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Commuting varieties (for matrices)

Fix r , n ∈ N. Let

Commr
n := {(A1, · · · ,Ar ) ∈ (Matn×nC)r : AiAj = AjAi}

Commuting variety of r -tuples of size n matrices.

Surprisingly many Open Problems:

Irreducibility?
Dimensions of components?
Geometry? Arithmetic?

Known: (trivial cases: Commr
1 = Cr ; Comm1

n = Matn×nC)
Comm2

n
is irreducible of the expected dimension n2 + n

Comm4

n
is reducible, for every n ≥ 4 (!)

Comm3

n
is reducible for n ≥ 32 (Guralnick, 1992; improved to

n ≥ 29)
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The diagonal component

Distinguished component in Commr
n : those r -tuples which

can be simultaneously diagonalized.

Let Dn ⊂ Matn×nC be the vector space of diagonal matrices, and:

φ : GL(n,C)×Dr
n → Commr

n, (g ,B1,· · ·,Bn) 7→ (gB1g
−1,· · ·, gBng−1)

Then
DComr

n := im(φ) is irreducible

Let's call it the �Diagonal Component� in Commr
n.

Theorem [Motzkin-Taussky, 1955] For r = 2

Comm2
n = DCom2

n

so that Comm2
n is irreducible of dimension n2 + n.
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Commuting r -tuples in groups

Fix r ∈ N, G a (compact, Lie) group. Let

Commr (G ) = {(g1, · · · , gr ) ∈ G r : gigj = gjgi}
Space of (ordered) r -tuples (or r -sequences) of commuting

elements in G .
V. Kac - A. Smilga, 1999: �The problem of constructing the quantum vacuum
states of pure supersymmetric Yang--Mills theories placed on a small
3-dimensional spatial torus T 3 is reduced to a pure mathematical problem of
classifying the �at connections on T 3�

For r ≥ 2, Commr (G ) is not necessarily connected!!
We have now a torus component: Let T ⊂ G be a �xed maximal
torus.

TComr (G ) := im(ψ) ⊂ Commr (G )

ψ : G × T r → Commr (G ) (g , t1, · · · , tr ) 7→ (gt1g
−1, · · · , gtrg−1)

Theorem [Kac-Smilga '99] If r > 2, and G is simple, then
Commr (G ) is connected (hence equals the torus component) only
for G = SU(n) or G = Sp(n).
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Commuting varieties (for reductive groups)

Finally, let G be a reductive (complex algebraic) group

Commr (G ) := {(g1, · · · , gr ) : gigj = gjgi} ⊂ G r

and call it Commuting variety of r -tuples in G .

It is an a�ne algebraic variety, since G ⊂ GL(V ) for some vector
space V .
Example: write GLn ≡ GL(n,C).

Commr (GLn) = Commr
n ∩ (GLn)r

TComr (GLn) = DComr
n ∩ (GLn)r .

Commr (G ) is generally a very singular algebraic variety,
again not necessarily irreducible (TComr (G ) being one
component), with intricate topology.
By contrast, the variety of commuting matrices Commr

n is
contractible!
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Moduli space of Commuting matrices/sequences in G

We wish to consider the space of r -sequences of commuting linear
operators on a vector space V ∼= Cn without a preferred basis.

Fix r , n ∈ N. G = GLn acts on Commr
n by conjugation:

MC r
n = Commr

n/G .

Motivation: Hilbert scheme of points on Cr .

Open problems: Irreducibility? Dimension of components?
Geometry?

Remarks: In the complex reductive case (but not in the
compact case), we need the (a�ne) geometric invariant

theory (GIT) quotient: MC r
n := Commr

n//G , and similarly for
the moduli space of r -sequences in G :

MC r (G ) := Commr (G )//G .

Again, there is a diagonal component for matrices: DComr
n//G ,

and a torus component in the group case TComr (G )//G .
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The symmetric group and invariant polynomials

Symmetric group Sn = group of permutations of the n element
set {1, 2, · · · , n}.

