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Part I: Presentation of the method



Sampling from un-normalized densities

Target π(x) = Z−1e−V (x)

I Goal 1: Sampling from a target
density π known up to a normalizing
constant Z.

I Goal 2: Estimating the normalizing
constant Z.



Applications in Statistical physics
Statistical physics, Molecular Dynamics.

I Configuration of physical systems
described by a probability over
microscopic state x given some
macroscopic state y:

π(x) = Z(y)−1e−V(x,y)dx

I Normalizing constant Z(y) describes
the probability of being in a given
macroscopic state y.

I Predicting the likelihood of chemical
reactions: transition from a state y to
state y′ if Z(y′) > Z(y).

FermiNet project.
See Pfau, Spencer, Matthews and

Foulkes.
Physical Review Research 2020.



Applications in Bayesian statistics

Estimating the effects of
non-pharmaceutical interventions on

COVID-19 in Europe.
See Flaxman, Mishra, Gandy et al.

Nature 2020.

I Bayesian evidence obtained by
integrating over latent parameters y:

π(x) = Z−1
∫

e−V(x,y)p(y)dy.

I Useful for model comparaison:
model V better than V′ if
π(x) > π′(x) over observation x.

I Inferring latent y from data x:
sampling from π(y|x) ∝ e−V(x,y)p(y).

I Useful for estimating unobserved
effects from data.



Sampling from un-normalized densities: Challenges

Target π(x) = Z−1e−V (x)

Challenges:
I Multimodality: Need to explore all

the space to cover the different
modes.



Sampling from un-normalized densities: Challenges

Borrowed from Tom Rainforth’s Lecture on Advanced Bayesian Inference
Methods: Lecture 5.

Challenges:
I Curse of dimension: Mass concentration in a typical set far from the mode.



Popular sampling methods: Variational Inference (VI)

I Key idea: introduce a parametric family
of densities qθ that is easy to sample
from.

I Find the closest qθ to π by minimizing
the KL:

θ? = arg min
θ

KL(qθ||π).

I Use samples from qθ to approximate π.



Popular sampling methods: VI using Normalizing Flows (NFs)

I A normalizing flow is parametric family
of diffeomorphisms x 7→ Tθ(x), with easy
to compute Jacobian determinant.

I Can use normalizing flows and a
proposal density p to define qθ = (Tθ)#p
so that:

log qθ(x) = log p(Tθ(x)) + log |∇xTθ(x)|.

I Under-estimates the tails of π [Domke
and Sheldon 2018]



Popular sampling methods: Importance Sampling (IS)

I Key idea: Expectations π[f ] under π
of a function f given by IS w.r.t. a
proposal p:

π[f ] =

∫
w(x)f (x)p(x)dx∫

w(x)p(x)dx

I Uses samples from a proposal p(x)
and re-weight them according to
density ratio w(x) = e−V(x)/p(x).

I High variance estimates of Z.
I Sensitive to choice of the proposal.



Popular sampling methods: Markov Chain Monte Carlo

Target π(x) = Z−1e−V (x)

I Key idea: Use local moves to explore the
typical set of π.

I Construct a Markov chain (Xk)k≥0 using
Markov kernel K invariant w.r.t. π:
Xk ∼ K(Xk−1, .)

I Metropolis Adjusted Langevin Algorithm

Yk = Xk−1 − γ∇ log π(Xk−1) +
√

2γWk

Xk ∼ δYkα(Xk−1,Yk) + δXk−1(1− α(Xk−1,Yk))

I Cannot estimate Z,
I Unable to explore multiple modes in a

reasonable time.



Popular sampling methods: AIS/SMC

Target π(x) = Z−1e−V (x)

I Key idea: Combines MCMC with
Importance sampling: SOTA samplers.

