Symplectic capacities and their blind spots
joint w/ Yuanpu Liang

$$
\text { ar Xiv: } 2109.01792 \mathrm{v} 1
$$

Symplectic Capacity
$c:\left\{u \subset \mathbb{R}^{2 n}\right\} \rightarrow[0, \infty]$

1) $\quad c(e(u))=c(u) \quad \quad l \in \operatorname{Symp}\left(\mathbb{R}^{2 n}, \omega_{2 n}\right)$
2) $u \subset V \Rightarrow c(u) \leq c(V)$
3) $c(\lambda u)=\lambda^{2} c(u)$
4) $\quad 0<C\left(B^{2 n}(1)\right), \quad C\left(B^{2}(1) \times \mathbb{R}^{2 n-2}\right)<\infty$.

Ex $\quad C_{G}(u)=\sup \left\{\begin{array}{l|l}\mathbb{R}^{2} & \begin{array}{l}\exists \varphi \in \operatorname{Sypp}\left(\mathbb{R}^{2 n}, \omega_{2 n}\right) \\ \text { s.t. } \\ \varphi\left(B^{2 n}(R)\right)<u\end{array}\end{array}\right\}$

Ex $C_{k}^{E H} \quad$ (Ekeland-Hofer) $\quad k \in \mathbb{N}$
\uparrow
grading by Fadell-Rabinowitz index

Ex $C_{t}^{E C H}:\left\{u \subset \mathbb{R}^{4}\right\} \rightarrow[0,0] \quad$ Hutchings
\uparrow grading by Contey-Zehnder index

Gutt-Hutchings Capacities

$$
c_{1} \leq c_{2} \leq \ldots \leq c_{k} \leq \ldots
$$

- Dehned for star-shaped domainis $X \subset \mathbb{R}^{2 n}$ using s'-equivariant symplectic homology

$$
\begin{gathered}
C H_{*}(X)= \begin{cases}\mathbb{Q}, & * E n-1+2 \mathbb{N} \\
0, & \text { otherwize }\end{cases} \\
C_{k}(X)=\operatorname{int}\left\{\begin{array}{lll}
L & \begin{array}{ll}
\text { inage } & i_{L}: C H^{l}(X) \rightarrow C H(X) \\
\text { contains } & C H_{n-1+2 k}(X) .
\end{array}
\end{array}\right\}
\end{gathered}
$$

Computations

- $C_{1}(X)=$ min achoo of closed characteristic on ∂X.
$=\min$ period of Reek orbit of $\left.\left(i_{r / 2 x} \omega\right)\right|_{\partial x}$ on ∂X.
$a \geq 1$
- $E(1, a)=\left\{\pi|z|^{2}+\frac{\pi\left|z_{1}\right|^{2}}{a} \leq 1\right\} \subset \mathbb{C}^{2}$

$$
c_{k}(E(1, a))=(\operatorname{Sort}\{\mathbb{N} \cup a \mathbb{N}\})[k]
$$

- $P(1, a)=\left\{\left.\pi\left|z^{2} \leq 1, \pi\right| z_{2}\right|^{2} \leqslant a\right\}$

$$
C_{k}(P(1, a))=k .
$$

Q1 Are the c_{k} independent?
Or do they always depend on the periods of finitely many simple closed Reel orbits on ∂X ?

Al Yes. For each $l \in \mathbb{N}$ there are X and Y (convex with smooth boundary) sit.

$$
\begin{aligned}
& C_{k}(x)=C_{k}(y) \quad \forall \quad k \neq l . \\
& C_{l}(x) \neq C_{l}(y) \\
& \left(V_{0} l(x)=V_{0} l(y)\right)
\end{aligned}
$$

Q2 If ∂X is smooth, do the $C_{k}(X)$ see $\operatorname{Vol}(x) ?$

- Without ∂X smooth obviously no. $C_{k}(P(1, a))=k$.

Consider

$$
\begin{aligned}
& E_{p}(1, a)=\left\{\left(\pi\left|z_{1}\right|^{2}\right)^{p}+\left(\frac{\pi\left|z_{2}\right|^{2}}{a}\right)^{p} \leqslant 1\right\}
\end{aligned}
$$

Lemma For each $k \quad p(k)$ sit. $\quad C_{k}\left(E_{p}(1, a)\right)=k$ for all $p \geq p(k)$.

