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Commuting varieties (for matrices)

o Fixr,neN. Let
Commf, = {(Al, s ,Ar) S (Mat,,x,,C)’ : A,‘Aj = AjA,'}
Commuting variety of r-tuples of size n matrices.

@ Surprisingly many Open Problems:
o lrreducibility?
e Dimensions of components?
o Geometry? Arithmetic?

e Known: (trivial cases: Comm{ = C"; Comm}, = Mat,,C)

2 is irreducible of the expected dimension n® + n
is reducible, for every n > 4 (1)

is reducible for n > 32 (Guralnick, 1992; improved to

o Comm
o Comm
o Comm

n>29
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The diagonal component

e Distinguished component in Comm], : those r-tuples which

can be simultaneously diagonalized.

Let D, C Mat,«,C be the vector space of diagonal matrices, and:

1

¢ : GL(H,C)XD; — Comm,’,, (g7Bla' : '7Bn) — (gBlg_ )t '7ang_1)

Then
DCom;, := im(¢) is irreducible

Let’s call it the “Diagonal Component” in Comm,.
Theorem [Motzkin-Taussky, 1955] For r = 2

Comm? = DCom?>

so that Comm? is irreducible of dimension n? + n.
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Commuting r-tuples in groups

e Fix r € N, G a (compact, Lie) group. Let
Comm'(G) = {(g,+- &) € G : gigj — g&i}
Space of (ordered) r-tuples (or r-sequences) of commuting
elements in G.

V. Kac - A. Smilga, 1999: “The problem of constructing the quantum vacuum
states of pure supersymmetric Yang--Mills theories placed on a small
3-dimensional spatial torus T3 is reduced to a pure mathematical problem of
classifying the flat connections on T3"

For r > 2, Comm"(G) is not necessarily connected!!
We have now a torus component: Let T C G be a fixed maximal
torus.

TCom"(G) = im(y) C Comm'(G)

,Qb: G x T — Commr(G) (g) ty, - atr) = (gtlg_l

gt ’gtrg_l)
Theorem [Kac-Smilga '99] If r > 2, and G is simple, then

Comm"(G) is connected (hence equals the torus component) only

for G = SU(n) or G = Sp(n).
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Commuting varieties (for reductive groups)

e Finally, let G be a reductive (complex algebraic) group
Comm"(G) :={(g1, - ,&) : &g =g&} C G

and call it Commuting variety of r-tuples in G.

It is an affine algebraic variety, since G C GL(V) for some vector

space V.
Example: write GL, = GL(n,C).

Comm"(GL,) = Comm] N (GLy)"
TCom"(GL,) = DCom; N (GL,)".

Comm"(G) is generally a very singular algebraic variety,
again not necessarily irreducible (TCom"(G) being one
component), with intricate topology.

By contrast, the variety of commuting matrices Comm!, is
contractible!
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Moduli space of Commuting matrices/sequences in G

We wish to consider the space of r-sequences of commuting linear
operators on a vector space V = C" without a preferred basis.
e Fix r,neN. G = GL, acts on Commy, by conjugation:

MC; = Comm,/G.

@ Motivation: Hilbert scheme of points on C".

@ Open problems: Irreducibility? Dimension of components?
Geometry?

@ Remarks: In the complex reductive case (but not in the
compact case), we need the (affine) geometric invariant
theory (GIT) quotient: MC} := Comm},//G, and similarly for
the moduli space of r-sequences in G:

MC'(G) := Comm"(G)//G.

@ Again, there is a diagonal component for matrices: DComy},// G,
and a torus component in the group case TCom"(G)//G.
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The symmetric group and invariant polynomials

Symmetric group S, = group of permutations of the n element

set {1,2,---,n}.
@ S, acts on a Cartesian product X" by permuting the variables:
Sym"X := X"/S, = {unordered n-tuples of elements of X}

Example: What is Sym"C?

Let V be a C-vector space of dimension n, then Sym"C = V/S§,,.
Consider the action of S, on polynomials in V.

If G acts on X, then G acts on F(X,Y) = {maps X — Y} by:

(- fx):=~flg7t-x)eY.
Algebra: (1st) Fundamental Theorem of Invariant Theory
(C[Xl, s ,X,,]S" = (C[el, s ,e,,]
where e, = Zl§i1<i2<---<ik§n Xj, -+ - X, Therefore Sym"C = C"!

