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Part |: Presentation of the method



Sampling from un-normalized densities

Target 7(z) = Z eV ()

» Goal 1: Sampling from a target
density = known up to a normalizing
constant Z.

» Goal 2: Estimating the normalizing
constant Z.




Applications in Statistical physics

Statistical physics, Molecular Dynamics.

» Configuration of physical systems
described by a probability over
microscopic state x given some

macroscopic state y:
m(x) = Z(y) e VW dy

» Normalizing constant Z(y) describes
the probability of being in a given
macroscopic state y.

» Predicting the likelihood of chemical

reactions: transition from a state y to FermiNet project.
state y' if Z(y') > Z(y). See Pfau, Spencer, Matthews and
Foulkes.

Physical Review Research 2020.



Applications in Bayesian statistics

» Bayesian evidence obtained by
. integrating over latent parameters y:

—.-.
m(x)=2" / e Yp(y)dy.

< 2
1 » Useful for model comparaison:
model V better than V' if
0 m(x) > 7'(x) over observation x.
A N .
SO O > Inferring latent y from data x:

Estimating the effects of sampling from 7 (y|x) oc e~V ¥ p(y).

non-pharmaceutical interventions on > Useful for estimating unobserved
COVID-19in Europe. effects from data.
See Flaxman, Mishra, Gandy et al.

Nature 2020.



Sampling from un-normalized densities: Challenges

Target 7(z) = Z e V(@)

Challenges:

» Multimodality: Need to explore all
the space to cover the different
modes.




Sampling from un-normalized densities: Challenges

PROBABILITY
DENSITY

Highest
Density

TYPICAL SET

DisTANCE FROM MODE

Borrowed from Tom Rainforth’s Lecture on Advanced Bayesian Inference

Methods: Lecture 5.
Challenges:

» Curse of dimension: Mass concentration in a typical set far from the mode.



Popular sampling methods: Variational Inference (VI)

> Key idea: introduce a parametric family
of densities gy that is easy to sample
' from.

» Find the closest g4 to m by minimizing
the KL:

0" = arg rnain KL(ggl|r).

» Use samples from gy to approximate .



Popular sampling methods: VI using Normalizing Flows (NFs)

» A normalizing flow is parametric family
of diffeomorphisms x — Ty(x), with easy
. to compute Jacobian determinant.
» Can use normalizing flows and a
proposal density p to define g9 = (To)4p
so that:

log go(x) = log p(Ty(x)) + log |V Ty(x)].

» Under-estimates the tails of 7 [Domke
and Sheldon 2018]



Popular sampling methods: Importance Sampling (IS)

> Key idea: Expectations 7[f] under =
of a function f given by IS w.r.t. a
proposal p:

_ Jw)f ()p(x)dx

-~ Jwlx)p(x)dx

> Uses samples from a proposal p(x)
and re-weight them according to
density ratio w(x) = e~V /p(x).

» High variance estimates of Z.

» Sensitive to choice of the proposal.

mf]




Popular sampling methods: Markov Chain Monte Carlo

Target m(x) =

Z—le—V(:r)

>

| 2

Key idea: Use local moves to explore the

typical set of 7.

Construct a Markov chain (X )0 using
Markov kernel K invariant w.r.t. 7:

X ~ K(Xk-15-)

Metropolis Adjusted Langevin Algorithm

Yk = Xk—l - Vlogﬂ' Xk 1 +4/2 Wk
Xk ~ Oy a(Xi—1, Yi) + 0Xp1(1 — a(Xk—1, Yi))

Cannot estimate Z,

Unable to explore multiple modes in a
reasonable time.



Popular sampling methods: AIS/SMC

Target 7(x) = Z e V()
g
» Key idea: Combines MCMC with
Importance sampling: SOTA samplers.

: > Accurate estimates require careful
. design of the algorithms like AIS [Neal,
2001], SMC [Del Moral et al., 2006]



Sequential Monte Carlo (SMC)
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» Annealing: Introduce a sequence of densities m; interpolating between a
proposal p and the target 7. 3 controls how 7, and m,_; are close.

» Sequential sampling: Use approximate samples from 7,_; to compute
approximate samples from .