Lemma For each $p \in(1, \infty) \quad \exists \quad k(p)$ s.t. $C_{c}\left(E_{p}(1, a)\right)$ depends on a for all $k \geq k(p)$.
$\left\{C_{k}\left(E_{p}(1, a)\right)\right\}_{1<\in \mathbb{N}}$ remenkens a for all $p<\infty$.
Nevertheless A2 is NO
$\exists X, Y$ wi snoot boundary st. $\quad C_{k}(X)=C_{k}(Y) \quad \forall k$
(convex) $\quad \& \quad \operatorname{Vol}(X) \neq \operatorname{Vol}(Y)$.

Q3 If ∂X is smooth, do $C_{k}(x)$ and Vol (X) determine X up to symplectomorphisin

43 NO, there are X, Y with smooth boundary (convex) such that $C_{k}(x)=C_{k}(y) \quad \forall k \in \mathbb{N}$

$$
V_{0} l(X)=V_{0} l(Y) \text { but } X \not \approx Y:
$$

(They can be dishnguished using $C_{q}^{\text {ELL }}$.)

Q4 Is $c_{k}(x)=c_{k}^{E H}(x) \quad \forall k \in \mathbb{N}$?

This ir stated as a conjecture by Gutt-Hatchings

Work by Abbondandolo-kany and Erie suggest true if X is convex.

The examples indulging $A 1, A 2, A 3$ are obtained using a rehmenent of formulae of Gutt-Hutchings.

Gutt-Hutchings establish a compulable formula for $c_{k}(X)$ when X is a convex/concave tonic domain.

$$
\mu:\left(z_{1}, \ldots z_{n}\right) \mapsto\left(\pi\left|z_{1}\right|^{2}, \ldots, \pi\left|z_{n}\right|^{2}\right), \Omega \subset\left(\mathbb{R}_{20}\right)^{n}
$$

- $X_{\Omega}=\mu^{-1}(\Omega)$ convex if $\hat{\Omega}=\left\{x \in \mathbb{R}^{n} \mid\left(\left|x_{1}\right|, \ldots, \mid x, 1\right) \in \Omega\right\}$ is
is.

- X_{Ω} ir concave it the complement of Ω in $\mathbb{R}_{\geq_{0}}^{n}$ ir caver.

The Gutt-Hutchings
If X_{Ω} is convex then

$$
c_{k}\left(X_{\Omega}\right)=\min \left\{\|v\|_{\Omega} \mid v \in\left(\mathbb{Z}_{z_{0}}\right)^{n}, \sum v_{j}=k\right\}
$$

where $\|v\|_{\Omega}=\max \{\langle v, \omega\rangle \mid \omega \in \Omega\}$
(solve \& compare $\binom{k+n-1}{n-1}$ ophmizahoi problems.)
If X_{Ω} is concave then

$$
c_{k}\left(X_{\Omega}\right)=\max \left\{[v]_{\Omega} \mid v \in \mathbb{N}^{n}, \sum v_{j}=k+n-1\right\}
$$

where $[v]_{\Omega}=\min \{\langle v, \omega\rangle \mid \omega \in \Omega\}$
$\Omega \subset \mathbb{R}_{\geq 0}^{n}$ is symmetric if $\left(v_{1}, \ldots, v_{n}\right) \in \Omega \Rightarrow\left(v_{\sigma(1)}, \ldots, v_{\sigma(n)}\right) \in \Omega$ for all $\sigma \in S_{n}$.
$\operatorname{Thm}\left(k-L_{\text {lang }}\right)$
If Ω is symmetric and X_{Ω} is convex then

$$
\begin{aligned}
& C_{k}\left(X_{\Omega}\right)=\max _{w \in \Omega}\langle V(k, n), w\rangle \text { where } \\
& V(k, n)=(\left\lfloor\frac{k}{n}\right\rfloor, \ldots,\left\lfloor\frac{k}{n}\right\rfloor, \underbrace{\left\lceil\frac{k}{n}\right\rceil, \ldots,\left\lceil\frac{k}{n}\right\rceil}_{k \bmod n})
\end{aligned}
$$