More generally, symmetric products of Riemann surfaces (smooth
algebraic curves) are smooth. Example: Sym”(CP!) = CP".
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The case GL, and Symmetric Products

@ In the case G = GL, = GL(n,C) C Mat,,C, commuting
varieties have an interesting relation with symmetric products.

The maximal torus of GL, is T = (C*)" and the Weyl group is

W :=NT/T =S,. We have:

MC; := Comm, /GL, = (C")'/W = (C")"/S, =Sym"(C")
MC’(GL,)/ GL, T /W = ((C*)")' /S, = Sym"((C*)").

Molien’s formula for the Hilbert-Poincaré series (generating

function for the dimensions of the graded components of

Clxt, -+, xp]> = C[Sym"(C)] )

1 3 1 ﬁ 1
nl _ - — gk’
s det(/ — qA,) o1 l—a
where A, is the action of 0 € S, on V* = C". Example: n =2 we
have the series: 1+ g +2q¢% +2q% +3q* +3¢° + - --
({61}, {6127 62}1 {efv 6162}, {ei‘) 612627 622}, )
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Character varieties

o [ — a finitely presented group:

|_=(71,--',’yn\r1,~-,rm)

Ex: fundamental group 71 (M) of a manifold /variety M.
@ G — a Lie group.
Typically, G is a real or complex reductive group
Ex: G = SL,C, GL,C, SL,R, U(n), Spn, ...
@ RrG :=hom(l, G) — the G-representation variety of I'
(affine algebraic variety, given G C GL,C)
@ XrG :=hom(l', G)/G — the G-character variety of .

It is the GIT quotient, under conjugation: g € G, p € hom(l', G):

(g-p)(v)=gp(v)g"", yeT.

Example: with I = 7Z" (free abelian group) we have
Rz G = Comm"(G) and Xz G = MC'(G) we let RS, G denote the
torus component TCom"(G).
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Motivation

o (Topology/Diff. Geometry) Space of Flat G-connections on a
manifold M with m1(M) =T.

o (Algebra) Matrix invariants under simultaneous conjugation.

e (Knot theory) The A-polynomial is defined by the image of a
morphism between character varieties: XrSLyC — Xz2SL,C.

@ Non-abelian Hodge correspondence:

Theorem ([Hitchin, Donaldson, Corlette, Simpson 1986-90])

Let M be a Riemann surface and G be real/complex reductive Lie
group. Then XrG = hom(l', G)//G is homeomorphic to Hy G, a
moduli space of G-Higgs bundles over M.
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The case of Surface groups

Let ' =(central extension of) 71 (X,), the fund. group of a genus g
compact orientable (Riemann) surface.

e N. Hitchin ('87): Poincaré polynomials for G = SL,C
o P. Gothen ('94): Poincaré polynomials for G = SL3C

e T. Hausel - F. Rodriguez-Villegas ('08): Hodge-Deligne
polynomials for SL,C, conjectures for higher n.

e M. Logares, V. Mufioz, P. Newstead ('13): E-polynomials for
SL>C and low g.

@ O. Schiffman ('16), A. Mellit ("17): Poincaré polynomials for

all G = SL,C.
Actually, most of these results are for smooth (twisted) character
varieties.

Very little is known for hom(7m1Xz, G)// G even for SL, or GL»
(LMN, Baraglia-Hekmati '17: E-polynomials) as these are very
singular spaces.
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Free groups & hyperbolic surface groups

Let I = F, the free group of rank r, and note Xg, G = G’ /G
Recall: Y C X is a strong deformation retract (of X) if there is
a homotopy H:[0,1]x X — X with H; =idx, Ho(X)=Y and
He|y = idy .

Theorem (F.-Lawton-Casimiro-Oliveira '09-'15)

Let G a real/complex reductive group, with maximal compact
subgroup K. Then, X, K is a strong deformation retract of Xr, G
(hence, Betti numbers agree by(Xr, K) = bk(Xfg, G), for all k,r).

A concrete formula: Tom Baird, 2007, computed P:(Xf, SU(2)):

B t(1+t3) e /(1+t) (1-1t)
Pt(XF,SU(2))—1+t_ﬁ+E 12 — 1168

As far as | know, in this very singular case, no computation was
done for SL,, n > 2. Note: For F, the representation variety Rg, G
is trivial !
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The case ' abelian/nilpotent

From now on, I is nilpotent, that is, with [, 1 = [k, Tk]:
Fr=ro>li>- >, ={e}

Examples:
o [ = 7", free abelian; more generally, any abelian group.

e [ = H(Z), the (discrete) Heisenberg group; more generally,
unipotent upper triangular matrices with Z entries.

