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Intro: QMC and sign-problem
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QMC and sign-problem

Quantum Monte Carlo (QMC): Map a quantum system in -dimensions to a


 “classical” system in  dimensions, and apply MC: . 


Claim to fame: Classical  simulation of quantum systems on -dimensional Hilbert 
spaces. 

d

d + 1 Z = Tr (e−βH) = ∑
ϕ

p(ϕ)

poly(βN) exp(N)

“time”

i1⟩
i2⟩

iβ⟩
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Monte Carlo (MC): Approximate , where  are sampled w.r.t . 


Claim to fame: Generically  where  = system size, though .


⟨O⟩ = ∑
ϕ

O(ϕ)p(ϕ) ≈
1
M

M

∑
i=1

O (ϕi) ϕi p

M = poly (N) N {ϕ} = exp(N)

Sign-problem: The generic obstruction to a quantum-to-classical mapping: .p(ϕ) ∈ ℂ



Sign-problem and complexity

Curing the sign-problem: Try to change the quantum-to-classical mapping s.t . 


Example: Change local basis to make the Hamiltonian stoquastic, . This implies , 
and so  in a variety of quantum-to-classical mappings.  

p ≥ 0

Hij ≤ 0 (e−βH)ij
≥ 0

p ≥ 0
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Fool’s gold*: Can work with , which generically allows for  approximations, but of the 
wrong system. 


Mapping back to the system of interest is generically  - another facet of the sign-problem [Troyer-
Wiese (2005)]. 


p poly(βN)

exp(βN)

Complexity theory: From a number of perspectives, a general  curing algorithm is not believed 
to exist [Bravyi et al (2008), Hastings (2016), Marvian-Lidar-Hen (2018), Klassen-Terhal (2019),…].  

poly(βN)



Sign-problem and physics
In many-body physics we mostly care about phases of matter and transitions, so sign-free 
representatives suffice. 


QMC is alive because many interesting sign-free representatives are discovered: 

He-4 Ceperley (1995), Magnetism & topological phases Kaul-Melko-Sandvik (2013), Quantum critical metals Berg et 

al (2018), Fermions: Determinantal-QMC and Design principles (  won’t be stoquastic) Wei (2018), Li-Yao 

(2019)… 
H
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Intrinsic sign-problems Hastings (2016), Ringel-Kovrizhin (2017): 


Are there phases of matter which do not admit a sign-free representative?  

Are there physical properties that can not be exhibited by sign-free models? 

Nevertheless, long standing open problems in many-fermion systems continue to defy solution: 

High-Tc / Hubbard model,    Nuclear matter / Lattice QCD,    FQH  / Coulomb Hamiltonian,… 5/2



Intrinsic sign-problems:  
overview of existing and new results
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Intrinsic sign-problem from geometry: essence

Q: Why topological phases?  

A: Characterized by complex phases in ‘twisted partition functions’: 


       Z̃ := Tr(Te−βH) = eiStopo+⋯, (β → ∞) .
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Q: Why geometric twists ( permutation of lattice sites)? 

A: These can be implemented without introducing signs: 


                                                                                              

T =

Z = ∑
ϕ

p(ϕ) ⇒ Z̃ = ∑
ϕ

p̃(ϕ) > 0.
≥ 0 ≥ 0

Topological phases of matter, that are characterized by ‘geometric twists’, are natural candidates!


So, intrinsic sign-problem:    Stopo ≠ 0 ⇒ p(ϕ) ≱ 0.

“time”

i1⟩
i2⟩

iβ⟩ T
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sis states by Roman letters, e.g., |ii, | ji etc. In this paper we
are concerned with the case where such a computational basis
does not exist and we have an intrinsic sign problem [15], i.e.,
a sign-problem that cannot be removed by any local unitary
transformation.

B. TQFT Hamiltonians

There have been a several works providing constructive
definitions of Hamiltonians that have low energy TQFT de-
scriptions, most famously the Turaev-Viro models [49], Ki-
taev’s quantum double [50], and the string-net construc-
tions [46, 47]. In order to cover a larger class of models and
provide model agnostic procedures, we provide here a general
non-constructive definition of what it means for a microscopic
to have a low energy TQFT description. This definition fol-
lows closely Ref. [51]. We cover here the essential details
to make this definition, but discuss TQFTs in more detail in
Appendix. B.

