Geometric complexity in quantum matter: Intrinsic sign problems in topological phases

Condensed Matter Physics, Weizmann Institute of Science -> QEDMA Quantum Computing

Based on PRR 2, 033515 & 043032, 2020 with Adam Smith (TU Munich -> Nottingham) & Zohar Ringel (Hebrew U)

Omri Golan

QM3, Lisbon, Nov 2021

- Into: Quantum Monte Carlo and the sign-problem. (4s)
- Intrinsic sign problems: overview of existing & new results. (6s)
- Intrinsic sign problems in chiral topological matter: precise results & sketch of derivations. (7s)

Beyond chiral matter: precise results & sketch of derivations. (1s)

Summary & outlook. (1s)

Outine

Intro: QMC and sign-problem

QMC and sign-problem

Monte Carlo (MC): Approximate $\langle O \rangle = \sum O(\phi)$ Claim to fame: Generically M = poly(N) where N = system size, though $\{\phi\} = \exp(N)$.

Quantum Monte Carlo (QMC): Map a quantum system in d-dimensions to a

"classical" system in d+1 dimensions, and appl

Claim to fame: Classical poly(βN) simulation of quantum systems on exp(N)-dimensional Hilbert spaces.

Sign-problem: The generic obstruction to a quantum-to-classical mapping: $p(\phi) \in \mathbb{C}$.

$$\phi(\phi) \approx rac{1}{M} \sum_{i=1}^{M} O\left(\phi_i\right)$$
, where ϕ_i are sampled w.r

(D)

y MC:
$$Z = \operatorname{Tr} \left(e^{-\beta H} \right) = \sum p(\phi).$$

 $|i_{\beta}\rangle$

Sign-problem and complexity

- wrong system.
- Wiese (2005)].
- Curing the sign-problem: Try to change the quantum-to-classical mapping s.t $p \ge 0$.
- to exist [Bravyi et al (2008), Hastings (2016), Marvian-Lidar-Hen (2018), Klassen-Terhal (2019),...].

Fool's gold*: Can work with |p|, which generically allows for poly(βN) approximations, but of the

Mapping back to the system of interest is generically $exp(\beta N)$ - another facet of the sign-problem [Troyer-

Example: Change local basis to make the Hamiltonian *stoquastic*, $H_{ij} \leq 0$. This implies $(e^{-\beta H})_{ij} \geq 0$, and so $p \geq 0$ in a variety of quantum-to-classical mappings.

Complexity theory: From a number of perspectives, a general poly(βN) curing algorithm is not believed

Sign-problem and physics

In many-body physics we mostly care about phases of matter and transitions, so sign-free representatives suffice.

QMC is alive because many interesting sign-free representatives are discovered: (2019)...

Intrinsic sign-problems Hastings (2016), Ringel-Kovrizhin (2017):

- He-4 Ceperley (1995), Magnetism & topological phases Kaul-Melko-Sandvik (2013), Quantum critical metals Berg et al (2018), Fermions: Determinantal-QMC and Design principles (H won't be stoquastic) Wei (2018), Li-Yao
- Nevertheless, long standing open problems in many-fermion systems continue to defy solution: High-Tc / Hubbard model, Nuclear matter / Lattice QCD, FQH 5/2 / Coulomb Hamiltonian,...

 - Are there phases of matter which do not admit a sign-free representative?
 - Are there physical properties that can not be exhibited by sign-free models?

Intrinsic sign-problems: overview of existing and new results

Intrinsic sign-problem from geometry: essence

Topological phases of matter, that are characterized by 'geometric twists', are natural candidates!

- **Q:** Why topological phases?
- A: Characterized by complex phases in 'twisted partition functions':

$$\tilde{Z} := \operatorname{Tr}(Te^{-\beta H}) = e^{iS_{topo} + \cdots}, \quad (\beta \to \infty)$$

Q: Why geometric twists (T = permutation of lattice sites)?