Sn acts on a Cartesian product X n by permuting the variables:

SymnX := X n/Sn = {unordered n-tuples of elements of X}
Example: What is SymnC?
Let V be a C-vector space of dimension n, then SymnC = V /Sn.
Consider the action of Sn on polynomials in V .
If G acts on X , then G acts on F(X ,Y ) = {maps X → Y } by:
(g · f )(x) := f (g−1 · x) ∈ Y .

Algebra: (1st) Fundamental Theorem of Invariant Theory

C[x1, · · · , xn]Sn ∼= C[e1, · · · , en]

where ek =
∑

1≤i1<i2<···<ik≤n xi1 · · · xik . Therefore SymnC ∼= Cn!

More generally, symmetric products of Riemann surfaces (smooth
algebraic curves) are smooth. Example: Symn(CP1) ∼= CPn.
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The case GLn and Symmetric Products

In the case G = GLn ≡ GL(n,C) ⊂ Matn×nC, commuting
varieties have an interesting relation with symmetric products.

The maximal torus of GLn is T ∼= (C∗)n and the Weyl group is
W := NT/T ∼= Sn. We have:

MC r
n := Commr

n//GLn = (Cn)r/W = (Cr )n/Sn = Symn(Cr )

MC r (GLn)//GLn = T r/W = ((C∗)n)r/Sn = Symn((C∗)r ).

Molien's formula for the Hilbert-Poincaré series (generating
function for the dimensions of the graded components of
C[x1, · · · , xn]Sn = C[Symn(C)] )

1

n!

∑
σ∈Sn

1

det (I − q Aσ)
=

n∏
k=1

1

1− qk
,

where Aσ is the action of σ ∈ Sn on V ∗ ∼= Cn. Example: n = 2 we
have the series: 1 + q + 2q2 + 2q3 + 3q4 + 3q5 + · · ·
({e1}, {e21 , e2}, {e31 , e1e2}, {e41 , e21e2, e22}, ...)
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Character varieties

Γ � a �nitely presented group:

Γ = 〈γ1, · · · , γn | r1, · · · , rm〉

Ex: fundamental group π1(M) of a manifold/variety M.

G � a Lie group.
Typically, G is a real or complex reductive group
Ex: G = SLnC, GLnC, SLnR, U(n), Spn, ...

RΓG := hom(Γ,G ) � the G -representation variety of Γ
(a�ne algebraic variety, given G ⊂ GLnC)
XΓG := hom(Γ,G )//G � the G -character variety of Γ.

It is the GIT quotient, under conjugation: g ∈ G , ρ ∈ hom(Γ,G ):

(g · ρ)(γ) := g ρ(γ) g−1, γ ∈ Γ.

Example: with Γ = Zr (free abelian group) we have
RZrG = Commr (G ) and XZrG = MC r (G ) we let R0

ZrG denote the
torus component TComr (G ).
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Motivation

(Topology/Di�. Geometry) Space of Flat G -connections on a
manifold M with π1(M) = Γ.

(Algebra) Matrix invariants under simultaneous conjugation.

(Knot theory) The A-polynomial is de�ned by the image of a
morphism between character varieties: XΓSL2C→ XZ2SL2C.

Non-abelian Hodge correspondence:

Theorem ([Hitchin, Donaldson, Corlette, Simpson 1986-90])

Let M be a Riemann surface and G be real/complex reductive Lie
group. Then XΓG = hom(Γ,G )//G is homeomorphic to HMG, a
moduli space of G -Higgs bundles over M.
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The case of Surface groups

Let Γ =(central extension of) π1(Σg ), the fund. group of a genus g
compact orientable (Riemann) surface.

N. Hitchin ('87): Poincaré polynomials for G = SL2C
P. Gothen ('94): Poincaré polynomials for G = SL3C

T. Hausel - F. Rodriguez-Villegas ('08): Hodge-Deligne
polynomials for SL2C, conjectures for higher n.
M. Logares, V. Muñoz, P. Newstead ('13): E -polynomials for
SL2C and low g .