I Accurate estimates require careful
design of the algorithms like AIS [Neal,
2001], SMC [Del Moral et al., 2006]



Sequential Monte Carlo (SMC)

π0 = p

β0 = 0

π1 ∝ p1−β1πβ1

β1

πk ∝ p1−βkπβk

βk

πK = π

βK = 1

SMC step SMC step SMC step

I Annealing: Introduce a sequence of densities πk interpolating between a
proposal p and the target π. βk controls how πk and πk−1 are close.

I Sequential sampling: Use approximate samples from πk−1 to compute
approximate samples from πk.

I Main Advantage: Easy to modify samples from πk−1 to get samples from πk,
when πk is close to πk−1.



SMC steps

IS

W i
k

W i
k−1
∝ πk(X

i
k−1)

πk−1(X i
k−1)

Resampling

X̄ i
k = Xj

k−1
j ∼Multi(Wk)

MCMC

X i
k ∼ Kk(X̄

i
k, X

i
k)

I Importance Sampling: re-weights particles from k− 1 proportionally to πk
πk−1

.
I Resampling: duplicate particles with large weights and discard those with

small weights. (Recovers AIS (Neal, 2001) if no resampling).
I MCMC step: Move particles according to a Markov Kernel Kk with invariant

distribution πk: (HM, Gibbs-samplers, etc).



SMC steps

IS

W i
k

W i
k−1
∝ πk(X
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k−1)

Resampling

X̄ i
k = Xj

k−1
j ∼Multi(Wk)

MCMC

X i
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I Estimating normalizing constant Zk sequentially:

ZN
k := ZN

k−1




N∑

i=1

Wi
k−1

πk
(
Xi

k−1

)

πk−1

(
Xi

k−1

)


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SMC steps

IS+Resampling

W i
k

W i
k−1
∝ πk(X

i
k−1)

πk−1(X i
k−1)

X̄ i
k = Xj

k−1, j ∼Multi(Wk)

MCMC

X i
k ∼ Kk(X̄

i
k, .)



Annealed Flow Transport (AFT)
We combine SMC methods with NFs to gain the best from both approaches.

π0 = p

β0 = 0

π1 ∝ p1−β1πβ1

β1

πk ∝ p1−βkπβk

βk

πK = π

βK = 1

AFT step AFT step AFT step

I Similarly to SMC: Introduce a sequence of densities πk interpolating between
a proposal p and the target π.

I Sequential sampling: Use samples from πk−1 to compute samples from πk.
I AFT step: combines a Flow transport step followed by standard SMC steps.



AFT steps with no flow = SMC steps

IS+Resampling

W i
k

W i
k−1
∝ πk(X

i
k−1)

πk−1(X i
k−1)

X̄ i
k = Xj

k−1, j ∼Multi(Wk)

MCMC

X i
k ∼ Kk(X̄

i
k, .)



AFT steps with a general flow

Flow Transport

X̃ i
k = Tk

(
X i
k−1

)

IS + Resampling

W i
k

W i
k−1
∝ Gk

(
X i
k−1, X̃

i
k

)

X̄ i
k = X̃j

k, j ∼Multi(Wk)

MCMC

X i
k ∼ Kk

(
X̄ i
k, .
)

I Flow Transport Tk moves Xi
k−1 to new particles X̃i

k close to πk.
I Closed-form expression for the IS weights to correct for inexact flow:

Gk(X,Y) =
πk(Y)

πk−1(X)
|∇Tk(X)|



Annealed Flow Transport steps (with a flow)

Flow Transport

X̃ i
k = Tk

(
X i
k−1

)

IS + Resampling

W i
k
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)
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k, j ∼Multi(Wk)

MCMC

X i
k ∼ Kk

(
X̄ i
k, .
)

I Estimating normalizing constant Zt sequentially:

ZN
k := ZN
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(
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i
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))



Learning the Normalizing Flows sequentially

πk−1 qT πk

X̃k = T (Xk−1)

≈

I Change of variables: KL as an expectation under πk−1 of a function hT(x)

hT(x) = log πk−1(x)− log πk(T(x))− log |∇T(x)|+ C

I Particle approximation: Use particles Xi
k−1 and weights Wi

k−1 to estimate
expectation of hT under πk−1.



