Commuting Varieties of Reductive Groups

Poincaré Polynomials of
Spaces of Commuting Group Elements

Carlos Florentino ${ }^{1,2}$
${ }^{1}$ Department of Mathematics, Fac. Ciências
${ }^{2}$ CMAFclO - Univ. of Lisbon

Geometria em Lisboa, Nov. 2021

Outline

(1) Commuting Varieties

- The varieties of commuting matrices
- Commuting varieties of group elements
- The Moduli Space of Commuting matrices
(2) Character varieties
- Representation and Character varieties
- Some results for other groups 「- 「 Abelian and/or Nilpotent
- Topological and algebraic invariants
- The $G L_{n}$ case and Symmetric products of tori
(3) Representation Varieties for Reductive Groups
- Known results
- New results and Examples
- Some comments on the proofs

Commuting varieties (for matrices)

- Fix $r, n \in \mathbb{N}$. Let

$$
\operatorname{Comm}_{n}^{r}:=\left\{\left(A_{1}, \cdots, A_{r}\right) \in\left(M a t_{n \times n} \mathbb{C}\right)^{r}: A_{i} A_{j}=A_{j} A_{i}\right\}
$$

Commuting variety of r-tuples of size n matrices.

- Surprisingly many Open Problems:
- Irreducibility?
- Dimensions of components?
- Geometry? Arithmetic?
- Known: (trivial cases: Comm $_{1}^{r}=\mathbb{C}^{r} ;$ Comm $_{n}^{1}=$ Mat $_{n \times n} \mathbb{C}$)
- Comm $_{n}^{2}$ is irreducible of the expected dimension $n^{2}+n$
- Comm m_{n}^{4} is reducible, for every $n \geq 4$ (!)
- Comm m_{n}^{3} is reducible for $n \geq 32$ (Guralnick, 1992; improved to $n \geq 29$)

The diagonal component

- Distinguished component in Comm_{n}^{r} : those r-tuples which can be simultaneously diagonalized.

Let $D_{n} \subset M a t_{n \times n} \mathbb{C}$ be the vector space of diagonal matrices, and:
$\phi: G L(n, \mathbb{C}) \times D_{n}^{r} \rightarrow \operatorname{Comm}_{n}^{r}, \quad\left(g, B_{1}, \cdots, B_{n}\right) \mapsto\left(g B_{1} g^{-1}, \cdots, g B_{n} g^{-1}\right)$
Then

$$
D \operatorname{Com}_{n}^{r}:=\overline{\operatorname{im}(\phi)} \quad \text { is irreducible }
$$

Let's call it the "Diagonal Component" in Commr ${ }_{n}^{r}$.
Theorem [Motzkin-Taussky, 1955] For $r=2$

$$
\operatorname{Comm}_{n}^{2}=D \operatorname{Com}_{n}^{2}
$$

so that Comm n_{n}^{2} is irreducible of dimension $n^{2}+n$.

Commuting r-tuples in groups

- Fix $r \in \mathbb{N}, G$ a (compact, Lie) group. Let

$$
\operatorname{Comm}^{r}(G)=\left\{\left(g_{1}, \cdots, g_{r}\right) \in G^{r}: g_{i} g_{j}=g_{j} g_{i}\right\}
$$

Space of (ordered) r-tuples (or r-sequences) of commuting elements in G.
V. Kac - A. Smilga, 1999: "The problem of constructing the quantum vacuum states of pure supersymmetric Yang--Mills theories placed on a small
3-dimensional spatial torus T^{3} is reduced to a pure mathematical problem of classifying the flat connections on $T^{3 \prime}$
For $r \geq 2$, $\operatorname{Comm}^{r}(G)$ is not necessarily connected!!
We have now a torus component: Let $T \subset G$ be a fixed maximal torus.

$$
\operatorname{TCom}^{r}(G):=\overline{\operatorname{im}(\psi)} \subset \operatorname{Comm}^{r}(G)
$$

$\psi: G \times T^{r} \rightarrow \operatorname{Comm}^{r}(G) \quad\left(g, t_{1}, \cdots, t_{r}\right) \mapsto\left(g t_{1} g^{-1}, \cdots, g t_{r} g^{-1}\right)$
Theorem [Kac-Smilga '99] If $r>2$, and G is simple, then Comm $^{r}(G)$ is connected (hence equals the torus component) only for $G=S U(n)$ or $G=S p(n)$.