» Main Advantage: Easy to modify samples from 7;._; to get samples from xy,
when ;. is close to m_1.



SMC steps

1S Resampling MCMC
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» Importance Sampling: re-weights particles from k — 1 proportionally to %

» Resampling: duplicate particles with large weights and discard those with
small weights. (Recovers AIS (Neal, 2001) if no resampling).

» MCMC step: Move particles according to a Markov Kernel K; with invariant
distribution 7: (HM, Gibbs-samplers, etc).



SMC steps
1S Resampling MCMC

Wi m) Xi=X[_,
WSRO j oMl

» Estimating normalizing constant Z; sequentially:

7Tk X 1)
o 2050
( Tk—1 (Xk 1)

X ~ KX, X))



SMC steps

IS+Resampling MCMC
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Annealed Flow Transport (AFT)
We combine SMC methods with NFs to gain the best from both approaches.
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» Similarly to SMC: Introduce a sequence of densities ;. interpolating between
a proposal p and the target .

» Sequential sampling: Use samples from m;_; to compute samples from 7.
» AFT step: combines a Flow transport step followed by standard SMC steps.



AFT steps with no flow = SMC steps

IS+Resampling MCMC
.« & o )
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Wi, € ma) X~ (XD, )
Xi= X1, j ~Multi(IW})




AFT steps with a general flow

Flow Transport IS + Resampling MCMC

i ] o o

Wi i o
X/: = T/\: (X/i—l) J’V]\iil x G]"' (Xk—U X},;)

i _ X}~ Ki (X,
X = X, j ~Multi(W},)

> Flow Transport Ty moves X._, to new particles Xi close to .

» Closed-form expression for the IS weights to correct for inexact flow:
m(Y)

Te-1(X)

Gr(X,Y) = [VT(X)]



Annealed Flow Transport steps (with a flow)

Flow Transport IS + Resampling MCMC

VN ¢ o

wi i i
X=m(xy) O e g )
| | Xi=XJ j ~Multi(W,)

» Estimating normalizing constant Z; sequentially:

N
22 (Low G (3 )

i=1



Learning the Normalizing Flows sequentially

Tk—1 qr

Q

Tk



Learning the Normalizing Flows sequentially

Th—1 qr ~
win KL (qrl )

Tk



Learning the Normalizing Flows sequentially

Tk—1 qr ~ Tk
win KL (g7] )
- : Change of
X, =T (Xk—l) variables
> . : mTinth(:r)m.,l(x)dw

» Change of variables: KL as an expectation under 7;_; of a function hr(x)

hr(x) = log m—1(x) — log (T (x)) — log VT (x)| + C



Learning the Normalizing Flows sequentially

Th—1 qr = Tymp— ~ Tk
n}lin KL (qr||m)
) ~ ’ Changt;)e| of
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» Change of variables: KL as an expectation under m,_ of a function hr(x)
i (x) = log m_1(x) — log m(T(x)) — log |[VT(x)| + C

> Particle approximation: Use particles X; , and weights W._, to estimate
expectation of hr under m_;.



Annealed Flow Transport steps (with a flow)

Flow Transport IS 4+ Resampling MCMC

] .« o

. . Wi o Gy (Xi_,, XI . .
Xi=T(xj) M ’”.( e Do XK (X))

X, = Xy, j ~Multi(W},)
> Given particles X! | ~ m_1, learn a flow Ty.

» Compute transported particles 5(;( using flow Ty.
> Apply IS+Resampling and MCMC to get new particles X ~ my



Part II: Algorithm and Experiments



Algorithm 1 Annealed Flow Transport

1:

A A

10:
11:

12:

13:
14:
15:

Input: number of particles NV, unnormalized annealed
targets {7y }%_, such that 79 = 7 and yx = 7, re-
sampling threshold A € [1/N, 1).

