e_p

projection of the set U(4) of two-qubit unitary gates onto the plane (e_p, g_t) :

Upper blue line represents the maximally nonlocal gates (dual unitary). Maximal entangling power e_p is attained for gates interpolating between CNOT and DCNOT, but the absolute maximum, $e_p = 1$ is not achieved.

Two-qutrit gates:, $d^2 = 9$, absolute maximum $e_p = 1$

projection of the set U(9) of two-qutrit unitary gates onto the plane (e_p, g_t) :

Maximal entangling power $e_p = 1$ is achieved for a particular permutation matrix P_9 such that reshuffled matrix P_9^R and partial transpose, P_9^{Γ} are unitary. Jonnadula, Mandayam, K.Ż., Lakshminarayan (2020)

KŻ (UJ/CFT)

29.11.2019 13 / 34

U(9) gate maximizing the entangling power

permutation matrix of size $9 = 3^2$

Furthermore, also two reordered matrices (by partial transposition, P_9^{Γ} and by reshuffling, P_9^{R}) remain **unitary**:

KŻ (UJ/CFT)

29.11.2019 15 / 34

Wawel Castle, Cracow, Poland

KŻ (UJ/CFT)

Multi-unitary matrices

29.11.2019 16 / 34

Multipartite pure quantum states

are determined by a **tensor**:

e.g. $|\Psi_{ABCD}\rangle = \sum_{i,j,k,l} T_{i,j,k,l} |i\rangle_A \otimes |j\rangle_B \otimes |k\rangle_C \otimes |l\rangle_D$.

Mathematical problem: in general for a **tensor** there is no (unique) **Singular Value Decomposition** and it is not simple to find the **tensor rank** or **tensor norms** (nuclear, spectral)

see Bruzda, Friedland, K.Ż. arXiv:1912.06854

Open question: Which state of N subsystems with d-levels each is the **most entangled** ?

Absolutely maximally entangled (AME) states

Definition. State $|\psi\rangle \in \mathcal{H}_d^{\otimes M}$ with M = 2k is called **AME state** if it is maximally entangled for all possible symmetric splittings of the system into two parts of k subsystems each so the reduced states are maximally mixed (**Scott 2001**), **Facchi et al.** (2008,2010), **Arnaud & Cerf** (2012)

Applications: quantum error correction codes, teleportation, etc...

Some examples of AME states:

simplest case, d = 2:

There exist no AME states for 4 qubits

Higuchi & Sudbery (2000) - **frustration** like in spin systems – **Facchi, Florio, Marzolino, Parisi, Pascazio** (2010) – to many constraints to be simmultaneously satisfied \Rightarrow no 2-qubit unitary $U \in U(4)$ achives the absolute bound $e_p = 1$

higher dimension, d = 3,

There exists an AME state of 4 qutrits

state AME(4,3) $|\Psi_3^4
angle\in\mathcal{H}_3^{\otimes 4}$ by Popescu:

$$egin{array}{rcl} \Psi_3^4
ight
angle &=& |0000
angle + |0112
angle + |0221
angle + \ && |1011
angle + |1120
angle + |1202
angle + \ && |2022
angle + |2101
angle + |2210
angle. \end{array}$$

and corresponds to the optimal permutation matrix P_9

AME(4,3) state of four qutrits, N = 4 and d = 3

$$\begin{split} |\Psi_3^4
angle &= |0000
angle + |0112
angle + |0221
angle + \ |1011
angle + |1120
angle + |1202
angle + \ |2022
angle + |2101
angle + |2210
angle. \end{split}$$

This state is also encoded in a pair of orthogonal Latin squares of size 3,

$$\begin{array}{|c|c|c|c|c|}\hline 0\alpha & 1\beta & 2\gamma \\ \hline 1\gamma & 2\alpha & 0\beta \\ \hline 2\beta & 0\gamma & 1\alpha \end{array} = \begin{array}{|c|c|c|c|}\hline A \clubsuit & K \clubsuit & Q \diamondsuit \\\hline K \diamondsuit & Q \clubsuit & A \clubsuit \\\hline Q \clubsuit & A \diamondsuit & K \clubsuit \end{array}$$