Learning the Normalizing Flows sequentially

πk−1 qT πk

X̃k = T (Xk−1)

≈
min
T
KL (qT ||πk)

I Change of variables: KL as an expectation under πk−1 of a function hT(x)

hT(x) = log πk−1(x)− log πk(T(x))− log |∇T(x)|+ C

I Particle approximation: Use particles Xi
k−1 and weights Wi

k−1 to estimate
expectation of hT under πk−1.



Learning the Normalizing Flows sequentially

πk−1 qT πk

X̃k = T (Xk−1)

≈
min
T
KL (qT ||πk)

min
T

∫
hT (x)πk−1(x)dx

Change of
variables

I Change of variables: KL as an expectation under πk−1 of a function hT(x)

hT(x) = log πk−1(x)− log πk(T(x))− log |∇T(x)|+ C

I Particle approximation: Use particles Xi
k−1 and weights Wi

k−1 to estimate
expectation of hT under πk−1.



Learning the Normalizing Flows sequentially

πk−1 qT = T#πk−1 πk

X̃k = T (Xk−1)

≈
min
T
KL (qT ||πk)

min
T

∫
hT (x)πk−1(x)dx

Change of
variables

min
T

N∑
i=1

W i
k−1hT

(
X i
k−1

)
Particle

approximation

I Change of variables: KL as an expectation under πk−1 of a function hT(x)

hT(x) = log πk−1(x)− log πk(T(x))− log |∇T(x)|+ C

I Particle approximation: Use particles Xi
k−1 and weights Wi

k−1 to estimate
expectation of hT under πk−1.



Annealed Flow Transport steps (with a flow)

Flow Transport

X̃ i
k = Tk

(
X i
k−1

)

IS + Resampling

W i
k

W i
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(
X i
k−1, X̃

i
k

)

X̄ i
k = X̃j

k, j ∼Multi(Wk)

MCMC

X i
k ∼ Kk

(
X̄ i
k, .
)

I Given particles Xi
k−1 ∼ πk−1, learn a flow Tk.

I Compute transported particles X̃i
k using flow Tk.

I Apply IS+Resampling and MCMC to get new particles Xi
k ∼ πk



Part II: Algorithm and Experiments



I It is possible to overfit to the
loss because we use a finite
number of particles.

I We would like to have
unbiased estimates of
normalizing constant as in
SMC.





Evaluation Setup

I We use the trained algorithm
I We use number of transitions/flows as a proxy for compute time.
I We use a simple element-wise affine flow. This has a linear memory/time in

the dimension.
I Not very expressive though, but worked well in our experiments.



Algorithm: II



Algorithm: II



Part III: Theory



Theory: Consistency and Asymptotic Normality
AFT produces estimates (πN

K ,Z
N
K ) of (π,Z) using N particles Xi

K and weights Wi
K.

I Consistency:

πN
K [f ]

N−→ π [f ] ,

ZN
K

N−→ Z.

I Central Limit theorem:
√

N
(
πN

K [f ]− π[f ]
)

N−→ N (0,Vπ[f ])

√
N
(

ZN
K − Z

)
N−→ N (0,VZ)

I Variance is optimal if the flows Tk
exactly map πk−1 to πk.

I Extends results of SMC algorithms,
but standard proofs do not apply
because NFs are stochastic.

I Need uniform CLT→ Empirical
process theory.

I Means controlling the richness of the
set of flows: finite entropy numbers.



Theory: Consistency and Asymptotic Normality
AFT produces estimates (πN

K ,Z
N
K ) of (π,Z) using N particles Xi

K and weights Wi
K.

I Consistency:

πN
K [f ]

N−→
p
π [f ] ,

ZN
K

N−→
p

Z.