: Ouput: Approximations 7 and Z¥ of 7 and Z.
: Sample X ~ 7o and set Wi = 4 and Z¥ = 1.

fork=1,...,K do
Compute £ (T)) using (8). . . .
Solve Ty, < argming £ (T') using ¢.g. SGD. » lItis possible to overfit to the

Transport particles: X} = Ty(X}_,). loss because we use a finite

Estimate normalizing constant Z: number of particlesl

2 = 2, (Sil Wi aGur (X3 > We would like to have

Compute IS weights: . .

wh, & Wi_ Grr, (Xi_,) # unnormalized unbiased estimates of

Wi  — . J/ normalized normalizing constant as in
o SMC

Compute effective sample size ESS{CV using (10). '

if ESSY /N < A then

Resample NV particles denoted abusively also X }c
according to the weights W}, then set W} = 1.
end if _
Sample X} ~ Kj(X},-). # MCMC
end for




Algorithm 2 Annealed Flow Transport: Detailed Version
: Input: Number of training, test and validation particles Nyrain, Niest, N, unnormalized annealed
targets {y4}X , such that 7 = =y and vk = v, resampling thresholds 4, € [1/N,,1) for a €
{train, test, val}, number of training iterations J.
Ouput: Approximations wjy and Zj="*" of = and Z.
a: for a € {train, test, val} do
Sample X5 ~ 7o and set Wy « 3 and Z0™" + 1.
5: end for
6 for k=1,... K do

7 Leam the flow Ti ¢ LearnFlow{ J, { X}, Wi

£l

Ficu il il | N
i)

8 for a € {train, test, val} do

9 Transport particles: X;* « Te(X{")).
10: Estimate normalizing constant Zy:
PGS A (ZA” Wity G, (X:‘“.])
1 Compute IS weight
G (X)) // unnormalized

/ normalized

12 Compute effective sample size ESS
ESSM « T (w;'-")’,

13: if ESS)/N, < A, then

14: Resample N, particles from split a denoted abusively also )7:" according to the weights W%,
Sot W

15 Set Wy* « #-.

16; end if

e Sample X ~ K3 (X1, ). // MCMC
1% end for
19: end for

Introduce three sets of particles.
-Train, Validation and Test.

Training set is used to estimate the
gradients of the loss.

Validation set is used for early stopping
of the loss.

Test set is not used to estimate the flow.
Gives unbiased estimates of normalizing
constant and robust samples.

Initialize the flow to the identity which
corresponds to SMC.



Evaluation Setup

» We use the trained algorithm
» We use number of transitions/flows as a proxy for compute time.

» We use a simple element-wise affine flow. This has a linear memory/time in
the dimension.

> Not very expressive though, but worked well in our experiments.




Algorithm: 1l

Variational Autoencoder Latent Space

Log Z
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-110.0
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Input

Reconstruct

30
Number flows/transitions

100

AOnnEnEn
AOAOnEAEn

Digits that are harder for
variational inference.

Variational inference works reasonably but is
exceeded by SMC and AFT eventually.

AFT has lower variance than SMC particularly
for smaller number of temperatures.



Algorithm: 1l

Log Gaussian Cox Process Posterior

400 A:

N
2 300
3
200
- AFT
; . sMC
Observed positions Posterior rate 100 v
10 30 100
Number flows/transitions
Density: (@) =Nz K) [[ expla —aexpla)). AFT significantly outperforms baselines.
ie[1:M]2
Becomes harder as lattice resolution M increases. All methods could be further tailored.

We use a 40 x 40 lattice giving 1600 dimensions.



Part lll: Theory



Theory: Consistency and Asymptotic Normality

AFT produces estimates (7%, Z¥) of (w, Z) using N particles X} and weights W .

» Consistency: » Variance is optimal if the flows Ty
exactly map m;_1 to m.
N N
mx [f] = 7 [f], » Extends results of SMC algorithms,
Zﬁi N o7 but standard proofs do not. apply
because NFs are stochastic.
» Central Limit theorem: » Need uniform CLT — Empirical

N N i process theory.
VN (WK i WV]) = NO,VTIf) Means controlling the richness of the

VN <ZZI¥ _ Z) N, N(0, V%) set of flows: finite entropy numbers.

v



Theory: Consistency and Asymptotic Normality

AFT produces estimates (7%, Z¥) of (w, Z) using N particles X} and weights W .

» Consistency: » Key challenges:
» Chaining method/bracketing
WIIQ’ If] ﬁ) 7 [f], entropy does not apply because
b particles are biased and not
Zﬁi N o7 independent.