Theorem (F.-Lawton '09-'14)

Let T =7" and G a complex reductive group, with maximal
compact K. Then, XrK is a strong deformation retract of XrG.

v

Theorem (Bergeron '15)

XrK is a strong deformation retract of Xr G, for any finitely
generated nilpotent T.

A
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Reduction from nilpotent to abelian

The abelianization of I' is [ 45 := /[, T], and we say that the
abelian rank of T is r € Ny when

Tap 7" @ F, F finite abelian group.

For K compact, let RIK be the identity component of
RrK = hom(l, K).

Theorem (Bergeron-Silberman '16)

For I nilpotent of abelian rank r, and K compact Lie group:
RYK =~ RY, K, and XPK = X9, K.

This implies that REK and X2K actually equal the torus
component (Baird '09).

Theorem (F-Lawton-Silva '21)

For Z", and G complex reductive, the torus component coincide
with the identity component.
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Summary of Topological and algebraic invariants

Let X be a space with finite cohomology (eg, a compact manifold,
a finite CW complex, an algebraic variety, etc).
Let by(X) = dimc H¥(X, C). The Poincaré polynomial of X is:

Px(t) =) bi(X) t*

k>0

Euler characteristic: x(X) := Px(—1) = Y =0 (=1)% be(X)
Example: If G is a connected Lie group of positive dimension,
then x(G) = 0.
Now, let X be a quasi-projective algebraic variety X. lts
cohomology decomposes into “Hodge pieces” of dimensions
h*P9(X), k,p,q € {0,--- ,2d}. Mixed Hodge polynomial:

ux(t,u,v) = Zkvp’qhk’p’q(X) tkuPva.

Then: Px(t) = px(t,1,1) and the Serre (E-) polynomial is
Ex(u,v) = ux(—1,u,v).
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Examples and properties

Polynomial invariants associated to a topological space:

Space M | Poincaré polynomial Py(t) | Euler char. x(M)
R" 1 1
Pl 1+2gt + t2 2—2g
Sn 14+ ¢t" 14+ (-1)"
CP" L+t2 4. t2" n+1
XxY Px(t) Py(t) X(X)x(Y)
XUy ? X(X) + x(Y)

Polynomial invariants associated to a quasi-projective variety:

Space M | Mixed Hodge px(t,u,v) | Serre (E-) polynomial
Zg 1+gt(u+v)+t2uv 1—gu—gv—+uv
CP" |1+ tuv+---+ """ | T+uv+--- 4 (uv)"
toric ZJC-]ZO aj(t?uv — 1y 27:0 aj(x — 1y
GL,C | T[L,(A+ 77 ) [, =)
XxY px(t) py (t) X(X)x(Y)
XUy ? X(X) + x(Y)
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Char. var. of free Abelian groups - Irreducible components

Theorem (Sikora, F.-Lawton '15)
For G = GL,C, SL,C and Sp,C,
Xz:G = TL/We.
G is complex simple, and X7+ G irreducible = G = SL,C or 5p,C.

Corollary (F.-Lawton-Silva "21)

For G = GL,, G = SL,C or G = Sp,C we have X%, G = Xz:G (=
the identity component).

Open problems for general ', G: Irreducibility, Singularities,
Topology, etc...
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Char. var. of free Abelian groups - invariants

Theorem (F-Silva, '18; F-Lawton-Silva '21)

Let G be the complexification of a compact Lie group. Let X° be
the irreducible component of the identity in Xz G. Then:

1
pxo (t, u, v) = Wzaewdet(’ + tuvM,)".

We recover:

Theorem (Stafa, '17)

Let X%,K be the connected component of the identity in
XzrK =hom(Z",K)/K (‘real” character variety). Then:

1
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GL,C character varieties and symmetric products

Now take G = GL,C, the group of invertible matrices. It has
T = (C*)" as maximal torus, and S, as Weyl group:

Xzr GLAC = MCT(G) = TL/W = ((C*)") /S, = Sym" ((C*)")

Similarly, for K = U(n) we have Ty = (S')" and W = S, as well:

Xz U(n) = MC"(K) = Ti/W = ((S')")"/Sa = Sym™ ((S)")

If r =2 we have (over X; an elliptic curve):
Xz2U(n) = moduli space of rank n vector bundles on ¥

Xz2GL, = moduli space of rank n Higgs bundles on ¥;

Hence, these are, respectively, nth symmetric products of a real
torus (S1)?, resp. of (C*)2.
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The space of commuting r-tuples in K

Let K be a compact Lie group, and recall the space of commuting
r-sequences: RyzrK = hom(Z", K) (not necessarily connected).