A (2+1)-dimensional TQFT assigns a vectors space to ev-
ery two-dimensional surface of a three-dimensional manifold
(and assigns a map to every cobordism) [20, 22]. This vec-
tor space corresponds to the ground state sub-space of our
Hamiltonian. These ground states—and the elementary ex-
citations of the model—can be labelled by a set of anyon la-
bels A = {1, a, b, . . .}. The content of the TQFT is defined
by the modular matrices, S and T , which correspond to mod-
ular transformations of the surface (see Sec. IV D) and con-
tain the mutual and exchange statistics of the anyons, respec-
tively. We consider the case where S and T are unitary and
the input of the TQFT defines a unitary modular tensor cate-
gory (UMTC). We then define a Hamiltonian to have a low
energy TQFT description if there exists a set of Wilson loop
operators {Ŵa(C)}a2A for each directed closed curve C that
form a faithful representation of the Verlinde algebra [52],
see Appendix B for more details. For the majority of this
paper we consider the Wilson operators to act non-trivially
on a finite neighbourhood, RW , of the curve C and commute
exactly with the Hamiltonian. We will relax these properties
later in Sec. VII A, where we consider Wilson operators with
exponentially decaying tails, and inexact commutation with
the Hamiltonian on a finite system. The Wilson loop oper-
ators have the interpretation of creating an anyon-antianyon
pair and dragging the anyon around the closed loop C before
re-annihilating the pair.

C. Basis choices

From now on we assume that we have a locally stoquastic
Hamiltonian Ĥ that has a low energy TQFT description, as de-
fined in the previous two sections. Turning to basis choices for
the ground state sub-space for the torus, the TQFT assump-
tions and stoquasticity for our Hamiltonian allow us to make
two particular choices: the canonical basis and the ergodic
basis.

a
b b

a

b
a

T

T

S

S

T ʻ

(a)

(c)
(d)

(b)

FIG. 1. Modular transformations for the Torus shown in (a) gener-
ated by: (b) the T -matrix and (c) the S -matrix. The action of the
modular transformations can defined in terms of the expectation val-
ues of Wilson loop operators around the two handles. (d) Modu-
lar transformations S ,T,T 0 for the square representation of the torus
with identified edges.

The canonical basis [53–55], we will label by Roman let-
ters at the start of the alphabet, e.g., |ai, |bi. This actually
refers to two choices of basis related by the S -matrix, de-
pending on which non-contractible direction of the torus we
define them with respect to, corresponding to the so-called
Minimal Entropy States (MES) [32]. Without loss of gener-
ality we will use the vertical canonical basis in the following.
We define the basis in terms of the Wilson loops wrapping
around the horizontal (longitudinal) and vertical (meridian)
non-contractible loops of the torus. We start by fixing the
first element |a = 1i such that it is a simultaneous eigenvec-
tor of all the vertical Wilson loops with eigenvalue given by
the quantum dimension da (which equals 1 for abelian the-
ories), i.e., Ŵv

a |1i = da|1i. We can then generate the other
ground states using the horizontal Wilson loops, |ai = Ŵh

a |1i.
In the Appendix C we show that these form an orthonormal
basis for the ground state sub-space. The state |ai can be
viewed as having flux of type a threading the vertical (merid-
ian) loop. Alternatively, if we cut the torus open along the
vertical loop we would get an excitation of type a on one edge
and ā on the opposite edge. Equivalently, the state a is the
eigenstate of the Kirby loop projector ⌦̂v

a = daD�1P
b S ⇤abŴv

b ,
i.e., ⌦̂v

a|bi = �ab|bi [51].
To define the ergodic basis we start by noting that since our

Hamiltonian is stoquastic, the matrix [�Ĥ +⇤1̂]i j is element-
wise non-negative if we choose ⇤ > 0 sufficiently large. The
term⇤1̂ only shifts the spectrum and so the ground states of Ĥ
are the same as the eigenstates of �Ĥ+⇤1̂ with largest eigen-
value. By the Frobenius-Perron theorem we can choose a set
of orthogonal eigenvectors that are element-wise non-negative
spanning the ground state sub-space, see Appendix A 1. These
states, labelled by Greek letters, e.g., |↵i, |�i, correspond to
different ergodic sectors—they have distinct support in the
computational basis, i.e., h↵|iihi|�i = 0 for all i and ↵ , �.
Given the canonical basis states, the ergodic states are spec-