Commuting varieties (for reductive groups)

- Finally, let G be a reductive (complex algebraic) group

$$
\operatorname{Comm}^{r}(G):=\left\{\left(g_{1}, \cdots, g_{r}\right): g_{i} g_{j}=g_{j} g_{i}\right\} \subset G^{r}
$$

and call it Commuting variety of r-tuples in G.
It is an affine algebraic variety, since $G \subset G L(V)$ for some vector space V.
Example: write $G L_{n} \equiv G L(n, \mathbb{C})$.

$$
\begin{aligned}
\operatorname{Comm}^{r}\left(G L_{n}\right) & =\operatorname{Comm}_{n}^{r} \cap\left(G L_{n}\right)^{r} \\
\operatorname{TCom}^{r}\left(G L_{n}\right) & =\operatorname{Dom}_{n}^{r} \cap\left(G L_{n}\right)^{r} .
\end{aligned}
$$

$\operatorname{Comm}^{r}(G)$ is generally a very singular algebraic variety, again not necessarily irreducible ($\operatorname{Com}^{r}(G)$ being one component), with intricate topology.
By contrast, the variety of commuting matrices Comm $_{n}^{r}$ is contractible!

Moduli space of Commuting matrices/sequences in G

We wish to consider the space of r-sequences of commuting linear operators on a vector space $V \cong \mathbb{C}^{n}$ without a preferred basis.

- Fix $r, n \in \mathbb{N}$. $G=G L_{n}$ acts on Comm $_{n}^{r}$ by conjugation:

$$
M C_{n}^{r}=C o m m_{n}^{r} / G
$$

- Motivation: Hilbert scheme of points on \mathbb{C}^{r}.
- Open problems: Irreducibility? Dimension of components? Geometry?
- Remarks: In the complex reductive case (but not in the compact case), we need the (affine) geometric invariant theory (GIT) quotient: $M C_{n}^{r}:=\operatorname{Comm}_{n}^{r} / / G$, and similarly for the moduli space of r-sequences in G :

$$
M C^{r}(G):=\operatorname{Comm}^{r}(G) / / G .
$$

- Again, there is a diagonal component for matrices: $D \operatorname{Com}_{n}^{r} / / G$, and a torus component in the group case $T \operatorname{Com}^{r}(G) / / G$.

The symmetric group and invariant polynomials

Symmetric group $S_{n}=$ group of permutations of the n element set $\{1,2, \cdots, n\}$.

- S_{n} acts on a Cartesian product X^{n} by permuting the variables: $\operatorname{Sym}^{n} X:=X^{n} / S_{n}=\quad\{$ unordered n-tuples of elements of X \}
Example: What is $\mathrm{Sym}^{n} \mathbb{C}$?
Let V be a \mathbb{C}-vector space of dimension n, then $\operatorname{Sym}^{n} \mathbb{C}=V / S_{n}$. Consider the action of S_{n} on polynomials in V. If G acts on X, then G acts on $\mathcal{F}(X, Y)=\{$ maps $X \rightarrow Y\}$ by: $(g \cdot f)(x):=f\left(g^{-1} \cdot x\right) \in Y$.
Algebra: (1st) Fundamental Theorem of Invariant Theory

$$
\mathbb{C}\left[x_{1}, \cdots, x_{n}\right]^{S_{n}} \cong \mathbb{C}\left[e_{1}, \cdots, e_{n}\right]
$$

where $e_{k}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} x_{i_{1}} \cdots x_{i_{k}}$. Therefore $\operatorname{Sym}^{n} \mathbb{C} \cong \mathbb{C}^{n}$!
More generally, symmetric products of Riemann surfaces (smooth algebraic curves) are smooth. Example: $\operatorname{Sym}^{n}\left(\mathbb{C} P^{1}\right) \cong \mathbb{C} P^{n}$.

