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What is this talk about ?

we analyze
a) distinguished subsets of the set of unitary matrices U(dk) of a power
dimension N = dk

b) corresponding discrete structures in a finite Hilbert space HN2

relevant for the standard Quantum Theory,

for instance:

Absolutely Maximally Entangled (AME) states of 2k subsystems
with d levels each

Why we do it ? Because we
a) do not fully understand these structures relevant for quantum theory !
b) wish to construct novel schemes of generalized measurements,
c) construct original models of quantum dynamics,
d) quantum error correction codes
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Composed systems & entangled states

bi-partite systems: H = HA ⊗HB

separable pure states: |ψ〉 = |φA〉 ⊗ |φB〉
entangled pure states: all states not of the above product form.

Two–qubit system: 2× 2 = 4

Maximally entangled Bell state |ϕ+〉 := 1√
2

(
|00〉+ |11〉

)
Schmidt decomposition & Entanglement measures

Any pure state from HA ⊗HB can be written as
|ψ〉 =

∑
ij Gij |i〉 ⊗ |j〉 =

∑
i

√
λi |i ′〉 ⊗ |i”〉,

where |ψ|2 = TrGG † = 1. The partial trace, σ = TrB |ψ〉〈ψ| = GG †, has
spectrum given by the Schmidt vector {λi} = squared singular values of
G . Linear entanglement entropy of |ψ〉 is equal to linear entropy of the
reduced state σ, EL(|ψ〉) := 1− Tr σ2 = 1−

∑
i λ

2
i .

The more mixed partial trace, the more entangled initial pure state...
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Maximally entangled bi–partite quantum states

Bipartite systems H = HA ⊗HB = Hd ⊗Hd

generalized Bell state (for two qud its),

|ψ+
d 〉 =

1√
d

d∑
i=1

|i〉 ⊗ |i〉

distinguished by the fact that all singular values are equal, λi= 1/d ,
hence the reduced state is maximally mixed,

ρA = TrB |ψ+
d 〉〈ψ

+
d | = 1d/d .

This property holds for all locally equivalent states, (UA ⊗ UB)|ψ+
d 〉.

Observations:
A) State |ψ〉 is maximally entangled if ρA = GG † = 1d/d ,
which is the case if the matrix U = G/

√
d of size d is unitary,

(and all its singular values are equal to 1).
B) For a bipartite state the singular values of G characterize

entanglement of the state |ψ〉 =
∑

i ,j Gij |i , j〉.

KŻ (UJ/CFT) Multi-unitary matrices 29.11.2019 4 / 34



Bipartite quantum gates: unitary U ∈ U(d2)

bi-partite systems: H = HA ⊗HB

local gates Uloc = VA ⊗ VB

non-local gates: all unitaries not of the above product form.

Let |m〉 ⊗ |µ〉 be a product basis in HA ⊗HB .
For any operator X with entries Xmµ

nν
= 〈mµ|X |nν〉 define reshuffled

matrix XR with entries XR
mµ
nν

= Xmn
µν

= 〈mn|X |µν〉.

Operator Schmidt decomposition of a unitary U of size d2

U = d2
∑d2

i=1

√
λiAi ⊗ Bi , where Tr

{
A†i Aj

}
= Tr

{
B†i Bj

}
= δij .

Then the Schmidt vector λ normalized as
∑d2

i=1 λi = 1 is given by the
spectrum of a positive matrix σ = 1

d2U
R(UR)†

a) local Uloc = VA ⊗ VB , λ = (1, 0, . . . , 0); entropy E (U) = E (λ) = 0
b) UR is unitary, λ = (1, 1, . . . , 1)/d2; entropy E (U) = E (λ) = 1− 1/d2.
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Two-qubit quantum gates: unitary U ∈ U(4)

Reshuffled matrix: blocks converted into vectors - color entries exchanged:

XR
kj :=


X11 X12 X21 X22

X13 X14 X23 X24

X31 X32 X41 X42

X33 X34 X43 X44

 .
Consider a unitary matrix invariant with respect to reshuffling:

Uθ :=


1 0 0 0
0 0 cos θ sin θ

0 1 0 0
0 0 − sin θ cos θ

 = UR
θ ,

so that the Schmidt vector is uniform, λ = (1, 1, 1, 1)/4, and the entropy
E (λ) is maximal. For any phase θ these gates are maximally nonlocal
(Musz, Kuś, K.Ż. 2013). For θ = 0 we arrive at the SWAP gate S .
The gates Uθ belong to the class of dual unitary gates, (Bertini, Kos,
Prosen 2019), such that U and UR are unitary.
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Reshuffling of a matrix UD ∈ U(9)