Smith-OG-Ringel (2020), OG-Smith-Ringel (2020)



Intrinsic sign-problems: overview
Previous work: 

1. No stoquastic, commuting projector, representative for ‘doubled semion’ phase, Hastings (2016). 


2. No stoquastic, translationally invariant, representative for bosonic chiral topological phases Ringel-
Kovrizhin (2017).
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These works: 


i. Generalize (1) to ‘most’ bosonic, abelian, non-chiral, topological phases (details to follow). 
Smith-OG-Ringel (2020).

Chiral central 
charge

Topological spins 
of anyons

Obtain a variant of (2), and generalize to fermions (Determinantal-QMC):


An intrinsic sign-problem exists if . OG-Smith-Ringel (2020).exp (2πic/24) ∉ {θa}
ii.

iii.  Conjecture a unification & generalization of i.+ii.




Examples: Intrinsic sign-problems from  e2πic/24 ∉ {θa}
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Many phases which are universal for topological quantum computation, are also intrinsically sign-problematic 
(  and Fibonacci), supporting the paradigm of ‘quantum advantage’ or ‘supremacy’. SU(2)k≠1,2,4

‘Most’ chiral topological phases are intrinsically sign-problematic: fermionic / bosonic, abelian / non-abelian, SPT / 
topologically ordered.  

θa = e2πiha

Keep in mind Laughlin 1/3:  and , so .{ha} = { 1
24

,
3
8

,
1

24 } c = 1 e2πic/24 ∈ {θa}

OG-Smith-Ringel (2020)

+ three Pfaffian candidates for filling .5/2



Beyond chiral matter
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For bosonic, abelian, non-chiral phases, we have:


An intrinsic sign-problem exists if  is not a disjoint union of complete sets             
of roots of unity*.

Spec(T) = {θa}
Smith-OG-Ringel (2020)

A conjecture for all phases described by TQFT unifies both results: 


An intrinsic sign-problem exists if  is not a disjoint union of complete sets 
of roots of unity.

Spec(T) = {θae−2πic/24}

Examples: Toric code is stoquastic, and accordingly . 
Doubled semion is intrinsically sign-problematic, since . Similar picture for  
string-nets.

Spec(T) = {1,1,1, − 1} = R1 ∪ R1 ∪ R2
Spec(T) = {1,i, − i,1} ℤN

The criterion  can be written as , and the conjecture raises the table 
percentages to 100%, including Lauhglin 1/3.

e2πic/24 ∉ {θa} 1 ∉ Spec(T)

* , where  are the th roots of unity.Spec(T) ≠ ∪k Rnk
Rnk

= {e2πim/nk}nk
m=1 nk



Complexity and physics
The intrinsic sign-problem is a statement of complexity, phrased in terms of physical observables:


• Chiral central charge :


• Boundary thermal Hall conductance, measured in quantum Hall and spin systems. [Jezouin et al (2013), 
Banerjee et al (2016, 2018), Kasahara et al (2018).] 


• Angular momentum at conical defects, observed in an optical realization of integer quantum Hall 
states on a cone. [Schine et al (2018).] 


• Bulk Hall viscosity at finite wave-vector / curved background. [Abanov-Gromov (2014), Klevtsov-Wiegmann 
(2015), Bradlyn-Read (2015), OG-Hoyos-Moroz (2019).] 


• Topological spins : determine the exchange statistics of anyons, measured in interferometry and 
‘collision’ experiments. [Nakamura et al (2020), Bartolomei et al (2020).]


• Important for this talk:  and  enter the boundary momentum density.

c

{θa}

c {θa}
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Results and sketch of derivations for:
An intrinsic sign-problem exists if .e2πic/24 ∉ {θa}

OG-Smith-Ringel (2020) 12



Physics of chiral topological matter
Low energy description of chiral topological matter: chiral topological field theory in bulk, chiral 
conformal field theory on boundary.  

kx

ε

μ

π/a−π/a 0y

x
L

Chiral TFT

Chiral CFTChiral CFT

Boundary energy current: , 
experimentally observed. Banerjee et al (2018), Kasahara et al (2018). 