The case $G L_{n}$ and Symmetric Products

- In the case $G=G L_{n} \equiv G L(n, \mathbb{C}) \subset M a t_{n \times n} \mathbb{C}$, commuting varieties have an interesting relation with symmetric products. The maximal torus of $G L_{n}$ is $T \cong\left(\mathbb{C}^{*}\right)^{n}$ and the Weyl group is $W:=N T / T \cong S_{n}$. We have:

$$
\begin{aligned}
M C_{n}^{r}:=\operatorname{Comm}_{n}^{r} / / G L_{n} & =\left(\mathbb{C}^{n}\right)^{r} / W=\left(\mathbb{C}^{r}\right)^{n} / S_{n}=\operatorname{Sym}^{n}\left(\mathbb{C}^{r}\right) \\
M C^{r}\left(G L_{n}\right) / / G L_{n} & =T^{r} / W=\left(\left(\mathbb{C}^{*}\right)^{n}\right)^{r} / S_{n}=\operatorname{Sym}^{n}\left(\left(\mathbb{C}^{*}\right)^{r}\right)
\end{aligned}
$$

Molien's formula for the Hilbert-Poincaré series (generating function for the dimensions of the graded components of $\left.\mathbb{C}\left[x_{1}, \cdots, x_{n}\right]^{S_{n}}=\mathbb{C}\left[\operatorname{Sym}^{n}(\mathbb{C})\right]\right)$

$$
\frac{1}{n!} \sum_{\sigma \in S_{n}} \frac{1}{\operatorname{det}\left(I-q A_{\sigma}\right)}=\prod_{k=1}^{n} \frac{1}{1-q^{k}}
$$

where A_{σ} is the action of $\sigma \in S_{n}$ on $V^{*} \cong \mathbb{C}^{n}$. Example: $n=2$ we have the series: $1+q+2 q^{2}+2 q^{3}+3 q^{4}+3 q^{5}+\cdots$
$\left(\left\{e_{1}\right\},\left\{e_{1}^{2}, e_{2}\right\},\left\{e_{1}^{3}, e_{1} e_{2}\right\},\left\{e_{1}^{4}, e_{1}^{2} e_{2}, e_{2}^{2}\right\}, \ldots\right)$

Character varieties

- 「 - a finitely presented group:

$$
\Gamma=\left\langle\gamma_{1}, \cdots, \gamma_{n} \mid r_{1}, \cdots, r_{m}\right\rangle
$$

Ex: fundamental group $\pi_{1}(M)$ of a manifold/variety M.

- G - a Lie group.

Typically, G is a real or complex reductive group
Ex: $G=S L_{n} \mathbb{C}, G L_{n} \mathbb{C}, S L_{n} \mathbb{R}, U(n), S p_{n}, \ldots$

- $\mathrm{R}_{\Gamma} G:=\operatorname{hom}(\Gamma, G)$ - the G-representation variety of Γ (affine algebraic variety, given $G \subset G L_{n} \mathbb{C}$)
- $X_{\Gamma} G:=\operatorname{hom}(\Gamma, G) / / G$ - the G-character variety of Γ.

It is the GIT quotient, under conjugation: $g \in G, \rho \in \operatorname{hom}(\Gamma, G)$:

$$
(g \cdot \rho)(\gamma):=g \rho(\gamma) g^{-1}, \quad \gamma \in \Gamma .
$$

Example: with $\Gamma=\mathbb{Z}^{r}$ (free abelian group) we have $\mathrm{R}_{\mathbb{Z}^{r}} G=\operatorname{Comm}^{r}(G)$ and $X_{\mathbb{Z}^{r}} G=M C^{r}(G)$ we let $\mathrm{R}_{\mathbb{Z}^{r}}^{0} G$ denote the torus component $\operatorname{TCom}^{r}(G)$.

Motivation

- (Topology/Diff. Geometry) Space of Flat G-connections on a manifold M with $\pi_{1}(M)=\Gamma$.
- (Algebra) Matrix invariants under simultaneous conjugation.
- (Knot theory) The A-polynomial is defined by the image of a morphism between character varieties: $X_{\Gamma} S L_{2} \mathbb{C} \rightarrow X_{\mathbb{Z}^{2}} S L_{2} \mathbb{C}$.
- Non-abelian Hodge correspondence:

Theorem ([Hitchin, Donaldson, Corlette, Simpson 1986-90])

Let M be a Riemann surface and G be real/complex reductive Lie group. Then $X_{\Gamma} G=$ hom $(\Gamma, G) / / G$ is homeomorphic to $\mathcal{H}_{M} G$, a moduli space of G-Higgs bundles over M.