U =



• • • x x x y y y
x x x • • • z z z
y y y z z z • • •
− − − − − − − − −
• • • x x x y y y
x x x • • • z z z
y y y z z z • • •
− − − − − − − − −
• • • x x x y y y
x x x • • • z z z
y y y z z z • • •



∈ U(9)

x , y , z denote entries exchanged by reshuffling,
so to arrive at U = UR they can be replaced by 0,

while • do not change,
so they can be filled in with numbers satisfying unitarity conditions,
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Two-qutrit Dual unitary gate UD ∈ U(9)

DD =



• • • x x x y y y
x x x • • • z z z
y y y z z z • • •
− − − − − − − − −
• • • x x x y y y
x x x • • • z z z
y y y z z z • • •
− − − − − − − − −
• • • x x x y y y
x x x • • • z z z
y y y z z z • • •



= DR
D

x , y , z = 0 denote entries exchanged by reshuffling which are set to zero
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Two-qutrit Dual unitary gate UD ∈ U(9)

determined by three unitary matrices V ,W ,Y ∈ U(3)

DD =



V11 V12 V13 x x x y y y
x x x W11 W12 W13 z z z
y y y z z z Y11 Y12 Y13

− − − − − − − − −
V21 V22 V23 x x x y y y
x x x W21 W22 W23 z z z
y y y z z z Y21 Y22 Y23

− − − − − − − − −
V31 V32 V33 x x x y y y
x x x W31 W32 W33 z z z
y y y z z z Y31 Y32 W33



= DR
D

x , y , z = 0 denote entries exchanged by reshuffling which are set to zero

KŻ (UJ/CFT) Multi-unitary matrices 29.11.2019 9 / 34



Canonical form of Two-qubit gates

Any U ∈ U(4) can be written in the Cartan form,

U = (V1 ⊗ V2) exp
(
i
∑3

j=1 αjσj ⊗ σj
)

(V3 ⊗ V3),

where Vi represent single-qubit gates and σj stand for 3 Pauli matrices.
The vector information content α can be chosen from a Weyl chamber,
π/4 ≥ α1 ≥ α2 ≥ α3 ≥ 0 (Kraus, Cirac 2001)

- maximaly nonlocal gates with α = (π/4, π/4, α3) interpolate between
SWAP and DCNOT gates – blue line
- time evolution for α(V t) leads to a billiard like trajectory in the chamber,
ergodic for a generic initial point, (Mandarino, Linowski, K.Ż. 2018)
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Entangling power of a bi-partite gate

Any local gate, Uloc = VA ⊗ VB , cannot produce entanglement.

Does it mean that any strongly non-local gate always produces
entanglement?

No! SWAP gate, S |x , y〉 = |y , x〉 is maximally non-local,
E (S) = Emax = 1− 1/d2 and it cannot change entanglement....

Another useful measure: entangling power ep(U) = 〈EL(U|x , y〉)〉x ,y
where the averaging is done over random product states |x , y〉.

Zanardi showed (2001) that
ep(U) := [E (U) + E (US)− E (S)]/(d2 − 1)2.

With gate typicality,
gt(U) := d2[E (U)− E (US) + E (S)]/(d2 − 1)2

they span a plane, (ep, gt), useful to study the set of all the gates,

Jonnadula, Mandayam, K.Ż., Lakshminarayan (2017)
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Two-qubit gates:, d2 = 4 no absolute maximum of ep

projection of the set U(4) of two-qubit unitary gates onto the plane
(ep, gt):

Upper blue line represents the maximally nonlocal gates (dual unitary).
Maximal entangling power ep is attained for gates interpolating between
CNOT and DCNOT, but the absolute maximum, ep = 1 is not achieved.
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Two-qutrit gates:, d2 = 9, absolute maximum ep = 1

projection of the set U(9) of two-qutrit unitary gates onto the plane
(ep, gt):

Maximal entangling power ep = 1 is achieved for a particular permutation
matrix P9 such that reshuffled matrix PR

9 and partial transpose, PΓ
9 are

unitary. Jonnadula, Mandayam, K.Ż., Lakshminarayan (2020)
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U(9) gate maximizing the entangling power

permutation matrix of size 9 = 32

P9 = U ij
ml

=



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
− − − − − − − − −
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
− − − − − − − − −
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0



∈ U(9)

Furthermore, also two reordered matrices
(by partial transposition, PΓ

9 and by reshuffling, PR
9 ) remain unitary:
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UΓ = U il
mj

=



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0


∈ U(9)

UR = U im
jl

=



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0


∈ U(9)
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Wawel Castle, Cracow, Poland
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Multipartite pure quantum states

are determined by a tensor:
e.g. |ΨABCD〉 =

∑
i ,j ,k,l Ti ,j ,k,l |i〉A ⊗ |j〉B ⊗ |k〉C ⊗ |l〉D .

