T-duality, α^{\prime} corrections and BH entropy

J.A. Sierra-Garcia
Universidade de Santiago de Compostela, Spain

Iberian Strings 2017
January 17th, 2017

Work in progress with:
José Edelstein (Univ. Santiago de Compostela)
Konstantinos Sfetsos (Athens U.)

T-duality reminder

If nothing depends on ψ, write the background as (Kaloper, Meissner 97):

$$
\begin{aligned}
\mathrm{d} \bar{s}^{2} & =e_{\mu}^{a} e_{\nu}^{b} \eta_{a b} \mathrm{~d} x^{\mu} \mathrm{d} x^{\nu}+e^{2 \sigma}(\mathrm{~d} \psi+V)^{2} \\
\bar{B} & =\mathcal{B}+\frac{1}{2} W \wedge V+W \wedge \mathrm{~d} \psi \quad e^{-2 \bar{\phi}}=e^{-2 \phi} e^{-\sigma}
\end{aligned}
$$

T-duality reminder

If nothing depends on ψ, write the background as (Kaloper, Meissner 97):

$$
\begin{aligned}
\mathrm{d} \bar{s}^{2} & =e_{\mu}^{a} e_{\nu}^{b} \eta_{a b} \mathrm{~d} x^{\mu} \mathrm{d} x^{\nu}+e^{2 \sigma}(\mathrm{~d} \psi+V)^{2}, \\
\bar{B} & =\mathcal{B}+\frac{1}{2} W \wedge V+W \wedge \mathrm{~d} \psi \quad e^{-2 \bar{\phi}}=e^{-2 \phi} e^{-\sigma}
\end{aligned}
$$

The leading order Buscher rules are:

$$
\begin{array}{llll}
\sigma & \rightarrow & -\sigma, & \left(\sim \mathrm{R} \rightarrow \frac{1}{\mathrm{R}}\right), \\
V & \leftrightarrow & W, & (\sim \mathrm{n} \leftrightarrow \mathrm{~m})
\end{array}
$$

T-duality reminder

If nothing depends on ψ, write the background as (Kaloper, Meissner 97):

$$
\begin{aligned}
\mathrm{d} \bar{s}^{2} & =e_{\mu}^{a} e_{\nu}^{b} \eta_{a b} \mathrm{~d} x^{\mu} \mathrm{d} x^{\nu}+e^{2 \sigma}(\mathrm{~d} \psi+V)^{2}, \\
\bar{B} & =\mathcal{B}+\frac{1}{2} W \wedge V+W \wedge \mathrm{~d} \psi \quad e^{-2 \bar{\phi}}=e^{-2 \phi} e^{-\sigma}
\end{aligned}
$$

The leading order Buscher rules are:

$$
\begin{array}{lll}
\sigma \quad \rightarrow & -\sigma, & \\
\left.V \leftrightarrow \mathrm{R} \rightarrow \frac{1}{\mathrm{R}}\right), \\
V & \leftrightarrow & \\
V, & (\sim \mathrm{n} \leftrightarrow \mathrm{~m}) .
\end{array}
$$

The effective Lagrangian is manifestly invariant when ψ is cyclic:

$$
\begin{aligned}
L & =e^{-2 \bar{\phi}} \sqrt{-g}\left(\bar{R}+4(\bar{\nabla} \bar{\phi})^{2}-\frac{\bar{H}^{2}}{12}\right) \\
& =e^{-2 \phi} \sqrt{-g}\left(R+4(\nabla \phi)^{2}-\frac{H^{2}}{12}-(\nabla \sigma)^{2}-\frac{e^{2 \sigma} V_{\mu \nu}^{2}}{4}-\frac{e^{-2 \sigma} W_{\mu \nu}^{2}}{4}\right)
\end{aligned}
$$

α^{\prime} corrected theory (Marques, Nunez 2015)