A: These can be implemented without introducing signs:

$$Z = \sum_{\phi} \underbrace{p(\phi)}_{\phi} \Rightarrow \sum_{\phi \in 0} \sum_{i=1}^{\phi} e^{i\phi}$$

So, intrinsic sign-problem: $S_{topo} \neq 0 \Rightarrow p(\phi) \not\geq 0.$

$$\tilde{Z} = \sum_{\phi} \tilde{p}(\phi) > 0.$$

Smith-OG-Ringel (2020), OG-Smith-Ringel (2020)

Intrinsic sign-problems: overview

Previous work:

- 1. No stoquastic, commuting projector, representative for 'doubled semion' phase, Hastings (2016).
- Kovrizhin (2017).

These works:

- Generalize (1) to 'most' bosonic, abelian, non-chiral, topological phases (details to follow). Ι. Smith-OG-Ringel (2020).
- Obtain a variant of (2), and generalize to fermions (Determinantal-QMC): II.

iii. Conjecture a unification & generalization of i.+ii.

2. No stoquastic, translationally invariant, representative for bosonic chiral topological phases Ringel-

An intrinsic sign-problem exists if $\exp(2\pi i c/24) \notin \{\theta_a\}$. OG-Smith-Ringel (2020).

/ Chiral central charge

Topological spins of anyons

Examples: Intrinsic sign-problems from $e^{2\pi i c/24} \notin \{\theta_a\}$

Phase of matter

Laughlin (B) Laughlin (F) Chern insulator (F) ℓ -wave superconductor (F) Kitaev spin liquid (B) $SU(2)_k$ Chern-Simons (B) E_8 K-matrix (B) Fibonacci anyon model (B)

Parameterization

Filling 1/q, $(q \in 2\mathbb{N})$ Filling 1/q, $(q \in 2\mathbb{N} - 1)$ Chern number $\nu \in \mathbb{Z}$ Pairing channel $\ell \in 2\mathbb{Z} - 1$ Chern number $\nu \in 2\mathbb{Z} - 1$ Level $k \in \mathbb{N}$ Stack of $n \in \mathbb{N}$ copies

+ three Pfaffian candidates for filling 5/2.

'Most' chiral topological phases are intrinsically sign-problematic: fermionic / bosonic, abelian / non-abelian, SPT / topologically ordered.

Keep in mind Laughlin 1/3: $\{h_a\} = \left\{\frac{1}{24}, \frac{3}{8}, \frac{1}{24}\right\}$ and

Many phases which are universal for topological quantum computation, are also intrinsically sign-problematic $(SU(2)_{k\neq 1,2,4})$ and Fibonacci), supporting the paradigm of 'quantum advantage' or 'supremacy'.

	\checkmark $a - c$	
c	$\{h_a\}$	Intrinsic sign problem?
1	$\left\{a^2/2q\right\}_{a=0}^{q-1}$	98.5% of first 10^3
1	$\left\{ \left(a+1/2\right) ^{2}/2q\right\} _{a=0}$	96.7% of first 10^3
ν	$\{\nu/8\}$	$ u otin 12\mathbb{Z}$
$\ell/2$	$\{\ell/16\}$	Yes
u/2	$\{0, 1/2, u/16\}$	Yes
$3k/\left(k+2 ight)$	$\{a(a+2)/4(k+2)\}_{a=0}^{k}$	91.6% of first 10^3
8n	{0}	$n otin 3\mathbb{N}$
$14/5 \pmod{8}$	$\{0, 2/5\}$	Yes

 $\rho = \rho^2 \pi i h_a$

$$\operatorname{id} c = 1, \operatorname{so} e^{2\pi i c/24} \in \{\theta_a\}.$$

OG-Smith-Ringel (2020)

For bosonic, abelian, non-chiral phases, we have:

An intrinsic sign-problem exists if $Spec(\mathbf{T}) = \{\theta_a\}$ is not a disjoint union of complete sets of roots of unity*. Smith-OG-Ringel (2020)

*
$$Spec(\mathbf{T}) \neq \bigcup_{k} R_{n_{k}}$$
, where $R_{n_{k}} = \{e^{2\pi i m / n_{k}}\}_{m=1}^{n_{k}}$

string-nets.

