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Gutt Hutchings Capacities

C E Cz k I Ck k

Defined for star shaped domain Xc 1122 using

S equivariant symplectic homology

E n I ZINCHIX
otherwise

Gex ins I image il CHUX CHA
contains CHn it k X

r



Computations
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QI Are the Gc independent

Or do they always depend on the periods of finitely
many simple closed Reeb orbits on IX

Al Yes For each le IN there are X and Y

convex with smooth boundary sit
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Q2 If DX is smooth do the Ck X see
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Q3 If DX is smooth do Ck X and

Vol X determine X up to symplectomorphisin

A3 NO there are X Y with smooth boundary

convex such that CKX C Y K KEN
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Q4 Is kN CE X t ke IN

This is stated as a conjecture by Gutt Hutchings

Work by Abbondandolo Kang and Irie suggest

true if X is convex

The examples underlying Al AZ As are obtained

using a retirement of formulae of Gutt Hutchings



Gutt Hutchings establish a computable formula for

Ck X when X is a convex concave toric domain
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Than Gutt Hutchings

If Xs is convex then

Ck Xe min lull refs Ey k
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solve a compare KI optimization problems

If Xs is concave ther
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If R is symmetric and Ye is convex then
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If I is symmetric and X concave then
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Example The Lagrangian Bidisk
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Than Can X1 2n Xp

Cant Xr n Xant t ntl f Xena

Blind spots of the Gc

A compact C small perturbation of f away from

Xf does not change the Can's

A compact C small perturbation of f away
from

Kat does not change can
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To establish AB we need the ECH capacities of

Hutchings in dim 4

Choose f f t f 0 Xp concave

One can compute c Yet algorithmically using

the ordered weight expansions ofRp
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Idea

The points x used to define the Tx's

of Ye are dense

Deform f near an Xa which lies away

from Xp and the Xan

Changes CE't Xero but not Ck or Vol
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This is a general phenomenon in dim 4



Yuanpu's Proof of the simplified formulas

Given A symmetric sit Xs is convex Need
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Consider the map D In Scan
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Proof of Prop 11 Deville E lulls
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Next Questions

How independent a c the Ck

1 Does there exist a starshaped X CR such that

no calx is an integer multiple of any other

2 Does there exist a star shaped Xc In st for

each le IN F YeCRM with
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How independant are the q from Vol
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