JE (T) = JE (0) + 2πT2c/24

Boundary momentum density: 
, where .p (L) = p (∞) + 2πL−2 (h0 − c/24) e2πih0 = θ0 ∈ {θa}

L

5y

x

TR

1

Can be extracted from lattice models using ‘momentum polarization’ Tu-Zhang-Qi (2013), Zaletel-Mong-
Pollman (2013): 

,       ( ). Z̃ := Tr(TRe−βH), arg(Z) = αL + 2πL−1(h0 − c/24) β−1 ≪ L−1

L
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Excluding stoquastic Hamiltonians for  
bosonic chiral topological matter

14OG-Smith-Ringel (2020)

Two facts: (i) If  is stoquastic, then  has positive entries.


                  (ii) If  is a local finite-depth circuit, then  in same phase 


                       as , so .

H′� = UHU† TRe−βH′�

U H′�

H c′ � = c, {θ′ �a} = {θa}

Result 1: If a local bosonic Hamiltonian is both locally stoquastic and in a chiral topological 
phase, then .e2πic/24 ∈ {θa}

As a result, we have for :      .


Taking  shows , and therefore .

Z̃′� := Tr(TRe−βH′�) 0 = arg(Z̃′�)L /2π = (α′�/2π)L2 + h0 − c/24

L → ∞ α′�/2π ∈ ℚ e2πic/24 = e2πih0 ∈ {θa}

(ii)(i)

Momentum polarization: 

  ,       ( ). Z̃ := Tr(TRe−βH), arg(Z̃) = αL + 2πL−1(h0 − c/24) β−1 ≪ L−1

y

x

TR

1 L



15OG-Smith-Ringel (2020)

Excluding sign-free DQMC for chiral topological matter

Z = ∫ DϕDψe−Sϕ−Sψ,ϕ

= ∫ Dϕe−SϕDet (Dϕ)
= ∫ Dϕe−SϕDet (I + Uϕ)

Sψ,ϕ = ∫ dτψDϕψ

Uϕ = 𝒯e− ∫β
0 hϕ(τ)dτ

Dϕ = ∂τ + hϕ(τ)

p(ϕ)

DQMC:

Result 1F: If a local fermion-boson Hamiltonian, which is in a chiral topological phase of matter, 
admits a locally sign-free DQMC simulation, then .e2πic/24 ∈ {θa}

???



16OG-Smith-Ringel (2020)

Result 1F: If a local fermion-boson Hamiltonian, which is in a chiral topological phase of matter, 
admits a locally sign-free DQMC simulation, then .e2πic/24 ∈ {θa}

DQMC: Z = ∫ Dϕe−SϕDet (I + Uϕ) Uϕ = 𝒯e− ∫β
0 hϕ(τ)dτ

p(ϕ)

Design principle (loose): An on-site, homogeneous, multiplicative algebraic condition on , 
manifestly obeyed for all , which implies . Additionally,  manifestly for all . 

Uϕ
ϕ Det(I + Uϕ) ≥ 0 Sϕ ∈ ℝ ϕ

Origin of sign-problem: time-dependence and non-Hermiticity of . [Exclude -independent . e.g 

Nasu-Yoshitake-Motome (2017)]  
hϕ(τ) τ ϕ

Example: Time-reversal.  anti-unitary, , and . Wu-Zhang (2005)𝖳 = IX ⊗ 𝗍 𝖳2 = − I [𝖳, Uϕ] = 0

Locally sign-free DQMC: Exists local unitary , such that  has a DQMC representation, 
which obeys a design principle (c.f ‘locally stoquastic’). 

U H′� = UHU†

Excluding sign-free DQMC for chiral topological matter

???



