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1 Classical facts about geodesics and geometry of negatively curved 3-manifolds;

2 Minimal surface entropy (Calegari-Marques-Neves);

3 Average area ratio (Gromov);

4 Some recent results relating both quantities and a positive answer to a conjecture
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Introduction

• M
3 = H

3/� closed manifold with negatively curved metric g.

Geodesics are special in negative curvature because:

• closed geodesics are unique in each homotopy class of ⇡1(M);

• geodesics are trajectories for the geodesic flow which is Anosov.

From this one has that closed geodesics grow exponentially with their length, the set of

closed geodesics is dense in unit tangent bundle, etc.

Margulis showed in ’69 that the limit below exists (called topological entropy)

h(g) := lim
L!1

ln#{length
g
(�)  L : � closed geodesic in (M, g)}

L
.

Manning showed in ’79 that it is identical to the volume entropy

hvol(g) := lim
R!1

ln volg(B̃R(x))
R

, where x 2 M̃ = universal cover of M.
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Introduction

A particular case of Besson–Courtois–Gallot ’95 implies:

“hvol(g)
3
volg(M) � hvol(ghyp)

3
volhyp(M) and equality holds iff g and ghyp are isometric.”

In particular, hyperbolic metrics on M are unique (Mostow rigidity) and can be

recognized by only two numbers (volume and entropy).

Conjecture (Agol, Storm, and Thurston)

hvol(g)  2 = hvol(ghyp) if scalar curvature R(g) satisfies R(g) � �6 = R(ghyp).

Similar characterization for minimal surfaces of M
3
?

In contrast to geodesics, minimal surfaces in M aren’t necessarily

• unique in their homotopy class, ⇡1-injective, or flow trajectories.

So we need to restrict to a suitable subclass of minimal surfaces of (M3, g)...
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M3 = H/� closed manifold.

• ⇧ :=homotopy class of ⇡1-injective surfaces in M

• Given ⌃ 2 ⇧, ⌃ lifts to a disc ⌦ ⇢ H
3

• (Bonahon, Thurston) ⇤(⇧) := @1H
3 \ ⌦̄ is either a Jordan curve or @1H

3 ' S
2
.
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M3 = H/� closed manifold.

• ⇧ :=homotopy class of ⇡1-injective surfaces in M

• S"(M) := {homotopy class ⇧ where dimH(⇤(⇧))  1 + "}

(Bowen, ’79): ⇧ 2 S0(M) =) ⇧ contains totally geodesic surface (for ghyp).

Such ⇧ are special but there are many lattices � for which S0(M) = ;.

Why S"(M)?

• Khan-Markovic showed that S"(M) has roughly h
2h

elements with genus  h if " > 0.

In particular it is non-empty.

•(Uhleneck ’83, Seppi ’16 ): If " ⌧ 1, minimal surfaces in ⇧ 2 S" with respect to ghyp

are unique in their homotopy class.



M3 = H/� closed manifold.

• ⇧ :=homotopy class of ⇡1-injective surfaces in M

• S"(M) := {homotopy class ⇧ where dimH(⇤(⇧))  1 + "}

(Bowen, ’79): ⇧ 2 S0(M) =) ⇧ contains totally geodesic surface (for ghyp).

Such ⇧ are special but there are many lattices � for which S0(M) = ;.

Why S"(M)?

• Khan-Markovic showed that S"(M) has roughly h
2h

elements with genus  h if " > 0.

In particular it is non-empty.

•(Uhleneck ’83, Seppi ’16 ): If " ⌧ 1, minimal surfaces in ⇧ 2 S" with respect to ghyp

are unique in their homotopy class.



M3 = H/� closed manifold.

• ⇧ :=homotopy class of ⇡1-injective surfaces in M

• S"(M) := {homotopy class ⇧ where dimH(⇤(⇧))  1 + "}

(Bowen, ’79): ⇧ 2 S0(M) =) ⇧ contains totally geodesic surface (for ghyp).

Such ⇧ are special but there are many lattices � for which S0(M) = ;.

Why S"(M)?

• Khan-Markovic showed that S"(M) has roughly h
2h

elements with genus  h if " > 0.

In particular it is non-empty.

•(Uhleneck ’83, Seppi ’16 ): If " ⌧ 1, minimal surfaces in ⇧ 2 S" with respect to ghyp

are unique in their homotopy class.



Minimal surface entropy.

• S"(M) := {homotopy class ⇧ where dimH(⇤(⇧))  1 + "}

• Schoen-Yau shows the existence of ⌃g(⇧) 2 ⇧ an area-minimizing surface

areag(⇧) := area(⌃g(⇧)) = inf{areag(⌃)) : ⌃ 2 ⇧}

• Consider the minimal surface entropy

E(g) := lim
"!0

lim sup
L!1

ln#{areag(⇧)  4⇡(L � 1) : ⇧ 2 S"(M)}
L ln L

.

Theorem (Calegari–Marques–N.)

If g has sectional curvature  �1 then

E(g) � 2 = E(ghyp) with equality () g = ghyp.

• To prove the () statement we need to use a classification theorem in homogenous

dynamics.
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Ratner-Shah classification.

(Ratner, Shah, ’91) Totally geodesic discs in M
3 = H

3 \ � either

(a) cover a closed surface or (b) are dense in the Grassmanian of 2-planes of M.

Set F (M) = frame bundle of M
3
. There is an action of PSL(2,R) = Isom

+(H2) on

F (M).

A closed surface in M induces a probability measure on F (M).

(Ratner, ’91) Let µ be an ergodic PSL(2,R)-invariant measure on F (M). Then either µ
is the homogeneous measure on F (M) or is supported on some closed totally

geodesic surface.
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Minimal surface entropy.

The general principle started by Calegari–Marques–Neves is to use Ratner’s

classification theorem to understand minimal surfaces in negatively curved manifolds.

Theorem (Lowe–N.)

Assume R(g) � �6. Then E(g)  2 = E(ghyp) and equality holds if and only if g is

isometric to ghyp.

1:

2:

3:

4:

5:

6:
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Average area ratio

M
3 = H

3/� with metric g. Gromov defined in ’91 the average area ratio as

A(g/ghyp) =
1

volhyp(Gr2(M))

Z

Gr2(M)

|⌧ |g
|⌧ |hyp

dVhyp(⌧).

Motivation: In the same way that the unit tangent bundle of M has a foliation where

each leaf is a geodesic, Gr2(M) admits a foliation L where each leaf corresponds to a

totally geodesic plane of M.

A metric g induces a measure on L and we have

A(g/ghyp) =
volg(L)

volhyp(L)
.

• Gromov showed in the same paper that if R(g) � �6 then A(g/ghyp) � 1/3.

• He conjectured that if R(g) � �6 then A(g/ghyp) � 1.

• Schoen conjectured that if R(g) � �6 then volg(M)/volhyp(M) � 1 and this was

proven by Perelman using Ricci flow.
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Average area ratio

Theorem (Lowe–N.)

For every metric g we have E(g)A(g/ghyp) � 2 and equality if and only if g = ghyp.

Corollary

If R(g) � �6 then A(g/ghyp) � 1 and equality holds if and only if g = ghyp.

For instance, if g � ghyp and R(g) � �6 then g = ghyp

Proof: If R(g) � �6 then E(g)  2 and so A(g/ghyp) � 2/E(g) � 1.

Proof of Theorem:
1:

2:

3:

4:
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Thank you!