I Central Limit theorem:
√

N
(
πN

K [f ]− π[f ]
)

N−→
D
N (0,Vπ[f ])

√
N
(

ZN
K − Z

)
N−→
D
N (0,VZ)

I Key challenges:
I Chaining method/bracketing

entropy does not apply because
particles are biased and not
independent.

I Uniform entropy method does not
require independence but requires
strong boundedness conditions
otherwise Uniform entropy is
infinite.

I Approach: To make it work we
introduced a localization technic to
the Uniform entropy method: Locally
Uniform entropy remains finite.



Scaling limit: Infinitely many auxiliary densities
I Setting:

I Population limit: Infinitely many particles N → +∞
I Continuous-time limit: Infinitely many auxiliary densities (πk)

K
k=1 → (πt)[0,1].

I Use the unadjusted Langevin kernel for Kk: gradient descent on − log πt +
gaussian noise.

I AFT recovers a weighted controlled diffusion:
I Sample paths X0,t follows a controlled SDE with control αt:

dXt = (α?t (Xt) +∇ log πt(Xt))dt +
√

2dBt

I Sample paths X0,t are re-weighted according to importance weights:

wα
?

t (X[0,t]) := exp

(∫ t

0
gα

?

s (Xs)ds
)
, gαs (Xs) := divx(αt) + α>

t ∇x log πt + ∂t log πt

I Instantaneous work gαs measures how much the density of Xt differs from πt.
I Weights ensure the marginals of weighted diffusion match πt exactly.
I Optimal control α? obtained by minimizing the variance of Instantaneous work:

α? :=
1
2

arg min
α

∫ 1

0
dt
(
πt[(gαt )

2
]− πt[gαt ]2

)
.
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.



Conclusion
I AFT extends SMC to take advantage of Normalizing flows.
I Known asymptotic behavior
I Known scaling limit
I In practice, the choice of the NF is problem dependent. Are there more

principled ways for such choice? Exploiting symmetries?
I The optimization problem for learning the NF is generally non-convex. Can

one consider losses/models that result in convex problem? Kernel methods?



Thank you !



Asymptotic Normality: Assumptions I
Let C2 be the class of continuous functions with quadratic growth and LC2 ⊂ C2
satisfying:

∥∥f (x)− f (x′)
∥∥ ≤ C

(
1 + ‖x‖3 +

∥∥x′
∥∥3
)∥∥x− x′

∥∥.

General assumptions
I The Markov kernel Kk preserves the classes LC2, C2

I πk admit 8-th order moments.
I The potentials Vk(x) = − log(πk(x)) are L-smooth.
I The importance weights Gk,T(x) are bounded uniformly over x and T.



Asymptotic Normality: Assumptions I
Let C2 be the class of continuous functions with quadratic growth and LC2 ⊂ C2
satisfying:

∥∥f (x)− f (x′)
∥∥ ≤ C

(
1 + ‖x‖3 +

∥∥x′
∥∥3
)∥∥x− x′

∥∥.

General assumptions
I The Markov kernel Kk preserves the classes LC2, C2
I πk admit 8-th order moments.
I The potentials Vk(x) = − log(πk(x)) are L-smooth.
I The importance weights Gk,T(x) are bounded uniformly over x and T.

Assumptions on the NFs
I The NFs T are of the form T(x) = τθ(x), with θ in a convex compact set.
I The NFs family is non-degenerate: singular values of jacobian are uniformly

bounded away from 0.
I (θ, x) 7→ τθ(x) is jointly Lipschitz in θ and x and admits higher order derivatives
∇θτθ(x), ∂θi∂xlτθ(x) and ∂θi∂θj∂xlτθ(x), Hxτθ(x) with linear growth.



