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Intro: QMC and sign-problem



QMC and sign-problem

Monte Carlo (MC): Approximate (Q) = Z O(P)p(¢P) ~ Z 0 , where ¢. are sampled w.r.t p.

¢
Claim to fame: Generically M = poly (N) where N = system S|ze, though {@} = exp(N).

Quantum Monte Carlo (QMC): Map a quantum system in d-dimensions to a ‘i2>

“classical” system in d + 1 dimensions, and apply MC: Z = Tr _ﬁH Zp(gb)

Claim to fame: Classical poly(fN) simulation of quantum systems on exp(N) dimensional Hilbert
spaces.

Sign-problem: The generic obstruction to a quantum-to-classical mapping: p(¢) € C.



Sign-problem and complexity

Fool’s gold*: Can work with | )2, | , Which generically allows for poly(//N) approximations, but of the

wrong system.

Mapping back to the system of interest is generically exp(//N) - another facet of the sign-problem [Troyer-
Wiese (2005)].

Curing the sign-problem: Try to change the quantum-to-classical mapping s.t p > 0.

Example: Change local basis to make the Hamiltonian stoquastic, H < (0. This implies (e_ﬂH) >0,
and so p > 0 in a variety of quantum-to-classical mappings. /

Complexity theory: From a number of perspectives, a general poly(/N) curing algorithm is not believed
to exist [Bravyi et al (2008), Hastings (2016), Marvian-Lidar-Hen (2018), Klassen-Terhal (2019),...].



Sign-problem and physics

In many-body physics we mostly care about phases of matter and transitions, so sign-free
representatives suffice.

QMC is alive because many interesting sign-free representatives are discovered:
He-4 Ceperley (1995), Magnetism & topological phases Kaul-Melko-Sandvik (2013), Quantum critical metals Berg et
al 2018), Fermions: Determinantal-QMC and Design principles (/{ won’t be stoquastic) wei (2018), Li-Yao

(2019)...

Nevertheless, long standing open problems in many-fermion systems continue to defy solution:

High-Tc / Hubbard model, Nuclear matter / Lattice QCD, FQH 5/2 / Coulomb Hamiltonian,...
Intrinsic sign-problems Hastings (2016), Ringel-Kovrizhin (2017):

Are there phases of matter which do not admit a sign-free representative?

Are there physical properties that can not be exhibited by sign-free models?



Intrinsic sign-problems:
overview of existing and new results



Intrinsic sign-problem from geometry: essence

Topological phases of matter, that are characterized by ‘geometric twists’, are natural candidates!

Q: Why topological phases?
. T .

A: Characterized by complex phases in ‘twisted partition functions’: |’ﬂ> ® ‘h)

7 = Tr(Te_'BH) — eiStopo+"', (f — ). “time”

Q: Why geometric twists (I' = permutation of lattice sites)?

A: These can be implemented without introducing signs:

Z=Z£§(@ > Z=)
b4 b

So, intrinsic sign-problem:  §,,,, #0 = p(¢) £ 0.

Smith-OG-Ringel (2020), OG-Smith-Ringel (2020) /



Intrinsic sign-problems: overview

Previous work:
1. No stoqguastic, commuting projector, representative for ‘doubled semion’ phase, Hastings (2016).

2. No stoquastic, translationally invariant, representative for bosonic chiral topological phases Ringel-
Kovrizhin (2017).

These works:

. Generalize (1) to ‘most’ bosonic, abelian, non-chiral, topological phases (details to follow).
Smith-OG-Ringel (2020).

. Obtain a variant of (2), and generalize to fermions (Determinantal-QMC):

An intrinsic sign-problem exists if exp (2ric/24) & {Qa}. OG-Smith-Ringel (2020).

/ \
Chiral central Topological spins
charge of anyons

iil. Conjecture a unification & generalization of i.+ii.



Examples: Intrinsic sign-problems from ¢?%</** ¢ 0,1

Phase of matter Parameterization Intrinsic sign problem?