Excluding sign-free DQMC for chiral topological matter

17OG-Smith-Ringel (2020)

Result 1F: If a local fermion-boson Hamiltonian, which is in a chiral topological phase of matter, 
admits a locally sign-free DQMC simulation, then .e2πic/24 ∈ {θa}

Sign-free implementation of ‘momentum polarization’ :Z̃′� = Tr(TRe−βH′�)

Example: Time-reversal . Clearly .𝖳 = IX ⊗ 𝗍 [𝖳, TR] = 0

y

x

τ
β

β*

1

L

y

x

TR

1
L

Z′� = ∫ Dϕe−SϕDet (I + Uϕ) ↦ Z̃′� = ∫ Dϕe−S̃ϕDet (I + TRUϕ) .

p̃ ≥ 0p ≥ 0

τ
β

0
r

x



Spontaneous chirality
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Assume  is spontaneously-chiral:  (reflection) and  (time-reversal) symmetric, but  
spontaneously (e.g chiral superconductors).  

H P T P × T → PT

OG-Smith-Ringel (2020)

Previously:   , and 


Here: . Need spontaneous analog of taking powers: 

Z′� := Tr(TRe−βH′�) arg(Z′�) = α′�L + 2πL−1(h0 − c/24) .

0 < Z′� ∝ cos [α′�L + 2πL−1(h0 − c/24)]

‘Bagpipes construction’

Result 2 (2F): If a local bosonic (fermionic) Hamiltonian is 
both locally stoquastic (admits locally sign-free DQMC) 
and in a spontaneously-chiral topological phase, then 

.e2πic/24 ∈ {θa}

Ground states:         ,      for      ,


where  , finite-depth circuit, , think of Ising.   

e−βH /Z = W (ρ+ + ρ−) W†/2 ΔE ≪ β−1 ≪ L−1

ρ± = ± ⟩ ⟨ ± W = ΔE = exp(−L)



Beyond chiral matter

19Smith-OG-Ringel (2020)

Conjecture: If a local bosonic Hamiltonian is both locally stoquastic and in a topological phase, 
then roots of unity.Spec (T) = ∪k Rnk

=

Universal wave-function overlap:  where  .  

Define  ,       ( ).  

Repeat previous logic: . Not enough (e.g doubled semion)…


Refine by means of Frobenius-Perron: , in some basis. 


Since , for some perm :  .

⟨i Tm j⟩ = e−αTA+o(A−1)Tij, Spec(T) = {θae−2πic/24}

ZT := Tr (Tme−βH) = Ze−αTA+o(A−1)Tr (T) β−1 ≪ Eg

e−2πic/24 ∑ θa = Tr (T) ≥ 0

Tij ≥ 0

T†T = I σ Tij = δi,σ(j)

Moradi-Wen (2015)
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sis states by Roman letters, e.g., |ii, | ji etc. In this paper we
are concerned with the case where such a computational basis
does not exist and we have an intrinsic sign problem [15], i.e.,
a sign-problem that cannot be removed by any local unitary
transformation.

B. TQFT Hamiltonians

There have been a several works providing constructive
definitions of Hamiltonians that have low energy TQFT de-
scriptions, most famously the Turaev-Viro models [49], Ki-
taev’s quantum double [50], and the string-net construc-
tions [46, 47]. In order to cover a larger class of models and
provide model agnostic procedures, we provide here a general
non-constructive definition of what it means for a microscopic
to have a low energy TQFT description. This definition fol-
lows closely Ref. [51]. We cover here the essential details
to make this definition, but discuss TQFTs in more detail in
Appendix. B.

A (2+1)-dimensional TQFT assigns a vectors space to ev-
ery two-dimensional surface of a three-dimensional manifold
(and assigns a map to every cobordism) [20, 22]. This vec-
tor space corresponds to the ground state sub-space of our
Hamiltonian. These ground states—and the elementary ex-
citations of the model—can be labelled by a set of anyon la-
bels A = {1, a, b, . . .}. The content of the TQFT is defined
by the modular matrices, S and T , which correspond to mod-
ular transformations of the surface (see Sec. IV D) and con-
tain the mutual and exchange statistics of the anyons, respec-
tively. We consider the case where S and T are unitary and
the input of the TQFT defines a unitary modular tensor cate-
gory (UMTC). We then define a Hamiltonian to have a low
energy TQFT description if there exists a set of Wilson loop
operators {Ŵa(C)}a2A for each directed closed curve C that
form a faithful representation of the Verlinde algebra [52],
see Appendix B for more details. For the majority of this
paper we consider the Wilson operators to act non-trivially
on a finite neighbourhood, RW , of the curve C and commute
exactly with the Hamiltonian. We will relax these properties
later in Sec. VII A, where we consider Wilson operators with
exponentially decaying tails, and inexact commutation with
the Hamiltonian on a finite system. The Wilson loop oper-
ators have the interpretation of creating an anyon-antianyon
pair and dragging the anyon around the closed loop C before
re-annihilating the pair.