Perturbative correction with two $O\left(\alpha^{\prime}\right)$ parameters:

$$
\begin{aligned}
L & =e^{-2 \bar{\phi}} \sqrt{-\bar{g}}\left(L^{(0)}+L^{(1)}\right) \\
L^{(0)} & =\bar{R}-4 \bar{\nabla}_{M} \bar{\phi} \bar{\nabla}^{M} \bar{\phi}+4 \bar{\nabla}_{M} \bar{\nabla}^{M} \bar{\phi}-\frac{1}{12} \bar{H}^{2}
\end{aligned}
$$

α^{\prime} corrected theory (Marques, Nunez 2015)

Perturbative correction with two $O\left(\alpha^{\prime}\right)$ parameters:

$$
\begin{aligned}
L & =e^{-2 \bar{\phi}} \sqrt{-\bar{g}}\left(L^{(0)}+L^{(1)}\right) \\
L^{(0)} & =\bar{R}-4 \overline{\nabla_{M}} \bar{\phi} \bar{\nabla}^{M} \bar{\phi}+4 \bar{\nabla}_{M} \bar{\nabla}^{M} \bar{\phi}-\frac{1}{12} \bar{H}^{2} \\
L^{(1)} & =2 \Lambda_{-} \bar{H}^{M N R} \bar{\Omega}_{M N R}
\end{aligned}
$$

α^{\prime} corrected theory (Marques, Nunez 2015)

Perturbative correction with two $O\left(\alpha^{\prime}\right)$ parameters:

$$
\begin{aligned}
L= & e^{-2 \bar{\phi}} \sqrt{-\bar{g}}\left(L^{(0)}+L^{(1)}\right), \\
L^{(0)}= & \bar{R}-4 \bar{\nabla} \bar{\nabla}_{M} \bar{\phi} \bar{\nabla} \bar{\nabla}^{M} \bar{\phi}+4 \bar{\nabla} M \bar{\nabla}^{M} \bar{\phi}-\frac{1}{12} \bar{H}^{2} \\
L^{(1)}= & 2 \Lambda_{-} \bar{H}^{M N R} \bar{\Omega}_{M N R} \\
& +\Lambda_{+}\left[\bar{R}_{M N R S} \bar{R}^{M N R S}-\frac{3}{2} \bar{H}^{M N R} \bar{H}_{M S L} \bar{R}_{N R} S L+\frac{1}{24} \bar{H}^{M N R} \bar{H}_{M S}{ }^{L} \bar{H}_{N L}{ }^{T} \bar{H}_{R T} S\right. \\
& \left.\quad+\frac{1}{3} \bar{\nabla}_{M} \bar{H}_{N R S} \bar{\nabla}^{M} \bar{H}^{N R S}+\frac{1}{8} \bar{H}_{M R T} \bar{H}^{M R}{ }_{L} \bar{H}_{N S}{ }^{T} \bar{H}^{N S L}\right], \\
\bar{\Omega}= & \operatorname{Tr}\left(\bar{\omega} \wedge \mathrm{d} \bar{\omega}+\frac{2}{3} \bar{\omega} \wedge \bar{\omega} \wedge \bar{\omega}\right) .
\end{aligned}
$$

- Type II string th. $\Lambda_{-}=\Lambda_{+}=0$, bosonic: $\Lambda_{-}=0$, heterotic $\Lambda_{+}=\Lambda_{-}$.

```
\alpha' corrected theory (Marques, Nunez 2015)
```