C
Laughlin (B) Filling 1/g, (g € 2N) 1 _ 98.5% of first 103
Laughlin (F) Filling 1/g, (¢€2N-1) 1 96.7% of first 103

Chern insulator (F) Chern number v € Z % ) v ¢ 127

¢-wave superconductor (F) Pairing channel £ € 2Z — 1 £/2 Yes

Kitaev spin liquid (B) Chern number v € 2Z —1 v/2 {0,1/2,v/16} Yes

SU (2), Chern-Simons (B) Level k € N 3k/ (k + 2) {a(a+2)/4(k+2)}_, 91.6% of first 10°
Es K-matrix (B) Stack of n € N copies 8n {0} n ¢ 3N
Fibonacci anyon model (B) 14/5 (mod 8) {0,2/5} Yes

+ three Pfaffian candidates for filling 5/2.

‘Most’ chiral topological phases are intrinsically sign-problematic: fermionic / bosonic, abelian / non-abelian, SPT /
topologically ordered.

1 3 1
24" 8 24

Keep in mind Laughlin 1/3: {ha} = { } and ¢ = 1, so e*™*% & {Ha}.

Many phases which are universal for topological quantum computation, are also intrinsically sign-problematic
(SU(2);41 2 4 and Fibonacci), supporting the paradigm of ‘quantum advantage’ or ‘supremacy’.

OG-Smith-Ringel (2020) O



Beyond chiral matter

For bosonic, abelian, non-chiral phases, we have:

An intrinsic sign-problem exists if Spec(T) = {0} is not a disjoint union of complete sets
of roots of unity”. smith-0G-Ringel (2020)

*Spec(T) # U, R, . where R, = {e 2’”’””/”k}m | are the m;th roots of unity.

Examples: Toric code is stoquastic, and accordingly Spec(T) = {1,1,1,— 1} =R, UR; UR,.

Doubled semion is intrinsically sign-problematic, since Spec(T) = {1,i, — 1,1 }. Similar picture for Z,,
string-nets.

A conjecture for all phases described by TQFT unifies both results:

An intrinsic sign-problem exists if Spec(T) = {0 e —27ic24Y s not a disjoint union of complete sets
of roots of unity.

The criterion e?™/** & 10} can be written as 1 & Spec(T), and the conjecture raises the table
percentages to 100%, including Lauhglin 1/3.

10



Complexity and physics

The intrinsic sign-problem is a statement of complexity, phrased in terms of physical observables:

e Chiral central charge c:

 Boundary thermal Hall conductance, measured in quantum Hall and spin systems. [Jezouin et al (2013),
Banerjee et al (2016, 2018), Kasahara et al (2018).]

 Angular momentum at conical defects, observed in an optical realization of integer quantum Hall
states on a cone. [Schine et al (2018).}

* Bulk Hall viscosity at finite wave-vector / curved background. [Abanov-Gromov (2014), Klevtsov-Wiegmann
(2015), Bradlyn-Read (2015), OG-Hoyos-Moroz (2019).]

- Topological spins {€,}: determine the exchange statistics of anyons, measured in interferometry and
‘collision’ experiments. [Nakamura et al (2020), Bartolomei et al (2020).]

o Important for this talk: ¢ and {6, } enter the boundary momentum density.

11



Results and sketch of derivations for:

An intrinsic sign-problem exists if ¢°"/** ¢ 10,1

OG-Smith-Ringel (2020)

12



Physics of chiral topological matter

Low energy description of chiral topological matter: chiral topological field theory in bulk, chiral
Chiral CFT Chiral CFT

conformal field theory on boundary.

X

Boundary energy current: J, (7)) = J(0) + 2xT?cl24,
experimentally observed. Banerjee et al (2018), Kasahara et al (2018).

Boundary momentum density: |
p(L) = p(co)+ 27l (ho — c/24), where e*"" = g, € {0, }.

Can be extracted from lattice models using ‘momentum polarization’ Tu-zhang-Qi (2013), Zaletel-Mong-
Pollman (2013):

7 = Tr(TRe_ﬂH), arg(Z) = al + 27TL_1(hO —c/24), @ l< L.

500 1000 1500 500 1000 1500
N, N,




Excluding stoquastic Hamiltonians for
bosonic chiral topological matter

Momentum polarization:

Z:=T(Tpe ), arg(Z) = aL +2xL"'(hy—c/24), (B < L.

Two facts: () If H' = UHU'" is stoquastic, then TRe_ﬁH' has positive entries.