Corresponding Quantum Code: $|0\rangle \rightarrow |\tilde{0}\rangle := |000\rangle + |112\rangle + |221\rangle$ $|1\rangle \rightarrow |\tilde{1}\rangle := |011\rangle + |120\rangle + |202\rangle$ $|2\rangle \rightarrow |\tilde{2}\rangle := |022\rangle + |101\rangle + |210\rangle$

AME(4,3) state of four qutrits, N = 4 and d = 3

AME state
$$|\Psi_3^4\rangle = \sum_{i,j=0}^2 |i\rangle \otimes |j\rangle \otimes |i+j_{\text{mod }3}\rangle \otimes |i+2j_{\text{mod }3}\rangle$$

= $\sum_{i,j=0}^2 |i,j\rangle \otimes |\phi_{ij}\rangle = \sum_{i,j=0}^2 |i,j\rangle \otimes U|i,j\rangle$

 $U = P_9 \in U(9)$, where U acts as an isometry between the basis (i, j) and (l, k) = (i + j, i + 2j) denoting: rows, columns, suits, honors

i	j	i + j	i + 2j
0	0	0	0
0	1	1	2
0	2	2	1
1	0	1	1
1	1	2	0
1	2	0	2
2	0	2	2
2	1	0	1
2	2	1	0

Mutually orthogonal Latin Squares (MOLS)

♣) d = 2. There are no orthogonal Latin Square (for 2 aces and 2 kings the problem has no solution)
♡) d = 3, 4, 5 (and any power of prime) ⇒ there exist (d - 1) MOLS.
♠) d = 6. Only a single Latin Square exists (No OLS!).

Mutually orthogonal Latin Squares (MOLS)

♣) d = 2. There are no orthogonal Latin Square (for 2 aces and 2 kings the problem has no solution)
♡) d = 3, 4, 5 (and any power of prime) ⇒ there exist (d - 1) MOLS.
♠) d = 6. Only a single Latin Square exists (No OLS!).
Euler's problem: 36 officers of six different ranks from six different units come for a military parade. Arrange them in a square such that in each

row / each column all uniforms are different.

2		5	?	?	?
	2	-	<u>^</u>	?	?
2	2		?	?	?
?	?	?	?	?	?
?	?	?	?	?	?
?	?	?	?	?	?

No solution exists ! (1799 conjecture by Euler), proof (121 years later) Gaston Tarry "Le Probléme de 36 Officiers". *Compte Rendu* (1900).

Mutually orthogonal Latin Squares (MOLS)

An apparent solution of the d = 6 Euler's problem of 36 officers **36cuBe** by **D. C. Niederman**, (2008): the World's Most Challenging Puzzle

KŻ (UJ/CFT)

Multi-unitary matrices

29.11.2019 22 / 34

Why do we care about AME states?

Since they can be used for various purposes (e.g. Quantum codes, teleportation,...)

Resources needed for quantum teleportation:

- a) **2-qubit Bell state** allows one to teleport ${\bf 1}$ **qubit** from A to B
- b) 2-qudit generalized Bell state allows one to teleport 1 qudit
- c) 3-qubit GHZ state allows one to teleport $1\ qubit$ between any users
- d) **4-qutrit GHZ state** allows one to teleport **1 qutrit** between any two out of four users
- f) 4-qutrit state AME(4,3) allows one to teleport 2 qutrits between any pair chosen from four users to the other pair!
 - say from the pair (A & C) to (B & D)

relations between AME states and multiunitary matrices, perfect tensors and holographic codes

KŻ (UJ/CFT)

29.11.2019 23 / 34

4-party AME state and two-unitary matrices

Consider an **AME state** of four parties A, B, C, D with d levels each, $|\psi\rangle = \sum_{i,j,l,m=1}^{d} T_{ijlm} | i, j, l, m \rangle$

It is **maximally entangled** with respect to all **three** partitions: AB|CD and AC|BD and AD|BC.

Let $\rho_{ABCD} = |\psi\rangle\langle\psi|$. Hence its three reductions are **maximally mixed**, $\rho_{AB} = \text{Tr}_{CD}\rho_{ABCD} = \rho_{AC} = \text{Tr}_{BD}\rho_{ABCD} = \rho_{AD} = \text{Tr}_{BC}\rho_{ABCD} = \mathbb{1}_{d^2}/d^2$ Thus matrices II_{abc} of order d^2 obtained by reshaping the tensor T_{abc} are

Thus matrices $U_{\mu,\nu}$ of order d^2 obtained by reshaping the tensor T_{ijkl} are **unitary** for three reorderings:

a) $\mu, \nu = ij, Im$, b) $\mu, \nu = im, jl$, c) $\mu, \nu = il, jm$.