If Ω is symmetri and X_{Ω} corcave, then

$$
\begin{aligned}
& C_{k}\left(X_{\Omega}\right)=\min _{\omega \in \Omega}\langle\check{V}(k, n), w\rangle \\
& \check{V}(k, n)=(\underbrace{\left\lceil\frac{k+n-1}{n}\right\rceil, \ldots,\left\lceil\frac{k+n-1}{n}\right\rceil}_{k+n-1 \bmod n},\left\lfloor\frac{k+n-1}{n}\right\rceil, \ldots,\left\lfloor\frac{k+n-1}{n}\right\rfloor)
\end{aligned}
$$

Example The Lagrangian Bidisk.

$$
P_{L}=\left\{\left(z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}\right) \mid x_{1}^{2}+x_{2}^{2} \leq 1, \quad y_{1}^{2}+y_{2}^{2} \leq 1\right\}
$$

Thus (Ramos) $\stackrel{\circ}{P}_{L}$ ir syupleclomorphic to \dot{X}_{Ω} for

$$
\left\{\begin{array}{l}
\left(2 \sin \left(\frac{t}{2}\right)-t \cos \left(\frac{t}{2}\right), 2 \sin \left(\frac{t}{2}\right)+(2 \pi-t) \cos \left(\frac{t}{2}\right)\right) \\
\Omega \quad t \in[0,2 \pi]
\end{array}\right.
$$

Thm $\Rightarrow C_{k}\left(P_{L}\right)=\left\{\begin{array}{l}2 k+2, \quad k \text { odd } \\ (4 k+2) \sin \left(\frac{\pi}{2}\left(\frac{k+2}{k+1}\right)\right), \text { keven }\end{array}\right.$

Example $f:[0,1] \rightarrow[0,1], f(0)=1, f=l^{-1}, f^{\prime \prime}<0$

$$
\Omega_{f}=\left\{(x, y) \in R_{\geq 0}^{2} \mid y \leq f(x)\right\}
$$

$$
\begin{aligned}
\text { Thy } \Rightarrow & c_{2 n}\left(X_{\Omega_{f}}\right)=2 n x_{f} \\
& C_{2 n+1}\left(X_{\Omega_{f}}\right)=n x_{2 n+1}+(n+1) f\left(x_{2 n+1}\right)
\end{aligned}
$$

Blind Spoils of the C_{k}.

- A compact $c^{2}-$ small perturbation of f away from x_{f} does not change the $C_{2 n}$'s
- A compact c^{2} - small perturbahoi of f away from $x_{2 k+1}$ does not change $C_{2 k+1}$.

A1: For $f_{j}=f+\delta\left(\underset{\substack{0 \\ x_{2 k+1}}}{\substack{0}}\right)+$ mirror bump

$$
\begin{aligned}
& V_{0} 1\left(X_{\Omega_{f_{\delta}}}\right)=V_{0} l\left(X_{\Omega_{f}}\right) \\
& C_{2 n}\left(X_{\Omega_{f_{\delta}}}\right)=C_{2 n}\left(X_{\Omega_{f}}\right) \\
& C_{2 n+1}\left(X_{\Omega_{f_{\delta}}}\right)=C_{2 n+1}\left(X_{\Omega_{f}}\right) \quad n \neq k . \\
& C_{2 k+1}\left(X_{\Omega_{f_{\delta}}}\right)=C_{2 k+1}\left(X_{\Omega_{f}}\right)+\delta(k+1)
\end{aligned}
$$

starting w/ f concave ore can also deform any $c_{2 k}$.

A2 For $f_{\delta}=f+\delta\left(\underset{x_{2 k-1}}{\left.\underset{x_{2 k+1}}{\sim}\right)}+\right.$ mirror bump

$$
\begin{aligned}
& c_{n}\left(X_{\Omega_{f \delta}}\right)=c_{n}\left(X_{\Omega_{f}}\right) \quad \forall k \in \mathbb{N} \\
& \operatorname{Vol}\left(X_{\Omega_{f f}}\right) \neq \operatorname{Vol}\left(X_{\Omega_{f}}\right) .
\end{aligned}
$$

To establish A3 we need the ECH capacities of Hutchings in $\operatorname{dim} 4$.