Perturbative correction with two $O\left(\alpha^{\prime}\right)$ parameters:

$$
\begin{aligned}
L= & e^{-2 \bar{\phi}} \sqrt{-\bar{g}}\left(L^{(0)}+L^{(1)}\right), \\
L^{(0)}= & \bar{R}-4 \bar{\nabla}_{M} \bar{\phi} \bar{\nabla}^{M} \bar{\phi}+4 \bar{\nabla}_{M} \bar{\nabla}^{M} \bar{\phi}-\frac{1}{12} \bar{H}^{2} \\
L^{(1)}= & 2 \Lambda_{-} \bar{H}^{M N R} \bar{\Omega}_{M N R} \\
& +\Lambda_{+}\left[\begin{array}{c}
\bar{R}_{M N R S} \bar{R}^{M N R S}-\frac{3}{2} \bar{H}^{M N R} \bar{H}_{M S L} \bar{R}_{N R} S L+\frac{1}{24} \bar{H}^{M N R} \bar{H}_{M S}{ }^{L} \bar{H}_{N L}{ }^{T} \bar{H}_{R T} S \\
\\
\\
\\
\left.\quad+\frac{1}{3} \bar{\nabla}_{M} \bar{H}_{N R S} \bar{\nabla}^{M} \bar{H}^{N R S}+\frac{1}{8} \bar{H}_{M R T} \bar{H}^{M R}{ }_{L} \bar{H}_{N S}{ }^{T} \bar{H}^{N S L}\right], \\
\bar{\Omega}= \\
\end{array}\right. \\
& \operatorname{Tr}\left(\bar{\omega} \wedge \mathrm{d} \bar{\omega}+\frac{2}{3} \bar{\omega} \wedge \bar{\omega} \wedge \bar{\omega}\right) .
\end{aligned}
$$

- Type II string th. $\Lambda_{-}=\Lambda_{+}=0$, bosonic: $\Lambda_{-}=0$, heterotic $\Lambda_{+}=\Lambda_{-}$.
- Invariant under corrected T-duality.

```
\alpha' corrected theory (Marques, Nunez 2015)
```

Perturbative correction with two $O\left(\alpha^{\prime}\right)$ parameters:

$$
\begin{aligned}
L= & e^{-2 \bar{\phi}} \sqrt{-\bar{g}}\left(L^{(0)}+L^{(1)}\right), \\
L^{(0)}= & \bar{R}-4 \overline{\nabla_{M}} \bar{\phi} \overline{\nabla^{M}} \bar{\phi}+4 \overline{\nabla_{M}} \bar{\nabla}^{M} \bar{\phi}-\frac{1}{12} \bar{H}^{2} \\
L^{(1)}= & 2 \Lambda_{-} \bar{H}^{M N R} \bar{\Omega}_{M N R} \\
& +\Lambda_{+}\left[\begin{array}{l}
\bar{R}_{M N R S} \bar{R}^{M N R S}-\frac{3}{2} \bar{H}^{M N R} \bar{H}_{M S L} \bar{R}_{N R} S L+\frac{1}{24} \bar{H}^{M N R} \bar{H}_{M S}{ }^{L} \bar{H}_{N L}{ }^{T} \bar{H}_{R T} S \\
\\
\\
\\
\left.\quad+\frac{1}{3} \bar{\nabla}_{M} \bar{H}_{N R S} \bar{\nabla}^{M} \bar{H}^{N R S}+\frac{1}{8} \bar{H}_{M R T} \bar{H}^{M R}{ }_{L} \bar{H}_{N S}{ }^{T} \bar{H}^{N S L}\right], \\
\bar{\Omega}= \\
\end{array}\right. \\
& \operatorname{Tr}\left(\bar{\omega} \wedge \mathrm{d} \bar{\omega}+\frac{2}{3} \bar{\omega} \wedge \bar{\omega} \wedge \bar{\omega}\right) .
\end{aligned}
$$

- Type II string th. $\Lambda_{-}=\Lambda_{+}=0$, bosonic: $\Lambda_{-}=0$, heterotic $\Lambda_{+}=\Lambda_{-}$.
- Invariant under corrected T-duality.
- Invariant under (anomalous) Lorentz transformation.

GOAL: Is $S_{B H}$ invariant under T-duality?

Is $S_{B H}$ invariant under T-duality?

Leading order: YES (Horowitz, Welch 93). Arvanitakis, Blair 16 using Double Field Theory.