Such a tensor T is called **perfect**,

Pastawski, Yoshida, Harlow, Preskill (2015)

Corresponding unitary matrix U of order d² is called two-unitary if reordered matrices U^R and U^Γ remain unitary.
Goyeneche, Alsina, Latorre, Riera, K. Ż. (2015)
2-unitarity (U^R and U^Γ unitary) is stronger than dual unitary (U^R unitary)

In hunt for an $|AME(4,6)\rangle$ state of 4 quhex, d = 6

To find the state $|AME(4,6)\rangle = (U_{AB} \otimes \mathbb{I}_{CD})|\Psi^+_{AC|BD}\rangle = \sum_{i,i,k,\ell=1}^{6} t_{ijk\ell}|i,j,k,\ell\rangle$ we look for a 2-unitary matrix $U_{AB} \in U(36)$, which remains unitary after reorderings, maximizes the entangling power $e_p(U)$ $U \in \mathcal{U}_{d_1d_2}$ (average entanglement of $U_{AB}|\psi_A\rangle \otimes |\psi_B\rangle$) and leads to a perfect tensor $t_{ijk\ell}$ used for models of bulk/boundary duality Optimization over the space U(36) of dimension $36^2 - 1 = 1295$ is not easy... KŻ (UJ/CFT) Multi-unitary matrices 29.11.2019 25 / 34

NUMERICAL SEARCH

KŻ (UJ/CFT)

29.11.2019 26 / 34

KŻ (UJ/CFT)

Multi-unitary matrices

29.11.2019 27 / 34

SOLUTION FOUND

block form of U

29.11.2019 28 / 34

Rather, Burchardt, Bruzda, Rajchel, Lakshminarayan, K.Ż. preprint arXiv:2102.07787

SOLUTION FOUND

KŻ (UJ/CFT)

29.11.2019 29 / 34

QUANTUM OFFICERS OF EULER

	$ A\clubsuit\rangle$	$ A \blacklozenge \rangle$		10 \$ >	$ 10 \ast\rangle$	10♠⟩	$ 10\clubsuit\rangle$	$ Q \blacklozenge \rangle$	$ Q\Psi\rangle$	$ Q \diamond \rangle$	$ Q*\rangle$
$ K \bigstar \rangle$			$ K \Psi \rangle$	9 \$ }	9 * >	9♠⟩	9♠⟩	$ J \blacklozenge \rangle$	$ J \Psi \rangle$	$ J \mathbf{a}\rangle$	$ J \bigstar \rangle$
	$ 10\clubsuit\rangle$	$ 10 \blacklozenge \rangle$		$ Q \diamond \rangle$	$ Q \rangle$	$ Q \blacklozenge\rangle$		$ A \blacklozenge \rangle$	$ A \lor \rangle$	$ A \mathbf{x}\rangle$	$ A \bigstar \rangle$
9♠⟩			9♥⟩	$ J \mathbf{x} \rangle$	$ J \bigstar \rangle$		$ J \clubsuit \rangle$	$ K \blacklozenge \rangle$	$ K\Psi\rangle$	$ K \diamondsuit \rangle$	$ K \bigstar \rangle$
$ Q \diamond \rangle$			$ Q\clubsuit\rangle$		$ A \checkmark \rangle$	$ A \mathbf{a} \rangle$	$ A \bigstar \rangle$	10♠⟩		10♦⟩	$ 10 \forall \rangle$
	$ J \bigstar \rangle$	$ J \bigstar \rangle$		$ K \blacklozenge \rangle$		$ K \mathbf{x}\rangle$	$ K \ast \rangle$		9♣⟩	9♦⟩	9♥⟩
$ A \mathbf{a} \rangle$	$ A \bigstar \rangle$	$ A \blacklozenge \rangle$	$ A\clubsuit\rangle$	$ 10 \diamond\rangle$	10♥⟩	$ 10 \diamond\rangle$	$ 10\%\rangle$	$ Q \blacklozenge \rangle$	$ Q \clubsuit \rangle$	$ Q \bullet \rangle$	$ Q \Psi\rangle$
$ K \mathbf{x} \rangle$	$ K \bigstar \rangle$	$ K \blacklozenge \rangle$	$ K\clubsuit\rangle$	9♦⟩	9♥⟩	9 ☆ >	 9 ★⟩	$ J \blacklozenge \rangle$	$ J \clubsuit \rangle$	$ J \blacklozenge \rangle$	$ J\Psi\rangle$
	$ 10 \forall \rangle$		$ 10 \rangle$	$ Q \blacklozenge \rangle$	$ Q \clubsuit \rangle$	$ Q \blacklozenge \rangle$		$ A \mathbf{x}\rangle$	$ A*\rangle$	$ A \blacklozenge \rangle$	
$ 9 \diamond \rangle$		9 ☆ >		$ J \blacklozenge \rangle$	$ J\clubsuit\rangle$		$ J \Psi \rangle$	$ K \diamondsuit \rangle$	$ K \bigstar \rangle$		$ K \clubsuit \rangle$
	$ Q \Psi \rangle$		$ Q \bigstar \rangle$	$ A \blacklozenge \rangle$	$ A\clubsuit\rangle$	$ A \blacklozenge \rangle$	$ A \Psi \rangle$	$ 10 \rangle$		$ 10 \bigstar \rangle$	10♣⟩
$ J \blacklozenge \rangle$		$ J \mathbf{x}\rangle$		$ K \blacklozenge \rangle$	$ K \clubsuit \rangle$	$ K \blacklozenge \rangle$	$ K \Psi \rangle$		$ 9*\rangle$	9♠⟩	9♠⟩