The case of Surface groups

Let $\Gamma=\left(\right.$ central extension of) $\pi_{1}\left(\Sigma_{g}\right)$, the fund. group of a genus g compact orientable (Riemann) surface.

- N. Hitchin ('87): Poincaré polynomials for $G=S L_{2} \mathbb{C}$
- P. Gothen ('94): Poincaré polynomials for $G=S L_{3} \mathbb{C}$
- T. Hausel - F. Rodriguez-Villegas ('08): Hodge-Deligne polynomials for $S L_{2} \mathbb{C}$, conjectures for higher n.
- M. Logares, V. Muñoz, P. Newstead ('13): E-polynomials for $S L_{2} \mathbb{C}$ and low g.
- O. Schiffman ('16), A. Mellit ('17): Poincaré polynomials for all $G=S L_{n} \mathbb{C}$.

Actually, most of these results are for smooth (twisted) character varieties.
Very little is known for hom $\left(\pi_{1} \Sigma_{g}, G\right) / / G$ even for $S L_{2}$ or $G L_{2}$ (LMN, Baraglia-Hekmati '17: E-polynomials) as these are very singular spaces.

Free groups \& hyperbolic surface groups

Let $\Gamma=F_{r}$ the free group of rank r, and note $X_{F_{r}} G \cong G^{r} / / G$ Recall: $Y \subset X$ is a strong deformation retract (of X) if there is a homotopy $H:[0,1] \times X \rightarrow X$ with $H_{1}=i d_{X}, H_{0}(X)=Y$ and $\left.H_{t}\right|_{Y}=i d_{Y}$.

Theorem (F.-Lawton-Casimiro-Oliveira '09-' 15)

Let G a real/complex reductive group, with maximal compact subgroup K. Then, $X_{F_{r}} K$ is a strong deformation retract of $X_{F_{r}} G$ (hence, Betti numbers agree $b_{k}\left(X_{F_{r}} K\right)=b_{k}\left(X_{F_{r}} G\right)$, for all $\left.k, r\right)$.

A concrete formula: Tom Baird, 2007, computed $P_{t}\left(\mathrm{X}_{F_{r}} S U(2)\right)$:

$$
P_{t}\left(\mathrm{X}_{F_{r}} S U(2)\right)=1+t-\frac{t\left(1+t^{3}\right)^{r}}{1-t^{4}}+\frac{t^{3}}{2}\left(\frac{(1+t)^{r}}{1-t^{2}}-\frac{(1-t)^{r}}{1+t^{3}}\right)
$$

As far as I know, in this very singular case, no computation was done for $S L_{n}, n>2$. Note: For F_{r} the representation variety $\mathrm{R}_{F_{r}} G$ is trivial !!

The case「 abelian/nilpotent

From now on, Γ is nilpotent, that is, with $\Gamma_{k+1}=\left[\Gamma_{k}, \Gamma_{k}\right]$:

$$
\Gamma=\Gamma_{0} \triangleright \Gamma_{1} \triangleright \cdots \triangleright \Gamma_{n}=\{e\} .
$$

Examples:

- $\Gamma=\mathbb{Z}^{r}$, free abelian; more generally, any abelian group.
- $\Gamma=H(\mathbb{Z})$, the (discrete) Heisenberg group; more generally, unipotent upper triangular matrices with \mathbb{Z} entries.

Theorem (F.-Lawton '09-'14)

Let $\Gamma=\mathbb{Z}^{r}$ and G a complex reductive group, with maximal compact K. Then, $X_{\Gamma} K$ is a strong deformation retract of $X_{\Gamma} G$.

Theorem (Bergeron '15)

$X_{\Gamma} K$ is a strong deformation retract of $X_{\Gamma} G$, for any finitely generated nilpotent Γ.