Mathematical problem: in general for a tensor there is no (unique)
Singular Value Decomposition and it is not simple to find the tensor
rank or tensor norms (nuclear, spectral)

see Bruzda, Friedland, K.Ż. arXiv:1912.06854

Open question: Which state of N subsystems with d–levels each
is the most entangled ?

Absolutely maximally entangled (AME) states

Definition. State |ψ〉 ∈ H⊗Md with M = 2k is called AME state if it is
maximally entangled for all possible symmetric splittings of the system into
two parts of k subsystems each so the reduced states are maximally mixed
(Scott 2001), Facchi et al. (2008,2010), Arnaud & Cerf (2012)

Applications: quantum error correction codes, teleportation, etc...
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Some examples of AME states:

simplest case, d = 2:

There exist no AME states for 4 qubits

Higuchi & Sudbery (2000) - frustration like in spin systems –
Facchi, Florio, Marzolino, Parisi, Pascazio (2010) – to many

constraints to be simmultaneously satisfied
⇒ no 2-qubit unitary U ∈ U(4) achives the absolute bound ep = 1

higher dimension, d = 3,

There exists an AME state of 4 qutrits

state AME(4,3) |Ψ4
3〉 ∈ H

⊗4
3 by Popescu:

|Ψ4
3〉 = |0000〉+ |0112〉+ |0221〉+

|1011〉+ |1120〉+ |1202〉+

|2022〉+ |2101〉+ |2210〉.

and corresponds to the optimal permutation matrix P9
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AME(4,3) state of four qutrits, N = 4 and d = 3

|Ψ4
3〉 = |0000〉+ |0112〉+ |0221〉+

|1011〉+ |1120〉+ |1202〉+

|2022〉+ |2101〉+ |2210〉.

This state is also encoded in a pair of orthogonal Latin squares of size 3,

0α 1β 2γ

1γ 2α 0β

2β 0γ 1α

=

A♠ K♣ Q♦
K♦ Q♠ A♣
Q♣ A♦ K♠

.

Corresponding Quantum Code: |0〉 → |0̃〉 := |000〉+ |112〉+ |221〉
|1〉 → |1̃〉 := |011〉+ |120〉+ |202〉
|2〉 → |2̃〉 := |022〉+ |101〉+ |210〉
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AME(4,3) state of four qutrits, N = 4 and d = 3

AME state |Ψ4
3〉 =

∑2
i ,j=0 |i〉 ⊗ |j〉 ⊗ |i + jmod 3〉 ⊗ |i + 2jmod 3〉

=
∑2

i ,j=0 |i , j〉 ⊗ |φij〉 =
∑2

i ,j=0 |i , j〉 ⊗ U|i , j〉
U = P9 ∈ U(9), where U acts as an isometry between the basis (i , j) and
(l , k) = (i + j , i + 2j) denoting: rows, columns, suits, honors

i j i + j i + 2j

0 0 0 0
0 1 1 2
0 2 2 1
1 0 1 1
1 1 2 0
1 2 0 2
2 0 2 2
2 1 0 1
2 2 1 0
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Mutually orthogonal Latin Squares (MOLS)

♣) d = 2. There are no orthogonal Latin Square
(for 2 aces and 2 kings the problem has no solution)

♥) d = 3, 4, 5 (and any power of prime) =⇒ there exist (d − 1) MOLS.
♠) d = 6. Only a single Latin Square exists (No OLS!).

Euler’s problem: 36 officers of six different ranks from six different units
come for a military parade. Arrange them in a square such that in each
row / each column all uniforms are different.

No solution exists ! (1799 conjecture by Euler), proof (121 years later)
Gaston Tarry ”Le Probléme de 36 Officiers”. Compte Rendu (1900).
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Mutually orthogonal Latin Squares (MOLS)

An apparent solution of the d = 6 Euler’s problem of 36 officers
36cuBe by D. C. Niederman, (2008):

the World’s Most Challenging Puzzle
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Why do we care about AME states?

Since they can be used for various purposes
(e.g. Quantum codes, teleportation,...)

