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PILLARS OF CONTEMPORARY THEORETICAL PHYSICS

- Newtonian mechanics

- Maxwell electromagnetism

- Einstein special relativity
(when the velocities approach that of light)

- Quantum mechanics
(when masses are very small)

- Boltzmann-Gibbs statistical mechanics (à Thermodynamics)

Previous four + Theory of probabilities 



QUANTUM	MECHANICS
TEXTBOOKS

BOLTZMANN-GIBBS	
STATISTICAL	MECHANICS
TEXTBOOKS

square	well		 YES YES

harmonic	oscillator	 YES YES

rigid	rotator YES YES
spin	1/2	in	magnetic	field			 YES YES
nonionized	Hydrogen	atom YES NO!		WHY?



Enrico FERMI              Thermodynamics (Dover, 1936)

The entropy of a system composed of several parts is very
often equal to the sum of the entropies of all the parts. This
is true if the energy of the system is the sum of the energies
of all the parts and if the work performed by the system
during a transformation is equal to the sum of the amounts
of work performed by all the parts. Notice that these
conditions are not quite obvious and that in some cases
they may not be fulfilled. Thus, for example, in the case of a
system composed of two homogeneous substances, it will
be possible to express the energy as the sum of the
energies of the two substances only if we can neglect the
surface energy of the two substances where they are in
contact. The surface energy can generally be neglected
only if the two substances are not very finely subdivided;
otherwise, it can play a considerable role.





ENTROPIC FORMS

Concave  

Extensive 

Lesche-stable

Finite entropy production     
per unit time

Pesin-like identity (with  
largest entropy production)

Composable (unique trace 
form; Enciso-Tempesta)

Topsoe-factorizable (unique)

Amari-Ohara-Matsuzoe
conformally invariant  
geometry (unique)

Biro-Barnafoldi-Van 
universal thermostat 
independence (unique)

ENTROPIC FUNCTIONALS

nonadditive (if 1)q ¹

additive

Entropy Sq

(q real)

BG entropy

(q =1)

Possible generalization of                
Boltzmann-Gibbs statistical mechanics

C.T., J. Stat. Phys. 52, 479 (1988)
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Foundations of Statistical Mechanics: A Deductive Treatment 
(Pergamon, Oxford, 1970), page 167

O. Penrose,

		
Sq(A+B)

k
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Sq(A)
k

+
Sq(B)
k

+(1−q)	
Sq(A)
k

	
Sq(B)
k



All happy families are alike; each unhappy family is unhappy in its own way.
Leo Tolstoy (Anna Karenina, 1875-1877) 

   

EXTENSIVITY OF THE ENTROPY  (N →∞)
W ≡ total number of possibilities with nonzero probability,
        assumed to be equally probable
If W (N ) ∼ µN   (µ >1) 
             ⇒  SBG (N ) = kB lnW (N ) ∝ N        OK!       

If W (N ) ∼ N ρ   (ρ > 0) 
             ⇒  Sq (N ) = kB lnq W (N ) ∝[W (N )]1−q ∝ N ρ (1−q)

             ⇒  Sq=1−1 ρ (N ) ∝ N                          OK!

If W (N ) ∼ν Nγ
  (ν >1; 0 < γ <1) 

             ⇒  Sδ (N ) = kB lnW (N )⎡⎣ ⎤⎦
δ
∝ N γ  δ

             ⇒  Sδ =1 γ (N ) ∝ N                             OK!

IMPORTANT:        µN >>ν Nγ
>> N ρ    if   N >>1



EXTENSIVE

SYSTEMS
   W (N )
(equiprobable)

EXTENSIVE
(q =1−1/ ρ)

EXTENSIVE
  (δ =1/γ )

NONEXTENSIVE

NONEXTENSIVE NONEXTENSIVE

NONEXTENSIVE

NONEXTENSIVE NONEXTENSIVE

ENTROPY  SBG

  (ADDITIVE)

   ENTROPY  Sq
         (q ≠ 1)
(NONADDITIVE)

   ENTROPY  Sδ
         (δ ≠ 1)
(NONADDITIVE)

e.g.,  µN

 (µ >1)

e.g.,  N ρ

 (ρ > 0)

e.g.,  ν Nγ

(ν >1;
0 < γ <1)

	(ADDITIVE) 	(NONADDITIVE) 	(NONADDITIVE)