5 6	$A/K \rightarrow A$	Aα	Aβ	Cγ	Cα	Bβ	Βγ
	$D/J \rightarrow B$	Cα	$C\beta$	Bγ	Bα	$A\beta$	$A\gamma$
Ž; 🚝 Ž, Ž, "	$10/9 \rightarrow C$	Βγ	Bα	Aβ	Αγ	Cα	Сβ
	$ \mathbf{A} / \mathbf{A} \rightarrow \alpha $	Αγ	Aα	Cβ	Сγ	Bα	Bβ
****	$\bullet/\bullet \rightarrow \beta$	Сβ	Cγ	Bα	Bβ	Αγ	Aα
	$\mathbf{w} \mid \mathbf{x} \to \gamma$	Bβ	Βγ	Aα	Aβ	Сγ	Cα

< D > < A >

- ∢ ∃ ▶

Four dice in the golden $|AME(4,6)\rangle$ state corresponding to 36 entangled officers of **Euler**. Any pair of dice is unbiased, although their outcome determines the state of the other two.

KŻ (UJ/CFT)

Multi-unitary matrices

29.11.2019 31 / 34

multi–unitary matrices and AME states

Consider an **AME** state of 2k parties with d levels each.

It is **maximally entangled** with respect to all possible symmetric partitions, so all its *k*-party reductions are **maximally mixed**.

Unitary matrix U of order d^k with the property that it remains unitary for any choice of k indices out of 2k is called k-unitary

Example: 3–unitary matrix of order $2^3 = 8$ remains unitary for any of $\binom{6}{3} = 20$ possible reorderings,

Such matrices optimize 3-party entangling power, Linowski, Rajchel, K.Z.

◆□> ◆圖> ◆国> ◆国> 三国

Concluding Remarks

Strongly entangled extremal multipartie quantum states can be useful for quantum error correction codes, multiuser quantum communication and other protocols.

Theorem. Absolutely maximally entangled states $|AME(4, 6)\rangle$ of 4 subsystems with 6 levels each **do** exist ! This implies existence of

- solution of the quantum analogue of the 36 officers problem of Euler,
- **(a)** optimal bi-partite unitary gate U_{36} with maximal **entangling power**
- perfect tensor t_{ijkℓ} with 4 indices, each running from 1 to 6, to be applied for tensor networks and bulk/boundary correspondence,
- nonadditive quantum error correction code ((3,6,2))₆ which allows one to encode a single quhex in three quhexes (it does not belong to the class of stabilizer codes).

KŻ (UJ/CFT)

Multi-unitary matrices