Choose $f=f^{-1}, f^{\prime \prime}>0 . \Rightarrow X_{\Omega p}$ concave.
One can compute $c_{k}^{E C H}\left(X_{\Omega_{f}}\right)$ algorithmically using the ordered weight expansions of Ω_{f} :

$$
\text { Sort }\left\{\tau_{0}, \tau_{1}, \tau_{2}, \tau_{11}, \tau_{12}, \tau_{21}, \tau_{22}, \ldots\right\}
$$

Hutchings, Choi + Cristofaro-Gardiner + Frankel + Hutchings + Ramos
Ox

$$
\tau_{22}=3 x_{22}+f\left(x_{22}\right)-\tau-\tau_{2}, \quad f^{\prime}\left(x_{22}\right)=-3
$$

Idea

- The points x_{*} used to define the T_{*} 's of $X_{\Omega_{f}}$ are dense.
- Deform f near an X_{*} which lies away from x_{f} and the $x_{2 n}$
- Changes $C_{l}^{E C H}\left(X_{\Omega_{f_{\sigma}}}\right)$ but not c_{k} or V, l.

$f_{\varepsilon}(x) \rightarrow X_{\Omega_{f_{\varepsilon}}}$ has smooth boundary. for $\varepsilon>0$
- \dot{x}_{22} lies away ham $\dot{x}_{f_{\varepsilon}}$ and $\dot{x}_{2 n}$ delermini) the C_{n}
- $f_{\varepsilon, \delta}=f_{\varepsilon}(x)+\delta\left(\underset{x_{22}}{{\underset{x}{2}}^{\sim}}\right)+$ mirror bump.

AB

$$
\begin{aligned}
& C_{k}\left(X_{\Omega_{f_{\varepsilon, \sigma}}}\right)=C_{k}\left(X_{\Omega_{f_{\varepsilon}}}\right) \quad \forall k \in \mathbb{N} \\
& \operatorname{Vol}\left(X_{\Omega_{f_{\varepsilon, \delta}}}\right)=\operatorname{Vol}\left(X_{\Omega_{f_{\varepsilon}}}\right) \\
& C_{q}^{E C H}\left(X_{\Omega_{f_{\varepsilon, \delta}}}\right)=C_{q}^{E C H}\left(X_{\Omega_{f_{\varepsilon}}}\right)+\delta
\end{aligned}
$$

This is a geneal phenomenon in din 4.

Yuanpu's Proof of the simplified Cormula(s)
Given Ω rymmetri sit. X_{Ω} is convex. Need

$$
\begin{aligned}
c_{k}\left(x_{\Omega}\right) & =\min \left\{\|v\|_{\Omega} \mid v \in\left(\mathbb{Z}_{20}\right)^{n}, \sum v_{j}=k\right\} \\
& =\|v(k, n)\|_{\Omega}
\end{aligned}
$$

for $V(k, n)=(\left\lfloor\frac{k}{n}\right\rfloor, \ldots,\left\lfloor\frac{k}{n}\right\rfloor, \underbrace{\left\lceil\frac{k}{n}\right\rceil, \ldots,\left\lceil\frac{k}{n}\right\rceil}_{k \bmod n}$
and $\|V\|_{\Omega}=\max _{\omega \in \Omega}\langle v, \omega\rangle$
$v \in \mathbb{R}^{n}$ ir ordered if $v_{1} \leq v_{2} \leq \ldots \leq v_{n}$
Ex $V(k, n)$ is ordered.
Symmetry of $\Omega \Rightarrow\left\|\left(V_{1}, \ldots, V_{n}\right)\right\|_{\Omega}=\left\|\left(V_{\sigma(1)}, \ldots, V_{\sigma(n)}\right)\right\|_{\Omega}$

$$
\begin{aligned}
& \forall \quad \sigma \in S_{n} \\
& \vec{S}(k, n)=\left\{v \in\left(\mathbb{Z}_{\geq 0}\right)^{n} \mid \Sigma v_{j}=k, \quad v \text { ordered }\right\} \\
& C_{k}\left(x_{\Omega}\right) \stackrel{G-H}{=} \min \left\{\|v\|_{\Omega} \mid v \in \vec{S}(k, n)\right\}
\end{aligned}
$$

Consider the map $D: \vec{S}(k, n) \rightarrow \vec{S}(k, n)$

$$
\begin{aligned}
& V=(\underbrace{v_{1}, v_{1}, \ldots, v_{1}}_{t}, \ldots, \underbrace{v_{n}, \ldots, v_{n}}_{T}) \\
& \downarrow \\
& \left\{\begin{array}{cl}
(\underbrace{v_{1}, \ldots, v_{1}}_{+-1}, v_{1}+1, \ldots, v_{n}-1, \underbrace{v_{n} \cdots v_{n}}_{T-1}) & \text { if } v_{n}>v_{1}+1 \\
v & \text { otherwise }
\end{array}\right. \\
& \text { - } \operatorname{Fix}(D)=\{V(k, n)\} \text { and } D^{j}(V)=V(k, n) \text { for } \\
& \text { j >>1 }
\end{aligned}
$$