GOAL: Is $S_{B H}$ invariant under T-duality?

Is $S_{B H}$ invariant under T-duality?

Leading order: YES (Horowitz, Welch 93). Arvanitakis, Blair 16 using Double Field Theory.

Three expected possibilities:

GOAL: Is $S_{B H}$ invariant under T-duality?

Is $S_{B H}$ invariant under T-duality?

Leading order: YES (Horowitz, Welch 93). Arvanitakis, Blair 16 using Double Field Theory.

Three expected possibilities:
(1) Not-invariant for any Λ_{-}, Λ_{+}. Truncated effective actions are generically inconsistent (Camanho, Edelstein, Maldacena, Zhiboedov 2014).

GOAL: Is $S_{B H}$ invariant under T-duality?

Is $S_{B H}$ invariant under T-duality?

Leading order: YES (Horowitz, Welch 93). Arvanitakis, Blair 16 using Double Field Theory.

Three expected possibilities:
(1) Not-invariant for any Λ_{-}, Λ_{+}. Truncated effective actions are generically inconsistent (Camanho, Edelstein, Maldacena, Zhiboedov 2014).
(2) Invariant for all Λ_{-}, Λ_{+}. What are the d.o.f. like? Not pointlike? T-duality has been used to rewrite/propose stringy corrections (Hohm, Siegel, Zwiebach).

GOAL: Is $S_{B H}$ invariant under T-duality?

Is $S_{B H}$ invariant under T-duality?

Leading order: YES (Horowitz, Welch 93). Arvanitakis, Blair 16 using Double Field Theory.

Three expected possibilities:
(1) Not-invariant for any Λ_{-}, Λ_{+}. Truncated effective actions are generically inconsistent (Camanho, Edelstein, Maldacena, Zhiboedov 2014).
(2) Invariant for all Λ_{-}, Λ_{+}. What are the d.o.f. like? Not pointlike? T-duality has been used to rewrite/propose stringy corrections (Hohm, Siegel, Zwiebach).
(3) Invariant exclusively for string theory $\boldsymbol{\Lambda}_{-}, \boldsymbol{\Lambda}_{+}$. Most interesting.

BH ansatz and corrected entropy

We consider very general non-degenerate BHs with coordinates $\left\{t, r, \theta_{1}, . ., \theta_{D-3}, \psi\right\}$, \bar{e}_{M}^{A} lower triangular and $W_{r}=0$, the horizon given by $r=r_{+}$and of bifurcate type ($\Longleftrightarrow \kappa=$ const) with:

$$
\left.\xi\right|_{B}=\partial_{t}+\Omega \partial_{\tilde{\psi}}=0 \Longrightarrow \xi=\partial_{t}+0 \partial_{\psi}=\partial_{t}
$$

Schematically, the action is:

$$
L=L^{(0)}+\Lambda_{+}\left(\bar{R} i e^{2}+\bar{R} \bar{H} \bar{H}+\bar{H}^{4}+\left(\bar{H}^{2}\right)^{2}+\bar{\nabla} \bar{H} \bar{\nabla} \bar{H}\right)+\Lambda_{-} \bar{H} \bar{\Omega}
$$

BH ansatz and corrected entropy

We consider very general non-degenerate BHs with coordinates $\left\{t, r, \theta_{1}, . ., \theta_{D-3}, \psi\right\}$, \bar{e}_{M}^{A} lower triangular and $W_{r}=0$, the horizon given by $r=r_{+}$and of bifurcate type ($\Longleftrightarrow \kappa=$ const) with:

$$
\left.\xi\right|_{B}=\partial_{t}+\Omega \partial_{\tilde{\psi}}=0 \Longrightarrow \xi=\partial_{t}+0 \partial_{\psi}=\partial_{t}
$$