A theory is the more impressive the greater the
simplicity of its premises is, the more different
kinds of things it relates, and the more extended
is its area of applicability. Therefore the deep
impression that classical thermodynamics made
upon me. It is the only physical theory of
universal content concerning which I am
convinced that, within the framework of
applicability of its basic concepts, it will never be
overthrown. Albert Einstein (1949)



		v13 = v12 + v23 								(Galileo)

		

v13 =
v12 + v23

1+ v12
c
v13
c

			(Einstein)

COMPOSITION OF VELOCITIES OF INERTIAL SYSTEMS (d=1)

Newton mechanics: 
It satisfies Galilean additivity but violates Lorentz invariance (hence 
mechanics can not be unified with Maxwell electromagnetism)

Einstein mechanics (Special relativity): 
It satisfies Lorentz invariance (hence mechanics is unified with Maxwell 
electromagnetism) but violates Galilean additivity

Question: which is physically more fundamental, the additive composition 
of velocities or the unification of mechanics and electromagnetism?
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M. Gell-Mann
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S. Umarov, C. T. and S. Steinberg, Milan J Math 76, 307 (2008)
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(area-preserving)

STANDARD MAP (Chirikov 1969)

Particle confinement in magnetic traps, 
particle dynamics in accelerators, 
comet dynamics, 
ionization of Rydberg atoms, 
electron magneto-transport

pi+1 = pi − K sin xi  (mod  2π )
xi+1 = xi + pi+1         (mod  2π ) 
                          (i = 0,1,2,...)

(1928-2008)
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Stosszahlansatz



Ti
rn

ak
li 

an
d 

Bo
rg

es
 

N
at

ur
e 

/ S
ci

en
tif

ic
 R

ep
or

ts
6,

 2
36

44
 (2

01
6)

 



y

Tirnakli and Borges 
Nature / Scientific Reports 6, 23644 (2016) 



J.W. GIBBS
Elementary Principles in Statistical Mechanics - Developed with Especial 
Reference to the Rational Foundation of Thermodynamics
C. Scribner�s Sons, New York, 1902; Yale University Press, New Haven, (1981), 
page 35

In treating of the canonical distribution, we shall always suppose the
multiple integral in equation (92) [the partition function, as we call it
nowadays] to have a finite valued, as otherwise the coefficient of
probability vanishes, and the law of distribution becomes illusory. This
will exclude certain cases, but not such apparently, as will affect the
value of our results with respect to their bearing on thermodynamics.
It will exclude, for instance, cases in which the system or parts of it
can be distributed in unlimited space […]. It also excludes many
cases in which the energy can decrease without limit, as when the
system contains material points which attract one another inversely as
the squares of their distances. […]. For the purposes of a general
discussion, it is sufficient to call attention to the assumption implicitly
involved in the formula (92).
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EXTENSIVE
SYSTEMS

NONEXTENSIVE
SYSTEMS

dipole-dipole

Newtonian gravitation

  

V (r) ∼ − A
rα      (r →∞)        ( A > 0,   α ≥ 0)

                        integrable if       α / d >1       (short-ranged)
                non-integrable if  0 ≤α / d ≤1        (long-ranged)

HMF                
(inertial XY model)

CLASSICAL LONG-RANGE-INTERACTING MANY-BODY HAMILTONIAN SYSTEMS

 

α -XY
α -Heisenberg 
α -FPU 





d-DIMENSIONAL XY MODEL

L.J.L Cirto, A. Rodriguez, F.D. Nobre and C.T., EPL 123, 30003 (2018)



d-DIMENSIONAL XY MODEL

L.J.L Cirto, A. Rodriguez, F.D. Nobre and C.T., EPL 123, 30003 (2018)





11, 1130 (2021) 



R.M. Oliveira, S. Brito, L.R. da Silva and C.T., Scientific Reports 11, 1130 (2021)

D.J.B. Soares, C. T., A.M. Mariz and L.R. da Silva, EPL 70, 70 (2005)
S. Thurner and C. T., EPL 72, 197 (2005)
S. Brito, L.R. da Silva and C. T., Scientific Reports 6, 27992 (2016)
T.C. Nunes, S. Brito, L.R. da Silva and C. T., J Stat Mech 093402 (2017)
S. Brito, T.C. Nunes, L.R. da Silva and C. T., PRE 99, 012305 (2019)
N. Cinardi, A. Rapisarda and C. T., J Stat Mech 043404 (2020)

à degree distribution P(k) 

All links are equally weighted:

All links are randomly weighted:

RANDOM GEOMETRY       q -THERMOSTATISTICS



’energy’ à

preferential attachment:

p(r)∝1 rd+αG 		(αG >0,	r ≥1)
geographic localization of sites:







where			eqz ≡ 1+(1−q)	z⎡⎣ ⎤⎦+

1
1−q 		 e1z = ez( )

and								 lnq z ≡
z1−q −1
1−q 									 ln1 z = lnz( )





Barabasi-Albert

Erdos-Renyi
(random graphs)



Limoges - France







Genova, 2018





		
P(t)
P(0) = eq

−βqt









(15 June 2021) 



Original scans of infected lungs (fibrosis)

scans after q-enhanced processing (q=0.5)





Combe, Richefeu, Stasiak and Atman 
PRL 115, 238301 (2015)



CT and DJ Bukman, PRE 54 (1996) R2197

Combe, Richefeu, Stasiak and Atman 
PRL 115, 238301 (2015)

1/



LHC (Large Hadron Collider)
CMS, ALICE, ATLAS and LHCb detectors
~ 4000 scientists/engineers from ~ 200 institutions of ~ 50 countries



C.Y. Wong, G. Wilk, L.J.L. Cirto and C. T., 
EPJ Web of Conferences 90, 04002 (2015), and PRD 91, 114027 (2015) 

SIMPLE APPROACH: TWO-DIMENSIONAL SINGLE RELATIVISTIC FREE PARTICLE

dN±±dydpT
  = A eq

− ET / T

[A] = GeV−2c3

(A, q, T) = (38, 1, 0.13)
     Boltzmann−Gibbs

±±2π pT

A / 100

A / 101

A / 102

A / 104

A / 106

[T] = GeV

1 «
«η∼0

(A, q, T) = (38, 1.150, 0.13)
(A, q, T) = (43, 1.151, 0.13)
(A, q, T) = (30, 1.127, 0.13)
(A, q, T) = (32, 1.125, 0.13)
(A, q, T) = (27, 1.124, 0.13)

CMS  √s = 7  TeV
ATLAS  √s = 7  TeV

CMS √s = 0.9 TeV
ATLAS √s = 0.9 TeV
ALICE √s = 0.9 TeV10−14
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BOLTZMANN-GIBBS
STATISTICAL	MECHANICS

NONEXTENSIVE
STATISTICAL	MECHANICS

Entropy

SBG = −k pi lnpi
i
∑

						 = k pi ln
1
pii

∑
							(additive)

Sq = k
1− pi

q

i
∑
q−1

				 = k pi lnq
1
pii

∑
			(nonadditive)

Distribution	of	
velocities	v

								p(v)∝e−mv
2/2kT

									(Maxwellian)
Central	Limit	Theorem

										p(v)∝eq
−mv2/2kTq

												(q-Gaussian)
q-Central	Limit	Theorem

Distribution	of	
energies	Ei

													pi ∝e
−Ei/kT

											(BG	weight)
Large	Deviation	Theory

													pi ∝eq
−Ei/kTq

													(q-weight)
q-Large	Deviation	Theory

				lnq z ≡
z1−q −1
1−q

		(ln1 z = lnz)				and				eq
z ≡ 1+(1−q)z⎡⎣ ⎤⎦

1
1−q 			(e1

z = ez )



World Scientific
World Scientific
www.worldscientific.com
12499 hc

ISBN 978-981-124-515-2

Mathematical Foundations ofM
athem

atical Foundations of
N

onextensive S
tatistical M

echanics

The book is  devoted to  the 
mathematical foundations of 
nonextensive statistical mechanics. 
This is the first book containing 
the systematic presentation of the 
mathematical theory and concepts 
related to nonextensive statistical 
mechanics, a current generalization 
of Boltzmann-Gibbs statistical 
mechanics introduced in 1988 by one of the authors and based on a 
nonadditive entropic functional extending the usual Boltzmann-Gibbs-
von Neumann-Shannon entropy. Main mathematical tools like the 
q-exponential function, q-Gaussian distribution, q-Fourier transform, 
q-central limit theorems, and other related objects are discussed rigorously 
with detailed mathematical rational. The book also contains recent results 
obtained in this direction and challenging open problems. Each chapter 
is accompanied with additional useful notes including the history of 
development and related bibliographies for further reading.

Sabir Umarov
Constantino Tsallis

U
m

arov
Tsallis

Nonextensive Statistical
Mechanics
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