Reduction from nilpotent to abelian

The abelianization of Γ is $\Gamma_{A b}:=\Gamma /[\Gamma, \Gamma]$, and we say that the abelian rank of Γ is $r \in \mathbb{N}_{0}$ when

$$
\Gamma_{A b} \cong \mathbb{Z}^{r} \oplus F, \quad F \text { finite abelian group. }
$$

For K compact, let $\mathrm{R}_{\Gamma}^{0} K$ be the identity component of $\mathrm{R}_{\Gamma} K=\operatorname{hom}(\Gamma, K)$.

Theorem (Bergeron-Silberman '16)

For Γ nilpotent of abelian rank r, and K compact Lie group:

$$
\mathrm{R}_{\Gamma}^{0} K \cong \mathrm{R}_{\mathbb{Z}}^{0} K, \quad \text { and } \quad \mathrm{X}_{\Gamma}^{0} K \cong \mathrm{X}_{\mathbb{Z}^{r}}^{0} K
$$

This implies that $R_{\Gamma}^{0} K$ and $X_{\Gamma}^{0} K$ actually equal the torus component (Baird '09).

Theorem (F-Lawton-Silva '21)

For \mathbb{Z}^{r}, and G complex reductive, the torus component coincide with the identity component.

Summary of Topological and algebraic invariants

Let X be a space with finite cohomology (eg, a compact manifold, a finite CW complex, an algebraic variety, etc).
Let $b_{k}(X)=\operatorname{dim}_{\mathbb{C}} H^{k}(X, \mathbb{C})$. The Poincaré polynomial of X is:

$$
P_{X}(t):=\sum_{k \geq 0} b_{k}(X) t^{k}
$$

Euler characteristic: $\chi(X):=P_{X}(-1)=\sum_{k \geq 0}(-1)^{k} b_{k}(X)$ Example: If G is a connected Lie group of positive dimension, then $\chi(G)=0$.
Now, let X be a quasi-projective algebraic variety X. Its cohomology decomposes into "Hodge pieces" of dimensions $h^{k, p, q}(X), k, p, q \in\{0, \cdots, 2 d\}$. Mixed Hodge polynomial:

$$
\mu_{X}(t, u, v):=\sum_{k, p, q} h^{k, p, q}(X) t^{k} u^{p} v^{q} .
$$

Then: $P_{X}(t)=\mu_{X}(t, 1,1)$ and the Serre $(E-)$ polynomial is $E_{X}(u, v):=\mu_{X}(-1, u, v)$.

Examples and properties

Polynomial invariants associated to a topological space:

Space M	Poincaré polynomial $P_{M}(t)$	Euler char. $\chi(M)$
\mathbb{R}^{n}	1	1
Σ_{g}	$1+2 g t+t^{2}$	$2-2 g$
S^{n}	$1+t^{n}$	$1+(-1)^{n}$
$\mathbb{C P}^{n}$	$1+t^{2}+\cdots+t^{2 n}$	$n+1$
$X \times Y$	$P_{X}(t) P_{Y}(t)$	$\chi(X) \chi(Y)$
$X \sqcup Y$	$?$	$\chi(X)+\chi(Y)$

Polynomial invariants associated to a quasi-projective variety:

Space M	Mixed Hodge $\mu_{X}(t, u, v)$	Serre $(E-)$ polynomial
Σ_{g}	$1+g t(u+v)+t^{2} u v$	$1-g u-g v+u v$
$\mathbb{C P}^{n}$	$1+t^{2} u v+\cdots+t^{2 n} u^{n} v^{n}$	$1+u v+\cdots+(u v)^{n}$
toric	$\sum_{j=0}^{d} a_{j}\left(t^{2} u v-1\right)^{j}$	$\sum_{j=0}^{d} a_{j}(x-1)^{j}$
$G L_{n} \mathbb{C}$	$\prod_{j=1}^{n}\left(1+t^{2 j-1} u^{j} v^{j}\right)$	$\prod_{j=1}^{n}\left(1-x^{j}\right)$
$X \times Y$	$\mu_{X}(t) \mu_{Y}(t)$	$\chi(X) \chi(Y)$
$X \sqcup Y$	$?$	$\chi(X)+\chi(Y)$

Char. var. of free Abelian groups - Irreducible components

Theorem (Sikora, F.-Lawton '15)

For $G=G L_{n} \mathbb{C}, S L_{n} \mathbb{C}$ and $S p_{n} \mathbb{C}$,

$$
X_{\mathbb{Z}^{r}} G \cong T_{G}^{r} / W_{G} .
$$

G is complex simple, and $X_{\mathbb{Z}^{r}} G$ irreducible $\Rightarrow G=S L_{n} \mathbb{C}$ or $S p_{n} \mathbb{C}$.