Schematically, the action is:

$$
L=L^{(0)}+\Lambda_{+}\left(\bar{R} i e^{2}+\bar{R} \bar{H} \bar{H}+\bar{H}^{4}+\left(\bar{H}^{2}\right)^{2}+\bar{\nabla} \bar{H} \bar{\nabla} \bar{H}\right)+\Lambda_{-} \bar{H} \bar{\Omega}
$$

$\Lambda_{-} H \Omega$ term forbids Wald formula; we used conical singularity method:

$$
S_{B H}=\left.\left(\alpha \partial_{\alpha}-1\right) \mathcal{W}[\alpha]\right|_{\alpha=1}, \quad \mathcal{W}[\alpha]=\int_{0}^{2 \pi \alpha} d^{D} x e^{-2 \bar{\phi}} \sqrt{-\bar{g}} L_{E}[\bar{g}, \bar{B}, \bar{\phi}] \alpha=\beta / \beta_{H},
$$

BH ansatz and corrected entropy

We consider very general non-degenerate BH with coordinates $\left\{t, r, \theta_{1}, . ., \theta_{D-3}, \psi\right\}$, \bar{e}_{M}^{A} lower triangular and $W_{r}=0$, the horizon given by $r=r_{+}$and of bifurcate type ($\Longleftrightarrow \kappa=$ const) with:

$$
\left.\xi\right|_{B}=\partial_{t}+\Omega \partial_{\tilde{\psi}}=0 \Longrightarrow \xi=\partial_{t}+0 \partial_{\psi}=\partial_{t}
$$

Schematically, the action is:

$$
L=L^{(0)}+\Lambda_{+}\left(\bar{R} i e^{2}+\bar{R} \bar{H} \bar{H}+\bar{H}^{4}+\left(\bar{H}^{2}\right)^{2}+\bar{\nabla} \bar{H} \bar{\nabla} \bar{H}\right)+\Lambda_{-} \bar{H} \bar{\Omega}
$$

$\Lambda_{-} H \Omega$ term forbids Wald formula; we used conical singularity method:

$$
S_{B H}=\left.\left(\alpha \partial_{\alpha}-1\right) \mathcal{W}[\alpha]\right|_{\alpha=1}, \quad \mathcal{W}[\alpha]=\int_{0}^{2 \pi \alpha} d^{D} x e^{-2 \bar{\phi}} \sqrt{-\bar{g}} L_{E}[\bar{g}, \bar{B}, \bar{\phi}] \alpha=\beta / \beta_{H},
$$

The result can be written as:

$$
S_{B H}=\frac{1}{4 G_{D}} \int_{\bar{\Sigma}} d^{D-2} x e^{-2 \bar{\phi}} \sqrt{\bar{g}_{h}}\left(1+\left(\Lambda_{+} \frac{\delta \bar{L}_{\Lambda_{-}^{(1)}=0}^{\delta \bar{R}_{M N R S}}}{}+\Lambda_{-} \bar{H}^{A M N} \bar{\omega}_{A}^{R S}\right) \bar{n}_{M N} \bar{n}_{R S}\right)
$$

$\bar{n}_{M N}$ (trivial) transformation

$\bar{n}_{M N}=\xi_{M} \chi_{N}-\xi_{N \chi_{M}}, \xi$ generator and χ orthogonal to Σ. We only need leading order.
Properties:
$\left.\bar{e}_{M}^{2} \xi^{M}\right|_{\Sigma}=\left.\bar{e}_{t}^{2}\right|_{\Sigma}=0,\left.\bar{B}_{M N} \xi^{M}\left(\partial_{\psi}\right)^{N}\right|_{\Sigma}=\left.\bar{B}_{t \psi}\right|_{\Sigma}=\left.W_{t}\right|_{\Sigma}=0$. Vierbein before \rightarrow after duality $(4 \mathrm{~d}$ example):
$\bar{e}_{M}^{A}\left|\Sigma \rightarrow \hat{\bar{e}}_{M}^{A}\right|_{\Sigma}=\left[\begin{array}{ccc}e_{t}^{0} & 0 & 0\end{array}\right.$