C. Basis choices

From now on we assume that we have a locally stoquastic
Hamiltonian Ĥ that has a low energy TQFT description, as de-
fined in the previous two sections. Turning to basis choices for
the ground state sub-space for the torus, the TQFT assump-
tions and stoquasticity for our Hamiltonian allow us to make
two particular choices: the canonical basis and the ergodic
basis.

a
b b

a

b
a

T

T

S

S

T ʻ

(a)

(c)
(d)

(b)

FIG. 1. Modular transformations for the Torus shown in (a) gener-
ated by: (b) the T -matrix and (c) the S -matrix. The action of the
modular transformations can defined in terms of the expectation val-
ues of Wilson loop operators around the two handles. (d) Modu-
lar transformations S ,T,T 0 for the square representation of the torus
with identified edges.

The canonical basis [53–55], we will label by Roman let-
ters at the start of the alphabet, e.g., |ai, |bi. This actually
refers to two choices of basis related by the S -matrix, de-
pending on which non-contractible direction of the torus we
define them with respect to, corresponding to the so-called
Minimal Entropy States (MES) [32]. Without loss of gener-
ality we will use the vertical canonical basis in the following.
We define the basis in terms of the Wilson loops wrapping
around the horizontal (longitudinal) and vertical (meridian)
non-contractible loops of the torus. We start by fixing the
first element |a = 1i such that it is a simultaneous eigenvec-
tor of all the vertical Wilson loops with eigenvalue given by
the quantum dimension da (which equals 1 for abelian the-
ories), i.e., Ŵv

a |1i = da|1i. We can then generate the other
ground states using the horizontal Wilson loops, |ai = Ŵh

a |1i.
In the Appendix C we show that these form an orthonormal
basis for the ground state sub-space. The state |ai can be
viewed as having flux of type a threading the vertical (merid-
ian) loop. Alternatively, if we cut the torus open along the
vertical loop we would get an excitation of type a on one edge
and ā on the opposite edge. Equivalently, the state a is the
eigenstate of the Kirby loop projector ⌦̂v

a = daD�1P
b S ⇤abŴv

b ,
i.e., ⌦̂v

a|bi = �ab|bi [51].
To define the ergodic basis we start by noting that since our

Hamiltonian is stoquastic, the matrix [�Ĥ +⇤1̂]i j is element-
wise non-negative if we choose ⇤ > 0 sufficiently large. The
term⇤1̂ only shifts the spectrum and so the ground states of Ĥ
are the same as the eigenstates of �Ĥ+⇤1̂ with largest eigen-
value. By the Frobenius-Perron theorem we can choose a set
of orthogonal eigenvectors that are element-wise non-negative
spanning the ground state sub-space, see Appendix A 1. These
states, labelled by Greek letters, e.g., |↵i, |�i, correspond to
different ergodic sectors—they have distinct support in the
computational basis, i.e., h↵|iihi|�i = 0 for all i and ↵ , �.
Given the canonical basis states, the ergodic states are spec-

Established by other means for non-chiral bosonic abelian phases. 



Summary & outlook
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(spontaneously-) Chiral topological matter: Intrinsic sign-problem if . 

Bosons: no locally stoquastic Hamiltonians. 
Fermions: no locally sign-free DQMC.  

Beyond chiral matter: intrinsic sign problem if .

e2πic/24 ∉ {θa}

{e−2πic/24θa} ≠ ∪ Rnk

Outlook: Many open questions, here are a few:


• Complexity of chiral topological matter: non-local commuting projectors Son-Alicea (2018), non-local Projected 
Entangled Pair States Wahl-Tu-Schuch-Cirac (2014). Overcoming intrinsic sign problems in chiral topological matter via 
non-locality?


• State of the art DMRG of -  model doesn’t exclude chiral -wave Kantian-Dolfi-Troyer-Giamarchi (2019). Does this 
explain the lack of a sign-free representation? 