(i) If U is a local finite-depth circuit, then H' in same phase
as H,soc'=c,10,} =10,}.

) | i ) y
As a result, we have for Z' := Tr(TRe_ﬁH : 0 (=) arg(Z): 2% (I=I) (a'/27)L* + hy — c/24.

Taking L — oo shows a'/2x € Q, and therefore p2micl24 — p2mihy 0.}

Result 1: If a local bosonic Hamiltonian is both locally stoquastic and in a chiral topological
phase, then ¢*™/** & 0.}

OG-Smith-Ringel (2020) 14



Excluding sign-free DQMC for chiral topological matter

DQMC.: / = ID¢DW€_S¢_SW’¢ « Sl//,qb — J'd’[l/_ngbl/j

Result 1F: If a local fermion-boson Hamiltonian, which is in a chiral topological phase of matter,
admits a locally sign-free DQMC simulation, then ¢*™** & 10,1

OG-Smith-Ringel (2020) 15



Excluding sign-free DQMC for chiral topological matter

DQMC: — J Dge>¢Det (1+ U(ﬁ) . Uy = T o= o hyod

\/\/—\J
p(¢p)

Origin of sign-problem: time-dependence and non-Hermiticity of h(p(f). [Exclude 7-independent ¢. e.g
Nasu-Yoshitake-Motome (201 7)]

Design principle (loose): An on-site, homogeneous, multiplicative algebraic condition on U¢,
manifestly obeyed for all @, which implies Det(I + Uy,) 2 0. Additionally, 54 € R manifestly for all Q.

Example: Time-reversal. T = I, ® t anti-unitary, T2 = —1] and T, U¢] = (). Wu-Zhang (2005)

Locally sign-free DQMC: Exists local unitary U, such that H' = UHU has a DQMC representation,
which obeys a design principle (c.f ‘locally stoquastic’).

Result 1F: If a local fermion-boson Hamiltonian, which is in a chiral topological phase of matter,
admits a locally sign-free DQMC simulation, then ¢*™** & 10,1

OG-Smith-Ringel (2020) 16



Excluding sign-free DQMC for chiral topological matter
Sign-free implementation of ‘momentum polarization’ 7 = Tr(TRe_ﬂH/):
7 = JD¢€‘S¢Det (1+U,) » Z= JD¢€‘S¢Det (1+T2U,).
p=0 p=>0

Example: Time-reversal T = I, ® t. Clearly [T, T] = O.

X

Result 1F: If a local fermion-boson Hamiltonian, which is in a chiral topological phase of matter,
admits a locally sign-free DQMC simulation, then ¢*™** & 10,1

OG-Smith-Ringel (2020) 17



_ ) Spontaneous chirality (

Assume H is spontaneously-chiral: P (reflection) and 1’ (time-reversal) symmetric, but P X 1T' —> PT
spontaneously (e.g chiral superconductors).

Ground states: e PH|Z =W (p+ + ,0_) Wi2, for AE<p <L
where p, = ‘ + ) (& ‘ , W = finite-depth circuit, AE = exp(—L), think of Ising.

Previously: 7' := Tr(TRe_ﬂH’), and arg(Z') = o'L + ZﬂL_l(hO —c/24).

Here: 0 < Z’ « cos [a’L +- 271'L_1(h0 —c/ 24)]. Need spontaneous analog of taking powers:

Result 2 (2F): If a local bosonic (fermionic) Hamiltonian is
both locally stoquastic (admits locally sign-free DQMC)
and in a spontaneously-chiral topological phase, then

€2ﬂic/24 = {‘961}'

‘Bagpipes construction’
OG-Smith-Ringel (2020) 18



Beyond chiral matter

Universal wave-function overlap: (l| T, | J) = e_“TAJrO(A_I)Tl-j, where Spec(T) = {0 e~}

Moradi-Wen (2015)
Define Zy :=Tr (Tme_ﬂH) — Ze~orA+o(AT) T (), B! < E,).

Repeat previous logic: e ~2%</% Z 6, = Tr(T) > 0. Not enough (e.g doubled semion)...

Refine by means of Frobenius-Perron: TU- > (), in some basis.