» Uniform entropy method does not
require independence but requires

» Central Limit theorem: strong boundedness conditions
otherwise Uniform entropy is
\/><7TK[]C — W[f) —>N 0, V™[f]) infinite.

» Approach: To make it work we
introduced a localization technic to
the Uniform entropy method: Locally
Uniform entropy remains finite.

VN (zlg - z) = N0, V)



Scaling limit: Infinitely many auxiliary densities

» Setting:
» Population limit: Infinitely many particles N — +oco
» Continuous-time limit: Infinitely many auxiliary densities (mc)f_; — (¢)[0,1)-
» Use the unadjusted Langevin kernel for Ki: gradient descent on — log 7; +
gaussian noise.



Scaling limit: Infinitely many auxiliary densities

» Setting:
» Population limit: Infinitely many particles N — +oco
» Continuous-time limit: Infinitely many auxiliary densities (mc)f_; — (¢)[0,1)-
» Use the unadjusted Langevin kernel for Ki: gradient descent on — log 7; +
gaussian noise.
» AFT recovers a weighted controlled diffusion:
» Sample paths X, follows a controlled SDE with control «:

dX; = (af (X;) + Vlog m(X;))dt + V2dB;




Scaling limit: Infinitely many auxiliary densities

» Setting:
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w? [0,]) = exp (/ s ds) S(Xs) = dive(ay) + atTVx log 7y + O log ¢



Scaling limit: Infinitely many auxiliary densities

» Setting:
» Population limit: Infinitely many particles N — +oco
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» Sample paths X are re-weighted according to importance weights:

w? (X[0,) = exp (/ g8 ds) 9H(Xs) == divy(oy) + atTVx log 7y + O log ¢

> Instantaneous work g& measures how much the density of X; differs from ;.
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» Setting:
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Scaling limit: Infinitely many auxiliary densities

» Setting:
» Population limit: Infinitely many particles N — +oco
» Continuous-time limit: Infinitely many auxiliary densities (mc)f_; — (¢)[0,1)-
» Use the unadjusted Langevin kernel for Ki: gradient descent on — log 7; +
gaussian noise.
» AFT recovers a weighted controlled diffusion:
» Sample paths X, follows a controlled SDE with control «:

dX; = (af (X;) + Vlog m(X;))dt + V2dB;
» Sample paths X are re-weighted according to importance weights:

w? (X[0,) = exp (/ g8 ds) 9H(Xs) == divy(oy) + atTVx log 7y + O log ¢

> Instantaneous work g& measures how much the density of X; differs from ;.
» Weights ensure the marginals of weighted diffusion match ; exactly.
» Optimal control o* obtained by minimizing the variance of Instantaneous work:

ot ;:;argminfl (m[gt ]—m[gt]).

(6%




Conclusion

> AFT extends SMC to take advantage of Normalizing flows.
» Known asymptotic behavior

» Known scaling limit
>

In practice, the choice of the NF is problem dependent. Are there more
principled ways for such choice? Exploiting symmetries?

The optimization problem for learning the NF is generally non-convex. Can
one consider losses/models that result in convex problem? Kernel methods?

v



Thank you !



Asymptotic Normality: Assumptions |

Let C, be the class of continuous functions with quadratic growth and £C, C C,
satisfying:

) = £ < (14 el + [l e = .

General assumptions
» The Markov kernel K preserves the classes £C», C,
» . admit 8-th order moments.
» The potentials Vi(x) = — log(m(x)) are L-smooth.
» The importance weights Gy r(x) are bounded uniformly over x and T.



Asymptotic Normality: Assumptions |

Let C, be the class of continuous functions with quadratic growth and £C, C C,
satisfying:

) = £ < (1 + 1P + [1#)) = ]|

General assumptions
» The Markov kernel K preserves the classes L5, C;
» 7, admit 8-th order moments.
» The potentials Vi(x) = —log(m(x)) are L-smooth.
» The importance weights Gy r(x) are bounded uniformly over x and T.
Assumptions on the NFs
» The NFs T are of the form T(x) = 7y(x), with 6 in a convex compact set.
» The NFs family is non-degenerate: singular values of jacobian are uniformly
bounded away from 0.
> (0,x) — 19(x) is jointly Lipschitz in # and x and admits higher order derivatives
Vo19(x), 0p,0x 70 (x) @nd 9y, 09, 0x,79(x), HxTg(x) With linear growth.