• Easing intrinsic sign-problems?    Hangleiter-Roth-Nagaj-Eisert (2019).


• Additional sign problems in topo matter? SPT: Ellison-Kato-Liu-Hsieh (2020), Any : Kim-Shi-Kato-Albert (2021).


• Other dimensions? Phases not gapped, not topological, or both?


U V d

⟨sign⟩ = ∑ p/∑ |p | ∼ e−ΔβN

c

Final example: fermionic vs bosonic descriptions of Kitaev spin liquids. 



State of the art design principles
Contraction semi-groups and Majorana time-reversals Li-Jiang-Yao (2016), Wei et al (2016), Wei (2017): 


If:                                             

where  is anti-symmetric (free Majorana operator), and  are real, orthogonal, and obey 
, , , then . 

𝖩1hϕ − h*ϕ 𝖩1 = 0, i(𝖩2hϕ − h*ϕ 𝖩2) ≥ 0,

hϕ 𝖩1, 𝖩2
𝖩T

1 = ± 𝖩1 𝖩T
2 = − 𝖩2 {𝖩1, 𝖩2} = 0 Det(I + Uϕ) ≥ 0

Mathematical structure: in terms of Majorana time reversal , and Hermitian metric 
, which are compatible: , get  or 


                                                       


These imply , and . Therefore . Adding 
continuity in  and using , gives the result. 

𝖳1 = 𝖩1K, 𝖳2
1 = ± I

η2 = i𝖩2, η2
2 = I [𝖳1, η2] = 0 [𝖳1, hϕ] = 0, η2hϕ + h†

ϕη2 ≥ 0,

[𝖳1, Uϕ] = 0, η2 − U†
ϕη2Uϕ ≥ 0.

Det(I + Uϕ) ∈ ℝ 1 ∉ Spec(Uϕ) Det(I + Uϕ) ∈ ℝ − {0}
Uϕ Uϕ = I

Applications: time reversal invariant spinfull fermions, with pairing terms,…



State of the art design principles
Split orthogonal group Wang et al (2015): 

A time reversal , and Hermitian metric   with signature , which are compatible: 
, such that get  or


                                                       


Imply that , and its sign is fixed by the connected component of  in .


Applications: spineless fermions, particle number conserving, half filling, bipartite lattices.   


�̃�2 = I η̃ Diag (In, − In)
[�̃�, η̃] = 0 [�̃�, hϕ] = 0, η̃hϕ + h†

ϕη̃ = 0,

[�̃�, Uϕ] = 0, η̃ − U†
ϕη̃Uϕ = 0,

Det(I + Uϕ) ∈ ℝ Uϕ O(n, n)



Example:  
World-line mapping and stoquastic Hamiltonians 

Stoquastic Hamiltonians:           .Hi,j ≤ 0 ⇒ p(ϕ) ≥ 0

Z = Tr (e−βH) =
∞

∑
k=0

βk

k!
Tr (−H)k =

∞

∑
k=0

∑
{in}

βk

k!

k

∏
n=1

(−H)in,in+1

= ∑
ϕ

p (ϕ)

World-line method:

“time”

i1⟩
i2⟩

in−1⟩



Sign-problem and complexity
• A general  algorithm to compute  (probably) doesn’t exist: it would imply a 

solution to Barahona’s classical Ising problem, which is NP-complete, leading to P=NP Troyer-
Wiese (2005). 


• Deciding whether a stoquastic basis exists can be NP-complete Marvian-Lidar-Hen (2018), Klassen-Terhal 

(2019). Therefore, a general  curing algorithm (probably) doesn’t exist. 


• The problem LH-MIN (approximating ground state energies) is (probably) easier if restricted to 
stoquastic ’s (contained in AM, rather than QMA-complete) Bravyi et al (2008). This implies that a 
local stoquastic basis cannot exist for all ’s Hastings (2016).  


• Adiabatic quantum computation with stoquastic ’s is (probably) non-universal (can only solve 
problems is PostBPP, rather than BQP) Bravyi et al (2008). This implies that a local stoquastic basis 
cannot exist for all ’s.  

poly(βN) ⟨sign⟩

poly(βN)

H
H

H

H



PT symmetry and DQMC

x

y
(c)

(a) (b)

(d)

≅

≅