A conjecture for all phases described by TQFT unifies both results:

An intrinsic sign-problem exists if $Spec(\mathbf{T}) = \{\theta_a e^{-2\pi i c/24}\}$ is not a disjoint union of complete sets of roots of unity.

The criterion $e^{2\pi i c/24} \notin \{\theta_a\}$ can be written as $1 \notin Spec(\mathbf{T})$, and the conjecture raises the table percentages to 100%, including Lauhglin 1/3.

Beyond chiral matter

are the n_k th roots of unity.

Examples: Toric code is stoquastic, and accordingly $Spec(\mathbf{T}) = \{1, 1, 1, -1\} = R_1 \cup R_1 \cup R_2$. Doubled semion is intrinsically sign-problematic, since $Spec(\mathbf{T}) = \{1, i, -i, 1\}$. Similar picture for \mathbb{Z}_N

Complexity and physics

The intrinsic sign-problem is a statement of complexity, phrased in terms of physical observables:

- Chiral central charge *c*:
 - Banerjee et al (2016, 2018), Kasahara et al (2018).
 - states on a cone. [Schine et al (2018).]
 - \bullet (2015), Bradlyn-Read (2015), OG-Hoyos-Moroz (2019).]
- 'collision' experiments. [Nakamura et al (2020), Bartolomei et al (2020).]
- Important for this talk: c and $\{\theta_a\}$ enter the boundary momentum density.

Boundary thermal Hall conductance, measured in quantum Hall and spin systems. [Jezouin et al (2013),

• Angular momentum at conical defects, observed in an optical realization of integer quantum Hall

Bulk Hall viscosity at finite wave-vector / curved background. [Abanov-Gromov (2014), Klevtsov-Wiegmann

• Topological spins $\{\theta_a\}$: determine the exchange statistics of anyons, measured in interferometry and

Results and sketch of derivations for:

OG-Smith-Ringel (2020)

An intrinsic sign-problem exists if $e^{2\pi i c/24} \notin \{\theta_a\}$.

Physics of chiral topological matter

Low energy description of chiral topological m conformal field theory on boundary.

Boundary energy current: $J_E(T) = J_E(0) + 2\pi T^2 c/24$, experimentally observed. Banerjee et al (2018), Kasahara et al (2018).

Boundary momentum density: $p(L) = p(\infty) + 2\pi L^{-2} (h_0 - c/24)$, where $e^{2\pi i k}$

Can be extracted from lattice models using 'm Pollman (2013):

 $\tilde{Z} := \text{Tr}(T_R e^{-\beta H}), \quad \arg(Z) = \alpha L + 2\pi L^{-1}(h_0 - M)$

Low energy description of chiral topological matter: chiral topological field theory in bulk, chiral

$$h_0 = \theta_0 \in \{\theta_a\}.$$

Can be extracted from lattice models using 'momentum polarization' Tu-Zhang-Qi (2013), Zaletel-Mong-

$$-c/24), \qquad (\beta^{-1} \ll L^{-1}).$$

 $\sum_{y \in V} 1$

3

Excluding stoquastic Hamiltonians for bosonic chiral topological matter

Momentum polarization:

 $\tilde{Z} := \text{Tr}(T_R e^{-\beta H}), \quad \arg(\tilde{Z}) = \alpha L + 2\pi L^{-1}(h_0 - M)$

Two facts: (i) If $H' = UHU^{\dagger}$ is stoquastic, then $T_R e^{-\beta H'}$ has positive entries. (ii) If U is a local finite-depth circuit, then H' in same phase as H, so c' = c, $\{\theta'_a\} = \{\theta_a\}$.

As a result, we have for $\tilde{Z}' := \text{Tr}(T_R e^{-\beta H'}): 0 =$

Taking $L \to \infty$ shows $\alpha'/2\pi \in \mathbb{Q}$, and therefore $e^{2\pi i c/24} = e^{2\pi i h_0} \in \{\theta_a\}$.