O. Schi�man ('16), A. Mellit ('17): Poincaré polynomials for
all G = SLnC.

Actually, most of these results are for smooth (twisted) character
varieties.
Very little is known for hom(π1Σg ,G )//G even for SL2 or GL2
(LMN, Baraglia-Hekmati '17: E -polynomials) as these are very
singular spaces.
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Free groups & hyperbolic surface groups

Let Γ = Fr the free group of rank r , and note XFrG
∼= G r//G

Recall: Y ⊂ X is a strong deformation retract (of X ) if there is
a homotopy H : [0, 1]×X→X with H1= idX , H0(X )=Y and
Ht |Y = idY .

Theorem (F.-Lawton-Casimiro-Oliveira '09-'15)

Let G a real/complex reductive group, with maximal compact
subgroup K. Then, XFrK is a strong deformation retract of XFrG
(hence, Betti numbers agree bk(XFrK ) = bk(XFrG ), for all k, r).

A concrete formula: Tom Baird, 2007, computed Pt(XFrSU(2)):

Pt(XFr
SU(2)) = 1 + t − t(1 + t3)r

1− t4
+
t3

2

(
(1 + t)r

1− t2
− (1− t)r

1 + t3

)
As far as I know, in this very singular case, no computation was
done for SLn, n > 2. Note: For Fr the representation variety RFrG
is trivial !!
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The case Γ abelian/nilpotent

From now on, Γ is nilpotent, that is, with Γk+1 = [Γk , Γk ]:

Γ = Γ0 B Γ1 B · · · B Γn = {e}.

Examples:

Γ = Zr , free abelian; more generally, any abelian group.

Γ = H(Z), the (discrete) Heisenberg group; more generally,
unipotent upper triangular matrices with Z entries.

Theorem (F.-Lawton '09-'14)

Let Γ = Zr and G a complex reductive group, with maximal
compact K. Then, XΓK is a strong deformation retract of XΓG.

Theorem (Bergeron '15)

XΓK is a strong deformation retract of XΓG, for any �nitely
generated nilpotent Γ.
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Reduction from nilpotent to abelian

The abelianization of Γ is ΓAb := Γ/[Γ, Γ], and we say that the
abelian rank of Γ is r ∈ N0 when

ΓAb ∼= Zr ⊕ F , F �nite abelian group.

For K compact, let R0
ΓK be the identity component of

RΓK = hom(Γ,K ).

Theorem (Bergeron-Silberman '16)

For Γ nilpotent of abelian rank r , and K compact Lie group:

R0
ΓK
∼= R0

ZrK , and X0
ΓK
∼= X0

ZrK .

This implies that R0
ΓK and X0

ΓK actually equal the torus
component (Baird '09).

Theorem (F-Lawton-Silva '21)

For Zr , and G complex reductive, the torus component coincide
with the identity component.
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Summary of Topological and algebraic invariants

Let X be a space with �nite cohomology (eg, a compact manifold,
a �nite CW complex, an algebraic variety, etc).
Let bk(X ) = dimC H

k(X ,C). The Poincaré polynomial of X is:
PX (t) :=

∑
k≥0

bk(X ) tk

Euler characteristic: χ(X ) := PX (−1) =
∑

k≥0(−1)k bk(X )
Example: If G is a connected Lie group of positive dimension,
then χ(G ) = 0.
Now, let X be a quasi-projective algebraic variety X . Its
cohomology decomposes into �Hodge pieces� of dimensions
hk,p,q(X ), k, p, q ∈ {0, · · · , 2d}. Mixed Hodge polynomial:

µX (t, u, v) :=
∑

k,p,qh
k,p,q(X ) tkupvq.