Resources needed for quantum teleportation:

a) 2-qubit Bell state allows one to teleport 1 qubit from A to B

b) 2-qudit generalized Bell state allows one to teleport 1 qudit

c) 3-qubit GHZ state allows one to teleport 1 qubit between any users

d) 4-qutrit GHZ state allows one to teleport 1 qutrit
between any two out of four users

f) 4-qutrit state AME(4,3) allows one to teleport 2 qutrits between
any pair chosen from four users to the other pair!

- say from the pair (A & C) to (B & D)

relations between AME states and multiunitary matrices,
perfect tensors and holographic codes
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4–party AME state and two–unitary matrices

Consider an AME state of four parties A,B,C ,D with d levels each,
|ψ〉 =

∑d
i ,j ,l ,m=1 Tijlm|i , j , l ,m〉

It is maximally entangled with respect to all three partitions:
AB|CD and AC |BD and AD|BC .

Let ρABCD = |ψ〉〈ψ|. Hence its three reductions are maximally mixed,
ρAB = TrCDρABCD = ρAC = TrBDρABCD = ρAD = TrBCρABCD = 1d2/d2

Thus matrices Uµ,ν of order d2 obtained by reshaping the tensor Tijkl are
unitary for three reorderings:

a) µ, ν = ij , lm, b) µ, ν = im, jl , c) µ, ν = il , jm.

Such a tensor T is called perfect,
Pastawski, Yoshida, Harlow, Preskill (2015)

Corresponding unitary matrix U of order d2 is called two–unitary
if reordered matrices UR and UΓ remain unitary.

Goyeneche, Alsina, Latorre, Riera, K. Ż. (2015)
2-unitarity (UR and UΓ unitary) is stronger than dual unitary (UR unitary)
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In hunt for an |AME (4, 6)〉 state of 4 quhex, d = 6

To find the state
|AME (4, 6)〉 = (UAB ⊗ ICD)|Ψ+

AC |BD〉 =
∑6

i ,j ,k,`=1 tijk`|i , j , k , `〉

we look for a 2–unitary matrix UAB ∈ U(36), which remains unitary after
reorderings, maximizes the entangling power ep(U)

(average entanglement of UAB |ψA〉 ⊗ |ψB〉)
and leads to a perfect tensor tijk` used for models of bulk/boundary duality

Optimization over the space U(36) of dimension 362 − 1 = 1295
is not easy...

KŻ (UJ/CFT) Multi-unitary matrices 29.11.2019 25 / 34
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KŻ (UJ/CFT) Multi-unitary matrices 29.11.2019 28 / 34



Rather, Burchardt, Bruzda, Rajchel, Lakshminarayan, K.Ż.
preprint arXiv:2102.07787
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Four dice in the golden |AME (4, 6)〉 state corresponding to 36 entangled
officers of Euler. Any pair of dice is unbiased, although their outcome
determines the state of the other two.
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multi–unitary matrices and AME states

Consider an AME state of 2k parties with d levels each.

It is maximally entangled with respect to all possible symmetric
partitions, so all its k-party reductions are maximally mixed.

Unitary matrix U of order dk with the property that it remains unitary
for any choice of k indices out of 2k is called k–unitary

Example: 3–unitary matrix of order 23 = 8 remains unitary for any of(6
3

)
= 20 possible reorderings,

O8 =
1√
8



−1 −1 −1 1 −1 1 1 1
−1 −1 −1 1 1 −1 −1 −1
−1 −1 1 −1 −1 1 −1 −1

1 1 −1 1 −1 1 −1 −1
−1 1 −1 −1 −1 −1 1 −1

1 −1 1 1 −1 −1 1 −1
1 −1 −1 −1 1 1 1 −1
1 −1 −1 −1 −1 −1 −1 1


.

Such matrices optimize 3-party entangling power, Linowski, Rajchel, K.Ż.
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Concluding Remarks

Strongly entangled extremal multipartie quantum states can be useful for
quantum error correction codes, multiuser quantum communication and
other protocols.

Theorem. Absolutely maximally entangled states |AME (4, 6)〉
of 4 subsystems with 6 levels each do exist !

This implies existence of

1 solution of the quantum analogue of the 36 officers problem of Euler,

2 optimal bi-partite unitary gate U36 with maximal entangling power

3 perfect tensor tijk` with 4 indices, each running from 1 to 6, to be
applied for tensor networks and bulk/boundary correspondence,

4 nonadditive quantum error correction code ((3, 6, 2))6 which allows
one to encode a single quhex in three quhexes

(it does not belong to the class of stabilizer codes).

=⇒ such extremal quantum states & the corresponding
multi-unitary matrices can be useful...
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