Result 1: If a local bosonic Hamiltonian is both locally stoquastic and in a chiral topological phase, then $e^{2\pi i c/24} \in \{\theta_a\}$.

$$-c/24), \qquad (\beta^{-1} \ll L^{-1}).$$

(i)
=
$$\arg(\tilde{Z}')^L/2\pi \stackrel{\text{(ii)}}{=} (\alpha'/2\pi)L^2 + h_0 - c/24.$$

OG-Smith-Ringel (2020)

Excluding sign-free DQMC for chiral topological matter

DQMC: $Z = \int D\phi D\psi e^{-S_{\phi} - S_{\psi,\phi}} \qquad \longleftarrow \qquad S_{\psi,\phi} = \int d\tau \overline{\psi} D_{\phi} \psi$

Result 1F: If a local fermion-boson Hamiltonian, which is in a chiral topological phase of matter, admits a locally sign-free DQMC simulation, then $e^{2\pi i c/24} \in \{\theta_a\}$.

OG-Smith-Ringel (2020)

15

Excluding sign-free DQMC for chiral topological matter

DQMC:
$$Z = \int D\phi e^{-S_{\phi}} Det \left(I + U_{\phi}\right)$$
$$\underbrace{p(\phi)}$$

Nasu-Yoshitake-Motome (2017)

Design principle (loose): An on-site, homogeneous, multiplicative algebraic condition on U_{ϕ} ,

Example: Time-reversal. $T = I_X \otimes t$ anti-unitary, $T^2 = -I$, and $[T, U_{\phi}] = 0$. Wu-Zhang (2005)

which obeys a design principle (c.f 'locally stoquastic').

???

$$U_{\phi} = \mathcal{T}e^{-\int_{0}^{\beta}h_{\phi(\tau)}d\tau}$$

Origin of sign-problem: time-dependence and non-Hermiticity of $h_{\phi(\tau)}$. [Exclude τ -independent ϕ . e.g.

manifestly obeyed for all ϕ , which implies $Det(I + U_{\phi}) \ge 0$. Additionally, $S_{\phi} \in \mathbb{R}$ manifestly for all ϕ .

Locally sign-free DQMC: Exists local unitary U, such that $H' = UHU^{\dagger}$ has a DQMC representation,

Result 1F: If a local fermion-boson Hamiltonian, which is in a chiral topological phase of matter, admits a locally sign-free DQMC simulation, then $e^{2\pi i c/24} \in \{\theta_a\}$.

OG-Smith-Ringel (2020)

Excluding sign-free DQMC for chiral topological matter

Sign-free implementation of 'momentum polarization' $\tilde{Z}' = \text{Tr}(T_R e^{-\beta H'})$:

$$Z' = \int D\phi e^{-S_{\phi}} Det \left(I + U_{\phi}\right)$$
$$p \ge 0$$

Example: Time-reversal $T = I_X \otimes t$. Clearly $[T, T_R] = 0$.

 $) \mapsto \tilde{Z}' = \int D\phi e^{-\tilde{S}_{\phi}} Det\left(I + T_R U_{\phi}\right)$ $\tilde{p} \ge 0$

Result 1F: If a local fermion-boson Hamiltonian, which is in a chiral topological phase of matter, admits a locally sign-free DQMC simulation, then $e^{2\pi i c/24} \in \{\theta_a\}$.

OG-Smith-Ringel (2020)

() Spontaneous chirality ()

Assume H is spontaneously-chiral: P (reflection) and T (time-reversal) symmetric, but $P \times T \rightarrow PT$ spontaneously (e.g chiral superconductors).

Ground states: $e^{-\beta H}/Z = W(\rho_+ + \rho_-) W^{\dagger}/2$, for $\Delta E \ll \beta^{-1} \ll L^{-1}$,

where $\rho_{\pm} = |\pm\rangle\langle\pm|$, W = finite-depth circuit, $\Delta E = \exp(-L)$, think of Ising.