Asymptotic Normality: Assumptions II
Let Lk(θ) bet the population loss:

Lk(θ) = KL
(

(τθ)#πk−1||πk

)

Let θN
k be obtained by the algorithm optimizing the particle loss LN

k (θ) (with N
particles).
Assumptions on the NF optimizer
I Assume θN

k is an approximate local minimizer of θ 7→ LN
k (θ):

∇LN
k (θN

k ) = oP(1)

HLN
k (θN

k ) ≥ oP(1).

I There exits a local minimizer θ?k of Lk such that:

P
[
θ?k ∈ arg min

θ∈Θ?k

∥∥∥θN
k − θ

∥∥∥
]

N−→ 1.

Set T?k = τθ?k and TN
k = τθN

k
.



Asymptotic Normality: Main result
Define the unnormalized particle approximation γN

k = ZN
k π

N
k .

Theorem (Version with no adaptive resampling)
Under the previous assumptions, γN

k and πN
k are consistent and for 0 ≤ k ≤ K:

(CLTk) :

{√
N
(
γN

k [f ]− γk[f ]
) D−→ N (0,Vγk [f ]),√

N
(
πN

k [f ]− πk[f ]
) D−→ N (0,Vπk [f ]),

Vγk [f ] and Vπk [f ] are defined recursively with Vγ0 [f ] = Varπ0 [f ] and

Vγk [f ] = Z2
kVarπk [f ] + Vγk−1

[
Qk,T?k

[f ]
]
,

Vπk [f ] = Z−2
k Vγk [f − πk[f ]],

where Qk,T(x,dy) := Gk,T(x)Kk(T(x),dy).



Asymptotic Normality: Sketch of the proof I
I Need to show: EN =

√
N
(
γN

k [f ]− γk[f ]
) P−→ N

(
0,Z2

kVarπk [f ] + Vγk−1

[
Qk,T?k

[f ]
])

.

Proof
I Proof by induction: Assume CLTk−1 holds.
I Use decomposition: EN = Ek−1[EN]︸ ︷︷ ︸

PN

+ EN − Ek−1[EN]︸ ︷︷ ︸
RN

.

I Conditionally on the past, show that: Ek−1[eitRN ]
P−→ exp(− t2

2 Z2
kVarπk [f ])

I Need to show that PN is normal with variance Vγk−1

[
Qk,T?k

[f ]
]
.

I Can express PN in terms of πN
k−1 and γN

k−1:

PN =
√

NγN
k−1[1]

(
πN

k−1 − πk−1

)[
Qk,TN

k
[f ]−Qk,T?k

[f ]
]

︸ ︷︷ ︸
AN

+
√

N
(
γN

k−1

[
Qk,T?k

[f ]
]
− γk−1

[
Qk,T?k

[f ]
])

︸ ︷︷ ︸
BN

I By induction BN converges to a normal with variance Vγk−1[Qk,T?k
[f ]].

I If TN
k was not learned and fixed to T?k , then AN = 0 and proof is similar to

standard CLT results for SMC.



Asymptotic Normality: Sketch of the proof II
Recall AN =

√
NγN

k−1[1]
(
πN

k−1 − πk−1
)[

Qk,TN
k
[f ]−Qk,T?k

[f ]
]
. Need to show that

AN
P−→ 0.

Theorem
Let f be in LC2 and consider the family of function QG of the form
Sθ(x) = Qk,τθ [f ](x)−Qk,τθ? [f ](x) indexed by the parameter θ ∈ Θ. Under the main

assumptions and for any random sequence gN in QG such that πk−1
[
(gN)2] P−→ 0 it
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I Result follows by proving asymptotic stochastic equicontinuity of a suitable

empirical process.
I Chaining method does not apply here because particles are biased and not

independent.
I Uniform entropy method does not require independence but does not apply

directly neither because we deal with sets of functions that are not bounded.
I To make it work, we applied a localization technic to the Uniform entropy

method.
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I Can apply this theorem by choosing gN = SθN
k
.

I Only remains to show that πk−1[(gN)2]
P−→ 0.

I Follows after proving that θN
k

P−→ θ?k .