By Kac-Smilga '99, Ry-K is connected for K = U(n) (disconnected
in general for K = SO(n) and other examples).

Theorem (Baird, '09)

If K = SU(n), then:
S+ +y+(1-A)-1)), n=2
Pro k(t) =< S(L42t2 +2t* + t8)(1 + £)% + 3(1 — t%)(1 — £2)"
-2 -t*+ )1 -t+1t3), n=3

Theorem: Ramras-Stafa formula ('17):

det (I + t Ag)"
P (1—t2%)
o (¢ \W|H ' Z det(I — 2 Ag)’
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The commuting variety of r-tuples in G

Now, denote by RYG the identity component of RrG for any
nilpotent group I of abelian rank r. We generalize Ramras-Stafa
formula as follows (abbreviate x = uv).

Theorem (F.-Lawton, Silva '21)

For G reductive, all r > 1 we have:

1 4 det (/ + tx Ag)"
t,x) = —— [[(1 — t2x% 2
IU’R(F)G( 7X) |W| E( X )g; det(l_t2XAg)

Additionally, the factor |1W| > ges,
the G-equivariant cohomology:
HE(REG) = [H*(T) ® H*(BT)]"™ .

is the mixed Hodge series for

Moreover, in the GL, case the generating function > - Pro(t)y"
is a plethystic exponential, so we obtain a recursion: Pgo(t) from
Pro (t), m < n.

Covmllaviye Tha Eodav ~lhmommtmnvicr s D0 e o Lo ol v o1~ N
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A “trivial” example

Let G=GL,, r=1,and [ =Z. Then
RrGL, = hom(Z, GL,) = GL,

and the exponents are d; =i for i =1,2,--- , n. With x = uv:
det (! + tx A;)
t, — 17 t21 I g
HoL,(tx) = o q det (I — 2x Ag)

A4S

— H(l + t2l 1 I)’
i=1
a well known result, that follows from a generalization of the
Molien formula for the Hilbert-Poincaré series of the graded ring
of invariant polynomials in n variables C[xy, - - -, x,]°":

1 det (I — zo) k=1

ﬁ 1—2zq
nl _ - — gk
nl £ det(l qo) o 1—g
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A non-trivial (new) example

Let G = Spp, = Sp(n, C), dimc G = 10, and exponents are {2,4}.
Let r =2, and I = Z2.

RYG = Comm?(Sp,).
Mixed Hodge polynomial, with x = uv:
pRoG (£ x) = 152+t 1283+ 17) (x4 £2x%) + 2% +3¢10x%.
Poincaré polynomial (P(1) = 16 = (22)?):
Prog(t) = 1+ 2+ t* +2(° + ¢° + £ + ¢7 + ) + 3¢,
Serre (E-)polynomial (x = 0)

ER?G(t) =1—4x+6x> -4+ xV=(1-x)*~
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The diagram in the proof

G reductive with maximal compact K, maximal torus T, and Weyl
group W. Ty = TNK.

(G/T) xw T" =25+ hom®(T a5, G) — hom®(I', G) = R2G

FLJ ) ps j

(K/Tk) xw Th 25 hom®(T pp, K) —2hom?(T', K) = R2K.
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The recursion formula for GL,C

For G = GL,, both R2G and X2G are related to symmetric
products: all computations are based on Macdonald’s theorem.

Theorem (Macdonald '1962)

Let Px(t) = by + byt + bat? + - -. Then, Pgy 0, (t) is the
coefficient of y" in the rational function:

(1+ty)> (1 + t3y)Ps

(1 —y)ko(1 - t2y)b

A

Corollary (? F '21)

PS_)/ITIX ZP)(( t n—kX(—t)

v

Proof: these infinite products are plethystic exponentials, which are
related to Polya’s famous cycle index of S, which satisfy a
recurrence relation of the above form.
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Some references (please ask!)

Thank youl!
Obrigado pela atencao!
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