Corollary (F.-Lawton-Silva '21)
For $G=G L_{n}, G=S L_{n} \mathbb{C}$ or $G=S p_{n} \mathbb{C}$ we have $X_{\mathbb{Z}^{r}}^{0} G=X_{\mathbb{Z}^{r}} G(=$ the identity component).

Open problems for general Г, G: Irreducibility, Singularities, Topology, etc...

Char. var. of free Abelian groups - invariants

Theorem (F-Silva, '18; F-Lawton-Silva '21)

Let G be the complexification of a compact Lie group. Let X^{0} be the irreducible component of the identity in $\mathrm{X}_{\mathbb{Z}^{r}} G$. Then:

$$
\mu_{\mathrm{X}^{0}}(t, u, v)=\frac{1}{|W|} \sum_{\sigma \in W} \operatorname{det}\left(I+t u v M_{\sigma}\right)^{r}
$$

We recover:

Theorem (Stafa, '17)

Let $X_{\mathbb{Z}^{r}}^{0} K$ be the connected component of the identity in $\mathrm{X}_{\mathbb{Z}^{r}} K=$ hom $\left(\mathbb{Z}^{r}, K\right) / K$ ("real" character variety). Then:

$$
P_{\mathrm{X}_{Z_{r}}^{0} K}(t)=\frac{1}{|W|} \sum_{\sigma \in W} \operatorname{det}\left(I+t M_{\sigma}\right)^{r}
$$

$G L_{n} \mathbb{C}$ character varieties and symmetric products

Now take $G=G L_{n} \mathbb{C}$, the group of invertible matrices. It has $T_{G}=\left(\mathbb{C}^{*}\right)^{n}$ as maximal torus, and S_{n} as Weyl group:

$$
X_{\mathbb{Z}^{r}} G L_{n} \mathbb{C}=M C^{r}(G)=T_{G}^{r} / W=\left(\left(\mathbb{C}^{*}\right)^{n}\right)^{r} / S_{n}=\operatorname{Sym}^{n}\left(\left(\mathbb{C}^{*}\right)^{r}\right)
$$

Similarly, for $K=U(n)$ we have $T_{K}=\left(S^{1}\right)^{n}$ and $W=S_{n}$ as well:

$$
X_{\mathbb{Z}^{r}} U(n)=M C^{r}(K)=T_{K}^{r} / W=\left(\left(S^{1}\right)^{n}\right)^{r} / S_{n}=\operatorname{Sym}^{n}\left(\left(S^{1}\right)^{r}\right)
$$

Example

If $r=2$ we have (over Σ_{1} an elliptic curve):
$X_{\mathbb{Z}^{2}} U(n) \cong$ moduli space of rank n vector bundles on Σ_{1} $X_{\mathbb{Z}^{2}} G L_{n} \cong$ moduli space of rank n Higgs bundles on Σ_{1}

Hence, these are, respectively, nth symmetric products of a real torus $\left(S^{1}\right)^{2}$, resp. of $\left(\mathbb{C}^{*}\right)^{2}$.

The space of commuting r-tuples in K

Let K be a compact Lie group, and recall the space of commuting r-sequences: $\mathrm{R}_{\mathbb{Z}} K \equiv$ hom $\left(\mathbb{Z}^{r}, K\right)$ (not necessarily connected).
By Kac-Smilga '99, $\mathrm{R}_{\mathbb{Z}^{r}} K$ is connected for $K=U(n)$ (disconnected in general for $K=S O(n)$ and other examples).