Previously: $Z' := \text{Tr}(T_R e^{-\beta H'})$, and $\arg(Z') = \alpha'$

Here: $0 < Z' \propto \cos \left[\alpha' L + 2\pi L^{-1} (h_0 - c/24) \right]$. Need spontaneous analog of taking powers:

Result 2 (2F): If a local bosonic (fermionic) Hamiltonian is both locally stoquastic (admits locally sign-free DQMC) and in a spontaneously-chiral topological phase, then $e^{2\pi i c/24} \in \{\theta_a\}.$

OG-Smith-Ringel (2020)

$$'L + 2\pi L^{-1}(h_0 - c/24).$$

'Bagpipes construction'

Beyond chiral matter

Universal wave-function overlap: $\langle i | \mathbf{T}_m | j \rangle =$

Define $Z_{\mathbf{T}} := \operatorname{Tr}\left(\mathbf{T}_{m}e^{-\beta H}\right) = Ze^{-\alpha_{\mathbf{T}}A + o\left(A^{-1}\right)}\operatorname{Tr}\left(\mathbf{T}\right), \quad (\beta^{-1} \ll E_{o}).$

Repeat previous logic: $e^{-2\pi i c/24} \sum \theta_a = \text{Tr}(\mathbf{T}) \ge 0$. Not enough (e.g doubled semion)...

Refine by means of Frobenius-Perron: $T_{ii} \ge 0$, in some basis.

Since $\mathbf{T}^{\dagger}\mathbf{T} = I$, for some perm σ : $\mathbf{T}_{ij} = \delta_{i,\sigma(j)}$.

Conjecture: If a local bosonic Hamiltonian is both locally stoquastic and in a topological phase, then $Spec(\mathbf{T}) = \bigcup_k R_{n_k}$ = roots of unity.

Established by other means for non-chiral bosonic abelian phases.

$$e^{-\alpha_{\mathbf{T}}A+o(A^{-1})}\mathbf{T}_{ij}, \text{ where } Spec(\mathbf{T}) = \{\theta_a e^{-2\pi i c/24}\}$$

Moradi-Wen (2015)

Smith-OG-Ringel (2020)

Summary & outlook

Bosons: no locally stoquastic Hamiltonians. **Fermions:** no locally sign-free DQMC.

Final example: fermionic vs bosonic descriptions of Kitaev spin liquids. **Outlook:** Many open questions, here are a few:

- Complexity of chiral topological matter: non-local commuting projectors Son-Alicea (2018), non-local Projected non-locality?
- State of the art DMRG of U-V model doesn't exclude chiral d-wave Kantian-Dolfi-Troyer-Giamarchi (2019). Does this explain the lack of a sign-free representation?
- Easing intrinsic sign-problems? $\langle \text{sign} \rangle = \sum p / \sum |p| \sim e^{-\Delta\beta N}$ Hangleiter-Roth-Nagaj-Eisert (2019).
- Additional sign problems in topo matter? SPT: Ellison-Kato-Liu-Hsieh (2020), Any C: Kim-Shi-Kato-Albert (2021).
- Other dimensions? Phases not gapped, not topological, or both?

(spontaneously-) Chiral topological matter: Intrinsic sign-problem if $e^{2\pi i c/24} \notin \{\theta_a\}$.

Beyond chiral matter: intrinsic sign problem if $\{e^{-2\pi i c/24}\theta_a\} \neq \bigcup R_{n_1}$.

Entangled Pair States Wahl-Tu-Schuch-Cirac (2014). Overcoming intrinsic sign problems in chiral topological matter via

State of the art design principles

Contraction semi-groups and Majorana time-reversals Li-Jiang-Yao (2016), Wei et al (2016), Wei (2017):

If:
$$J_1 h_\phi - h_\phi^* J_1 = 0,$$

where h_{ϕ} is anti-symmetric (free Majorana operator), and J_1, J_2 are real, orthogonal, and obey $J_1^T = \pm J_1, J_2^T = -J_2, \{J_1, J_2\} = 0$, then $Det(I + U_d) \ge 0$.