$\bar{n}_{M N}$ (trivial) transformation

$\bar{n}_{M N}=\xi_{M} \chi_{N}-\xi_{N} \chi_{M}, \xi$ generator and χ orthogonal to Σ. We only need leading order.
Properties:
$\left.\bar{e}_{M}^{2} \xi^{M}\right|_{\Sigma}=\left.\bar{e}_{t}^{2}\right|_{\Sigma}=0,\left.\bar{B}_{M N} \xi^{M}\left(\partial_{\psi}\right)^{N}\right|_{\Sigma}=\left.\bar{B}_{t \psi}\right|_{\Sigma}=\left.W_{t}\right|_{\Sigma}=0$. Vierbein before \rightarrow after duality (4d example):
$\left[\begin{array}{cccc}e_{t}^{0} & 0 & 0 & 0 \\ \equiv 0 & e_{r}^{1} & 0 & 0\end{array}\right.$

$\bar{n}_{M N}$ (trivial) transformation

$\bar{n}_{M N}=\xi_{M} \chi_{N}-\xi_{N \chi_{M}}, \xi$ generator and χ orthogonal to Σ. We only need leading order.
Properties:
$\left.\bar{e}_{M}^{2} \xi^{M}\right|_{\Sigma}=\left.\bar{e}_{t}^{2}\right|_{\Sigma}=0,\left.\bar{B}_{M N} \xi^{M}\left(\partial_{\psi}\right)^{N}\right|_{\Sigma}=\left.\bar{B}_{t \psi}\right|_{\Sigma}=\left.W_{t}\right|_{\Sigma}=0$. Vierbein before \rightarrow after duality (4d example):
$\left.\left.\bar{e}_{M}^{A}\right|_{\Sigma} \rightarrow \widehat{\bar{e}}_{M}^{A}\right|_{\Sigma}=\left[\begin{array}{cccc}e_{t}^{0} & 0 & 0 & 0 \\ \equiv 0 & e_{r}^{1} & 0 & 0 \\ \phi_{t}^{\alpha^{0}} & \equiv 0 & e_{\theta_{1}}^{2} & 0\end{array}\right.$

$\bar{n}_{M N}$ (trivial) transformation

$\bar{n}_{M N}=\xi_{M} \chi_{N}-\xi_{N} \chi_{M}, \xi$ generator and χ orthogonal to Σ. We only need leading order.
Properties:
$\left.\bar{e}_{M}^{2} \xi^{M}\right|_{\Sigma}=\left.\bar{e}_{t}^{2}\right|_{\Sigma}=0,\left.\bar{B}_{M N} \xi^{M}\left(\partial_{\psi}\right)^{N}\right|_{\Sigma}=\left.\bar{B}_{t \psi}\right|_{\Sigma}=\left.W_{t}\right|_{\Sigma}=0$. Vierbein before \rightarrow after duality (4d example):

$\bar{n}_{M N}$ (trivial) transformation

$\bar{n}_{M N}=\xi_{M} \chi_{N}-\xi_{N} \chi_{M}, \xi$ generator and χ orthogonal to Σ. We only need leading order.
Properties:
$\left.\bar{e}_{M}^{2} \xi^{M}\right|_{\Sigma}=\left.\bar{e}_{t}^{2}\right|_{\Sigma}=0,\left.\bar{B}_{M N} \xi^{M}\left(\partial_{\psi}\right)^{N}\right|_{\Sigma}=\left.\bar{B}_{t \psi}\right|_{\Sigma}=\left.W_{t}\right|_{\Sigma}=0$. Vierbein before \rightarrow after duality (4d example):