Then: PX (t) = µX (t, 1, 1) and the Serre (E -) polynomial is
EX (u, v) := µX (−1, u, v).
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Examples and properties
Polynomial invariants associated to a topological space:
Space M Poincaré polynomial PM(t) Euler char. χ(M)

Rn 1 1

Σg 1 + 2gt + t2 2− 2g

Sn 1 + tn 1 + (−1)n

CPn 1 + t2 + · · ·+ t2n n + 1

X × Y PX (t)PY (t) χ(X )χ(Y )

X t Y ? χ(X ) + χ(Y )

Polynomial invariants associated to a quasi-projective variety:
Space M Mixed Hodge µX (t, u, v) Serre (E -) polynomial

Σg 1 + gt(u + v) + t2uv 1− gu − gv + uv

CPn 1 + t2uv + · · ·+ t2nunvn 1 + uv + · · ·+ (uv)n

toric
∑d

j=0 aj(t
2uv − 1)j

∑d
j=0 aj(x − 1)j

GLnC
∏n

j=1(1 + t2j−1ujv j)
∏n

j=1(1− x j)

X × Y µX (t)µY (t) χ(X )χ(Y )

X t Y ? χ(X ) + χ(Y )
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Char. var. of free Abelian groups - Irreducible components

Theorem (Sikora, F.-Lawton '15)

For G = GLnC, SLnC and SpnC,
XZrG ∼= T r

G/WG .

G is complex simple, and XZrG irreducible ⇒ G = SLnC or SpnC.

Corollary (F.-Lawton-Silva '21)

For G = GLn, G = SLnC or G = SpnC we have X0
ZrG = XZrG (=

the identity component).

Open problems for general Γ, G : Irreducibility, Singularities,
Topology, etc...
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Char. var. of free Abelian groups - invariants

Theorem (F-Silva, '18; F-Lawton-Silva '21)

Let G be the complexi�cation of a compact Lie group. Let X0 be
the irreducible component of the identity in XZrG. Then:

µX0(t, u, v) =
1

|W |
∑

σ∈W det(I + tuvMσ)r .

We recover:

Theorem (Stafa, '17)

Let X0
ZrK be the connected component of the identity in

XZrK = hom(Zr ,K )/K (�real� character variety). Then:

PX0
ZrK

(t) =
1

|W |
∑

σ∈W det(I + tMσ)r .
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GLnC character varieties and symmetric products

Now take G = GLnC, the group of invertible matrices. It has
TG = (C∗)n as maximal torus, and Sn as Weyl group:

XZrGLnC = MC r (G ) = T r
G/W = ((C∗)n)r/Sn = Symn ((C∗)r )

Similarly, for K = U(n) we have TK = (S1)n and W = Sn as well:

XZrU(n) = MC r (K ) = T r
K/W = ((S1)n)r/Sn = Symn

(
(S1)r

)
Example

If r = 2 we have (over Σ1 an elliptic curve):

XZ2U(n) ∼= moduli space of rank n vector bundles on Σ1

XZ2GLn ∼= moduli space of rank n Higgs bundles on Σ1

Hence, these are, respectively, nth symmetric products of a real
torus (S1)2, resp. of (C∗)2.
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The space of commuting r -tuples in K

Let K be a compact Lie group, and recall the space of commuting
r -sequences: RZrK ≡ hom(Zr ,K ) (not necessarily connected).
By Kac-Smilga '99, RZrK is connected for K = U(n) (disconnected
in general for K = SO(n) and other examples).

Theorem (Baird, '09)

If K = SU(n), then:

PRZrK (t) =


1
2

(
(1 + t2)(1 + t)r + (1− t2)(1− t)r

)
, n = 2

1
6

(1 + 2t2 + 2t4 + t6)(1 + t)2r + 1
2

(1− t6)(1− t2)r

+1
3

(1− t2 − t4 + t6)(1− t + t2)r , n = 3

Theorem: Ramras-Stafa formula ('17):

PR0
ΓK

(t) =
1

|W |

m∏
i=1

(1− t2di )
∑
g∈Sn

det (I + t Ag )r

det (I − t2 Ag )
.
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The commuting variety of r -tuples in G

Now, denote by R0
ΓG the identity component of RΓG for any

nilpotent group Γ of abelian rank r . We generalize Ramras-Stafa
formula as follows (abbreviate x = uv).