Theorem (Baird, '09)

If $K=S U(n)$, then:
$P_{\mathrm{R}_{\mathbb{Z}} K} K(t)=\left\{\begin{array}{cc}\frac{1}{2}\left(\left(1+t^{2}\right)(1+t)^{r}+\left(1-t^{2}\right)(1-t)^{r}\right), & n=2 \\ \frac{1}{6}\left(1+2 t^{2}+2 t^{4}+t^{6}\right)(1+t)^{2 r}+\frac{1}{2}\left(1-t^{6}\right)\left(1-t^{2}\right)^{r} \\ +\frac{1}{3}\left(1-t^{2}-t^{4}+t^{6}\right)\left(1-t+t^{2}\right)^{r}, & n=3\end{array}\right.$
Theorem: Ramras-Stafa formula ('17):

$$
P_{\mathrm{R}_{\Gamma}^{0} K}(t)=\frac{1}{|W|} \prod_{i=1}^{m}\left(1-t^{2 d_{i}}\right) \sum_{g \in S_{n}} \frac{\operatorname{det}\left(I+t A_{g}\right)^{r}}{\operatorname{det}\left(I-t^{2} A_{g}\right)}
$$

The commuting variety of r-tuples in G

Now, denote by $\mathrm{R}_{\Gamma}^{0} G$ the identity component of $\mathrm{R}_{\Gamma} G$ for any nilpotent group 「 of abelian rank r. We generalize Ramras-Stafa formula as follows (abbreviate $x=u v$).

Theorem (F.-Lawton, Silva '21)

For G reductive, all $r \geq \frac{1}{m}$ we have:

$$
\mu_{\mathrm{R}_{\Gamma}^{0} G}(t, x)=\frac{1}{|W|} \prod_{i=1}^{m}\left(1-t^{2 d_{i}} x^{d_{i}}\right) \sum_{g \in S_{n}} \frac{\operatorname{det}\left(I+t x A_{g}\right)^{r}}{\operatorname{det}\left(I-t^{2} \times A_{g}\right)}
$$

Additionally, the factor $\frac{1}{|W|} \sum_{g \in S_{n}} \ldots$ is the mixed Hodge series for the G-equivariant cohomology:

$$
H_{G}^{*}\left(\mathrm{R}_{\Gamma}^{0} G\right) \cong\left[H^{*}(T) \otimes H^{*}(B T)\right]^{W}
$$

Moreover, in the $G L_{n}$ case the generating function $\sum_{n \geq 0} P_{\mathrm{R}_{n}^{0}}(t) y^{n}$ is a plethystic exponential, so we obtain a recursion: $P_{\mathrm{R}_{n}^{0}}^{-}(t)$ from $P_{\mathrm{R}_{m}^{0}}(t), m \leq n$.
Corollary. Tho Fulor sharactorictio of D^{0} is zoro for all $r n-0$

A "trivial" example

Let $G=G L_{n}, r=1$, and $\Gamma=\mathbb{Z}$. Then

$$
\mathrm{R}_{\Gamma} G L_{n}=\operatorname{hom}\left(\mathbb{Z}, G L_{n}\right)=G L_{n}
$$

and the exponents are $d_{i}=i$ for $i=1,2, \cdots, n$. With $x=u v$:

$$
\begin{aligned}
\mu_{G L_{n}}(t, x) & =\frac{1}{n!} \prod_{i=1}^{n}\left(1-t^{2 i} x^{i}\right) \sum_{g \in S_{n}} \frac{\operatorname{det}\left(I+t x A_{g}\right)}{\operatorname{det}\left(I-t^{2} x A_{g}\right)} \\
& =\prod_{i=1}^{n}\left(1+t^{2 i-1} x^{i}\right)
\end{aligned}
$$

a well known result, that follows from a generalization of the Molien formula for the Hilbert-Poincaré series of the graded ring of invariant polynomials in n variables $\mathbb{C}\left[x_{1}, \cdots, x_{n}\right]^{S_{n}}$:

$$
\frac{1}{n!} \sum_{\sigma \in S_{n}} \frac{\operatorname{det}(I-z \sigma)}{\operatorname{det}(I-q \sigma)}=\prod_{k=1}^{n} \frac{1-z q^{k-1}}{1-q^{k}}
$$

A non-trivial (new) example

Let $G=S p_{n}=\operatorname{Sp}(n, \mathbb{C}), \operatorname{dim}_{\mathbb{C}} G=10$, and exponents are $\{2,4\}$. Let $r=2$, and $\Gamma=\mathbb{Z}^{2}$.