Mathematical structure: in terms of Majorana time reversal $T_1 = J_1 K$, $T_1^2 = \pm I$, and Hermitian metric $\eta_2 = i J_2, \eta_2^2 = I$, which are compatible: $[T_1, \eta_2] = 0$, get $[T_1, h_{\phi}] = 0, \eta_2 h_{\phi} + h_{\phi}^{\dagger} \eta_2 \ge 0$, or $[\mathsf{T}_1, U_{\phi}] = 0, \quad \eta_2 - U_{\phi}^{\dagger} \eta_2 U_{\phi} \ge 0.$

These imply $Det(I + U_{\phi}) \in \mathbb{R}$, and $1 \notin Spec(U_{\phi})$. Therefore $Det(I + U_{\phi}) \in \mathbb{R} - \{0\}$. Adding continuity in U_{ϕ} and using $U_{\phi} = I$, gives the result.

Applications: time reversal invariant spinfull fermions, with pairing terms,...

$$i(\mathsf{J}_2h_\phi - h_\phi^*\mathsf{J}_2) \ge 0,$$

State of the art design principles

Split orthogonal group Wang et al (2015):

A time reversal $\tilde{\mathsf{T}}^2 = I$, and Hermitian metric $\tilde{\eta}$ with signature Diag $(I_n, -I_n)$, which are compatible: $[\tilde{T}, \tilde{\eta}] = 0$, such that get $[\tilde{T}, h_{\phi}] = 0$, $\tilde{\eta}h_{\phi} + h_{\phi}^{\dagger}\tilde{\eta} = 0$, or $[\tilde{\mathsf{T}}, U_{\phi}] = 0,$

Imply that $Det(I + U_{\phi}) \in \mathbb{R}$, and its sign is fixed by the connected component of U_{ϕ} in O(n, n).

Applications: spineless fermions, particle number conserving, half filling, bipartite lattices.

$$\tilde{\eta} - U_{\phi}^{\dagger} \tilde{\eta} U_{\phi} = 0,$$

Example: World-line mapping and stoquastic Hamiltonians

World-line method:

$$Z = \operatorname{Tr}\left(e^{-\beta H}\right) = \sum_{k=0}^{\infty} \frac{\beta^{k}}{k!} \operatorname{Tr}\left(-H\right)^{k} = \sum_{k=0}^{k} \frac{\beta^{k}}{k!} \operatorname{Tr}\left(-H\right)^{k} =$$

Stoquastic Hamiltonians:

 $\sum_{k=0}^{\infty} \sum_{\substack{k=1 \\ i_n}} \frac{\beta^k}{k!} \prod_{\substack{n=1 \\ n=1}}^k (-H)_{i_n, i_{n+1}}$ $= \sum p(\phi)$

 $H_{i,j} \leq 0 \implies p(\phi) \geq 0.$

Sign-problem and complexity

- A general poly(βN) algorithm to compute (sign) (probably) doesn't exist: it would imply a lacksquaresolution to Barahona's classical Ising problem, which is NP-complete, leading to P=NP Troyer-Wiese (2005).
- Deciding whether a stoquastic basis exists can be NP-complete Marvian-Lidar-Hen (2018), Klassen-Terhal (2019). Therefore, a general poly(βN) curing algorithm (probably) doesn't exist.
- The problem LH-MIN (approximating ground state energies) is (probably) easier if restricted to stoquastic H's (contained in AM, rather than QMA-complete) Bravyi et al (2008). This implies that a local stoquastic basis cannot exist for all H's Hastings (2016).
- Adiabatic quantum computation with stoquastic H's is (probably) non-universal (can only solve problems is PostBPP, rather than BQP) Bravyi et al (2008). This implies that a local stoquastic basis cannot exist for all H's.

PT symmetry and DQMC