Theorem (F.-Lawton, Silva '21)

For G reductive, all r ≥ 1 we have:

µR0
ΓG

(t, x) =
1

|W |

m∏
i=1

(1− t2di xdi )
∑
g∈Sn

det (I + tx Ag )r

det (I − t2x Ag )
.

Additionally, the factor 1
|W |
∑

g∈Sn ... is the mixed Hodge series for

the G-equivariant cohomology:

H∗G (R0
ΓG ) ∼= [H∗(T )⊗ H∗(BT )]W .

Moreover, in the GLn case the generating function
∑

n≥0 PR0
n
(t) yn

is a plethystic exponential, so we obtain a recursion: PR0
n
(t) from

PR0
m

(t), m ≤ n.

Corollary: The Euler characteristic of R0
n is zero for all r , n > 0.



Commuting Varieties Character varieties Representation Varieties

A �trivial� example

Let G = GLn, r = 1, and Γ = Z. Then

RΓGLn = hom(Z,GLn) = GLn

and the exponents are di = i for i = 1, 2, · · · , n. With x = uv :

µGLn(t, x) =
1

n!

n∏
i=1

(1− t2ix i )
∑
g∈Sn

det (I + tx Ag )

det (I − t2x Ag )

=
n∏
i=1

(1 + t2i−1x i ),

a well known result, that follows from a generalization of the

Molien formula for the Hilbert-Poincaré series of the graded ring
of invariant polynomials in n variables C[x1, · · · , xn]Sn :

1

n!

∑
σ∈Sn

det (I − zσ)

det (I − q σ)
=

n∏
k=1

1− zqk−1

1− qk
.
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A non-trivial (new) example

Let G = Spn = Sp(n,C), dimCG = 10, and exponents are {2, 4}.
Let r = 2, and Γ = Z2.

R0
ΓG = Comm2(Spn).

Mixed Hodge polynomial, with x = uv :

µR0
ΓG

(t, x) = 1+t2x2+t4x4+2(t3+t7)(x+t2x3)+2t6x2+3t10x2.

Poincaré polynomial (P(1) = 16 = (22)2):

PR0
ΓG

(t) = 1 + t2 + t4 + 2(t3 + t5 + t6 + t7 + t9) + 3t10.

Serre (E -)polynomial (χ = 0)

ER0
ΓG

(t) = 1− 4x + 6x2 − 4x3 + x4 = (1− x)4.
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The diagram in the proof

G reductive with maximal compact K , maximal torus T , and Weyl
group W . TK = T ∩ K .

(G/T )×W T r ϕG // hom0(ΓAb,G ) // hom0(Γ,G ) ≡ R0
ΓG

(K/TK )×W T r
K

?�

OO

ϕK // hom0(ΓAb,K )
?�

FL

OO

∼=BS// hom0(Γ,K ) ≡ R0
ΓK .

?�
PS

OO
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The recursion formula for GLnC

For G = GLn, both R0
ΓG and X0

ΓG are related to symmetric
products: all computations are based on Macdonald's theorem.

Theorem (Macdonald '1962)

Let PX (t) = b0 + b1t + b2t
2 + · · · . Then, PSymn

X
(t) is the

coe�cient of yn in the rational function:

(1 + ty)b1(1 + t3y)b3 · · ·
(1− y)b0(1− t2y)b2 · · ·

Corollary (? F '21)

PSymn
X

(−t) =
1

n

n∑
k=1

PX (−tk)P
Symn−k

X
(−t)

Proof: these in�nite products are plethystic exponentials, which are
related to Polya's famous cycle index of Sn, which satisfy a
recurrence relation of the above form.
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Some references (please ask!)

Thank you!
Obrigado pela atenção!
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