$$
\mathrm{R}_{\Gamma}^{0} G=\operatorname{Comm}^{2}\left(S p_{n}\right)
$$

Mixed Hodge polynomial, with $x=u v$:
$\mu_{\mathrm{R}_{\Gamma}^{0} G}(t, x)=1+t^{2} x^{2}+t^{4} x^{4}+2\left(t^{3}+t^{7}\right)\left(x+t^{2} x^{3}\right)+2 t^{6} x^{2}+3 t^{10} x^{2}$.
Poincaré polynomial $\left(P(1)=16=\left(2^{2}\right)^{2}\right)$:

$$
P_{\mathrm{R}_{\Gamma}^{0} G}(t)=1+t^{2}+t^{4}+2\left(t^{3}+t^{5}+t^{6}+t^{7}+t^{9}\right)+3 t^{10} .
$$

Serre $(E-)$ polynomial $(\chi=0)$

$$
E_{\mathrm{R}_{\Gamma}^{0} G}(t)=1-4 x+6 x^{2}-4 x^{3}+x^{4}=(1-x)^{4}
$$

The diagram in the proof

G reductive with maximal compact K, maximal torus T, and Weyl group W. $T_{K}=T \cap K$.

$$
\begin{aligned}
& (G / T) \times{ }_{W} T^{r} \xrightarrow{\varphi G} \operatorname{hom}^{0}\left(\Gamma_{A b}, G\right) \longrightarrow \operatorname{hom}^{0}(\Gamma, G) \equiv \mathrm{R}_{\Gamma}^{0} G \\
& \left(K / T_{K}\right) \times{ }_{W} T_{K}^{r} \xrightarrow{\varphi_{K}} \operatorname{hom}^{0}\left(\Gamma_{A b}, K\right) \xrightarrow{\cong B S} \operatorname{hom}^{0}(\Gamma, K) \equiv \mathrm{R}_{\Gamma}^{0} K .
\end{aligned}
$$

The recursion formula for $G L_{n} \mathbb{C}$

For $G=G L_{n}$, both $R_{\Gamma}^{0} G$ and $X_{\Gamma}^{0} G$ are related to symmetric products: all computations are based on Macdonald's theorem.

Theorem (Macdonald '1962)

Let $P_{X}(t)=b_{0}+b_{1} t+b_{2} t^{2}+\cdots$. Then, $P_{\text {Sym }^{n} X}(t)$ is the coefficient of y^{n} in the rational function:

$$
\frac{(1+t y)^{b_{1}}\left(1+t^{3} y\right)^{b_{3}} \cdots}{(1-y)^{b_{0}}\left(1-t^{2} y\right)^{b_{2}} \ldots}
$$

Corollary (? F '21)

$$
P_{S_{y m} m^{n} X}(-t)=\frac{1}{n} \sum_{k=1}^{n} P_{X}\left(-t^{k}\right) P_{S_{y m}{ }^{n-k} X}(-t)
$$

Proof: these infinite products are plethystic exponentials, which are related to Polya's famous cycle index of S_{n}, which satisfy a recurrence relation of the above form.

Some references (please ask!)

Thank you! Obrigado pela atenção!

- T. J. Baird, Cohomology of the space of commuting n-tuples in a compact Lie group, Alg. Geom. Topol. 7 (2007) 737-754.
- M. Bergeron and L. Silberman, A note on representations of nilpotent groups, J. Group Theory 19 (2016) 125-135.
- C. Florentino and J. Silva, Hodge-Deligne polynomials of character varieties of abelian groups, Open Mathematics 19 (2021), no. 1, 338-362.
- C. Florentino and S. Lawton, Topology of character varieties of Abelian groups, Topology and its Applications 173 (2014) 32-58
- A. Pettet and J. Souto, Commuting tuples in reductive groups and their maximal compact subgroups, Geom. \& Top. 17 (2013) 2513-2593.
- D. Ramras and M. Stafa, Hilbert-Poincaré series for spaces of commuting elements in Lie groups. Math. Z. 292 (2019), 591-610.
- M. Stafa, Poincaré Series of Character Varieties for Nilpotent Groups, J. Group Theory 22 (2019), no. 3, 419-440.
- C. Florentino, S. Lawton and J. Silva, Mixed Hodge structures on Character varieties of Nilpotent groups, Preprint arXiv:2110.07060.