Prop $\|D(v)\|_{\Omega} \leq\|v\|_{\Omega}$

$$
\begin{aligned}
& C_{k}\left(X_{\Omega}\right)=\min \left\{\|v\|_{\Omega} \mid v \in \vec{S}(k, n)\right\} \\
\Rightarrow & C_{k}\left(X_{\Omega}\right)=\|\tilde{v}\|_{\Omega} . \\
\Rightarrow & C_{k}\left(X_{\Omega}\right)=\left\|D^{j}(\tilde{V})\right\|_{\Omega} \quad \forall j \in \mathbb{N} \\
\Rightarrow & C_{k}\left(X_{\Omega}\right)=\|V(k, n)\|_{\Omega} \quad
\end{aligned}
$$

lemma $\|v\|_{\Omega}=\langle v, w\rangle$ for some w ordered
If Assume $\|v\|_{\Omega}=\langle v, \omega\rangle$ and $\left.W_{j}\right\rangle W_{j+1}$

Set $\quad \tilde{w}=\left(\omega_{1}, \ldots, w_{j_{+1}}, w_{j}, \ldots, \omega_{n}\right)$.

$$
\begin{aligned}
\langle v, \tilde{w}\rangle-\langle v, w\rangle & =v_{j} w_{j+1}+v_{j+1} w_{j}-v_{j} w_{j}-v_{j+} w_{j+1} \\
& =\left(v_{j}-v_{j+1}\right)\left(w_{j+1}-w_{j}\right) \\
& \geq 0 \quad-v e \quad-v e .
\end{aligned}
$$

Since $\langle v, \omega\rangle=\max _{w \in \Omega}\langle v, \omega\rangle$ we have $\left.\langle v, \tilde{\omega}\rangle=\langle v, \omega\rangle\right\rangle$

Proof of Prop: $\|D(v)\|_{\Omega} \leqslant\|v\|_{\Omega}$
lemma $\Rightarrow\|D(v)\|_{\Omega}=\langle D(v), w\rangle$ bor w ordered

$$
\begin{aligned}
\|v\|_{\Omega}-\|D(v)\|_{\Omega} & \geq\langle v, w\rangle-\langle D(v), w\rangle \\
& =\left(v_{1} \omega_{t}+v_{n} w_{n-T}\right)-\left(v_{1}+1\right) \omega_{+}-\left(v_{n}-1\right) \omega_{n-T} \\
& =w_{n-T}-\omega_{+} \\
& \geq 0 \quad \text { since } w i_{1} \text { ordered. }
\end{aligned}
$$

Next Questions
How independent air the c_{k} ?

1) Dose there exist a starshaped $X \subset \mathbb{R}^{2 n}$ such that no $C_{k}(X)$ Is an integer multiple of any other?
2) Does there exist a star shaped $X \subset \mathbb{R}^{2 n}$ st for each $l \in \mathbb{N} \quad \exists \quad y_{l} \subset \mathbb{R}^{m}$ with

$$
\begin{aligned}
& c_{k}(x)=c_{k}\left(y_{l}\right) \quad \forall k \neq l \\
& c_{l}(x) \neq c_{l}\left(y_{l}\right)
\end{aligned}
$$

How independent are the c_{k} from $V o l ?$

$$
\operatorname{IVR}(X)=\sup \frac{\operatorname{vol}(y)}{\operatorname{vol}(Z)}
$$

where $c_{k}(x)=c_{k}(y)=c_{k}(z) \quad \forall k \in \mathbb{N}$.

- In $\operatorname{din} 2 \operatorname{IVR}(x)=1$
- $\operatorname{IVR}(P(1, a))=\infty$

3) Is $\operatorname{IVR}(E(1, a))=1$?
4) If $d X$ is smooth is $\operatorname{IVR}(X)<C_{n}$?

$$
c_{4} \geq 6-2 \sqrt{6} \approx 1.10102 .
$$