1,0

Since T'T = I, for some perm o: I =0 ()

Conjecture: If a local bosonic Hamiltonian is both locally stoquastic and in a topological phase,
then Spec (1) = U, R, = roots of unity.

Established by other means for non-chiral bosonic abelian phases.
Smith-OG-Ringel (2020) 19



Summary & outlook

(spontaneously-) Chiral topological matter: Intrinsic sign-problem if ¢*™</** ¢ 0,1

Bosons: no locally stoquastic Hamiltonians.
Fermions: no locally sign-free DQMC.

Beyond chiral matter: intrinsic sign problem if {e~*™</**@ } # U R,

Final example: fermionic vs bosonic descriptions of Kitaev spin liquids.

Outlook: Many open questions, here are a few:

« Complexity of chiral topological matter: non-local commuting projectors Son-Alicea (2018), non-local Projected
Entangled Pair States Wahl-Tu-Schuch-Cirac (2014). Overcoming intrinsic sign problems in chiral topological matter via
non-locality?

« State of the art DMRG of U-V model doesn’t exclude chiral d-wave Kantian-Dolfi-Troyer-Giamarchi (2019). Does this
explain the lack of a sign-free representation?

ABN

. [Easing intrinsic sign-problems? (sign) = Zp/Z lp| ~e” Hangleiter-Roth-Nagaj-Eisert (2019).

» Additional sign problems in topo matter? SPT: Ellison-Kato-Liu-Hsieh (2020), Any c¢: Kim-Shi-Kato-Albert (2021).

* Other dimensions? Phases not gapped, not topological, or both?

20



State of the art design principles

Contraction semi-groups and Majorana time-reversals Li-Jiang-Yao (2016), Wei et al (2016), Wei (2017):

|f: J1h¢ — h;Jl — O, l(J2h¢ — h;kaz) Z O,

where h¢ Is anti-symmetric (free Majorana operator), and Jl, J2 are real, orthogonal, and obey
J{ = Jl’ Jg —_ Jz, {JI’J2} — O, then Det(l‘l‘ U¢) Z O

Mathematical structure: in terms of Majorana time reversal T, = J K, T% = =+ [, and Hermitian metric
N, = iJ,, ;722 = I, which are compatible: [T,7,] = 0, get [T, 1] =0, 17,0, + h;’h > 0, or

[Tla U¢] — O, 772 — U;V]qub Z O

These imply Det(l + Uy) € R, and 1 & Spec(U,). Therefore Det(I + U,) € R — {0}. Adding

continuity in U¢ and using U¢ = |, gives the result.

Applications: time reversal invariant spinfull fermions, with pairing terms,...



State of the art design principles

Split orthogonal group wang et al (2015):

A time reversal T? = I, and Hermitian metric 1 with signature Diag (In, — In), which are compatible:
T, 7] = 0, such that get T, h¢] = (), ﬁh¢ + h;ﬁ = (), or

Imply that Det( + U¢) € R, and its sign is fixed by the connected component of U in O(n, n).

Applications: spineless fermions, particle number conserving, half filling, bipartite lattices.



Example:
World-line mapping and stoquastic Hamiltonians

World-line method:

—pH p SRR B i, )
Z=Te(e ) = Y Ewvemt = Y Y B[ em,, )
o K- k=0 {i,} " n=1 “time” .;2



Sign-problem and complexity

A general poly(fN) algorithm to compute (sign) (probably) doesn’t exist: it would imply a

solution to Barahona’s classical Ising problem, which is NP-complete, leading to P=NP Troyer-
Wiese (2005).

Deciding whether a stoquastic basis exists can be NP-complete Marvian-Lidar-Hen (2018), Klassen-Terhal
(2019). Therefore, a general poly(f/N) curing algorithm (probably) doesn’t exist.

The problem LH-MIN (approximating ground state energies) is (probably) easier if restricted to
stoquastic H’s (contained in AM, rather than QMA-complete) Bravyi et al (2008). This implies that a

local stoquastic basis cannot exist for all H’s Hastings (2016).

Adiabatic quantum computation with stoquastic H'’s is (probably) non-universal (can only solve
problems is PostBPP, rather than BQP) Bravyi et al (2008). This implies that a local stoquastic basis
cannot exist for all H’s.



PT symmetry and DQMC