Asymptotic Normality: Assumptions Il
Let £i(6) bet the population loss:

Li(0) = KL((TH)#Wk—1|!7Tk)

Let 6% be obtained by the algorithm optimizing the particle loss £Y(6) (with N
particles).
Assumptions on the NF optimizer

> Assume 6V is an approximate local minimizer of 6 — £ (6):
VLY (0) = op(1)
HLY(0F) > op(1).
» There exits a local minimizer ¢; of £, such that:
P| o in |8 — ]| | 1.
[ © € argglen@r% 7 —

*x N _
Set Ty = 7 and Ty" = 7.



Asymptotic Normality: Main result
Define the unnormalized particle approximation Y = ZNx}.

Theorem (Version with no adaptive resampling)
Under the previous assumptions, 7})’ and 7r,§] are consistent and for0 < k < K:

VNN = wlf) 2 N, V][,

CLTy) :
(CLTy) {\/N(ﬂ_}(\l[ﬂﬁk[f]) QN(O,VEWL

V[f] and VT [f] are defined recursively with V][f] = Vary,[f] and

VIIF) = Z2Var [f) + Vi_y | Qur; If)].
£l = Z2ViIf = mdfl)

where Qi r(x, dy) := Gy r(x)Ki(T(x), dy).



Asymptotic Normality: Sketch of the proof |

> Need to show: Ey = VN(1[f] = %[fl) & N (0. Z2Vars[f] + V], [Qer; f]] ).
Proof

» Proof by induction: Assume CLT_; holds.
» Use decomposition: Exy = E¢_1[En] + En — Ex_1[EN]-

N e N

Py Ry

> Conditionally on the past, show that: By_; [e*R~] Ly exp(— 5 Z2Var,, [f])
> Need to show that Py is normal with variance V;_, [Qk,T; V]}.

> Can express Py in terms of 7Y | and 4 ;:

Py = VN4 (1] (W;Iyq - kal) [Qk,T;y [f1 = Qury [f]} + \/ﬁ(’ﬁy_l [Qk,Tk* V]] ~ Ye-1 [Qk,T; [f]D
AN l;;l
> By induction By converges to a normal with variance V;_, [Qx 7+ [f]].

> If T}(" was not learned and fixed to T}, then Ay = 0 and proof is similar to
standard CLT results for SMC.




Asymptotic Normality: Sketch of the proof Il
Recall Ay = VN~ [1](7) | — mq) [Qkﬂv [f] = Qur: [f]}. Need to show that
Ay S o.
Theorem

Letf be in LC, and consider the family of function QG of the form
So(x) = Qx5 [f](x) — Qxr,. [f](x) indexed by the parameter 6 ¢ ©. Under the main
assumptions and for any random sequence gN in QG such that m_1 [(g")?] Zoit
holds that vNAN | [1](xN ; — m_1)[§V] 2 0.
» Result follows by proving asymptotic stochastic equicontinuity of a suitable
empirical process.
» Chaining method does not apply here because particles are biased and not
independent.
» Uniform entropy method does not require independence but does not apply
directly neither because we deal with sets of functions that are not bounded.
» To make it work, we applied a localization technic to the Uniform entropy
method.



Asymptotic Normality: Sketch of the proof Il
Recall Ay = VN~ [1](7) | — mq) [ijiv [f] = Qur: [f]}. Need to show that
Ay S o.

Theorem
Letf be in LC, and consider the family of function QG of the form
So(x) = Qk,7, [f](x) = Qxr,. [f](x) indexed by the parameter 6 ¢ ©. Under the main

assumptions and for any random sequence gV in QG such that m_1 [(gN)?] = 0 it
holds that vVNAN | [1](xN , — m_1)[§V] 2 0.

» Can apply this theorem by choosing g" = Se,fj-

» Only remains to show that m_1[(¢")?] 5.

> Follows after proving that 6N 2 6;.