$$
\begin{aligned}
& \bar{e}_{M}^{A}\left|\Sigma \rightarrow \hat{\bar{e}}_{M}^{A}\right|_{\Sigma}=\left[\begin{array}{cccc}
e_{t}^{0} & 0 & 0 & 0 \\
\equiv 0 & e_{r}^{1} & 0 & 0 \\
\theta_{t}^{q^{0}} & \equiv 0 & e_{\theta_{1}}^{2} & 0 \\
e^{\sigma} V_{t}^{\sigma^{\prime}} \rightarrow e^{-\sigma} W_{t}^{\boldsymbol{\sigma}^{0}} 0 \rightarrow e^{-\sigma} W_{r} \equiv 0 & e^{\sigma} V_{\theta_{1}} \rightarrow e^{-\sigma} W_{\theta_{1}} & e^{\sigma} \rightarrow e^{-\sigma}
\end{array}\right], \\
& \Longrightarrow \quad \partial_{t}, \partial_{r} \perp \partial_{\theta_{i}}, \partial_{\psi} \Longrightarrow \bar{n}=\bar{n}_{t r} \mathrm{~d} t \wedge \mathrm{~d} r+O\left(\alpha^{\prime}\right)=\bar{n}_{t r} E_{0}^{t} E_{1}^{r} e^{0} \wedge e^{1}+O\left(\alpha^{\prime}\right)=\widehat{\bar{n}},
\end{aligned}
$$

Using more rigorous near horizon expansion with regular coordinates U, V, and regularity of $e_{t}^{a>1}$ or simply $\widehat{\nabla}_{M} \xi_{N}=\kappa \bar{n}_{M N}$ yields the same result at the bifurcation surface B :

$$
\bar{n}_{01}=\widehat{\bar{n}}_{01}=1 \quad, \text { others } 0
$$

$e^{-2 \bar{\phi}} \sqrt{\bar{g}_{h}}$ and $\left(\boldsymbol{\Lambda}_{+} \frac{\delta L^{(1)}}{\delta \bar{M}_{M N R S}}+\boldsymbol{\Lambda}_{-} \bar{H}^{A M N} \bar{\omega}_{A}^{R S}\right) \bar{n}_{M N} \bar{n}_{R S}$ invariance

Area law invariant by itself! (every factor is non trivially invariant under corrected rules):

$$
e^{-2 \bar{\phi}} \sqrt{\bar{g}_{h}}=e^{-2 \phi} \sqrt{g_{h}}=e^{-2 \phi} e_{\theta^{1}}^{2} \ldots e_{\theta^{D-3}}^{D-2}=e^{-2 \widehat{\phi}} \widehat{e}_{\theta^{1}}^{2} \ldots \hat{e}_{\theta^{D-3}}^{D-2}=e^{-2 \hat{\bar{\phi}}} \sqrt{\widehat{\widehat{g}}_{h}}
$$

$e^{-2 \bar{\phi}} \sqrt{\bar{g}_{h}}$ and $\left(\Lambda_{+} \frac{\delta L^{(1)}}{\delta \bar{R}_{M N R S}}+\Lambda_{-} \bar{H}^{A M N} \bar{\omega}_{A}^{R S}\right) \bar{n}_{M N} \bar{n}_{R S}$ invariance

Area law invariant by itself! (every factor is non trivially invariant under corrected rules):

$$
e^{-2 \bar{\phi}} \sqrt{\bar{g}_{h}}=e^{-2 \phi} \sqrt{g_{h}}=e^{-2 \phi} e_{\theta^{1}}^{2} \ldots e_{\theta^{D-3}}^{D-2}=e^{-2 \widehat{\phi}} \widehat{e}_{\theta^{1}}^{2} \ldots \hat{e}_{\theta^{D-3}}^{D-2}=e^{-2 \hat{\bar{\phi}}} \sqrt{\widehat{\widehat{g}}_{h}}
$$

Corrections invariant under $\sigma \rightarrow-\sigma, V \leftrightarrow W$:

$$
\begin{aligned}
& \left(\Lambda_{+} \frac{\delta L^{(1)}}{\delta \bar{R}_{M N R S}}+\Lambda_{-} \bar{H}^{A M N} \bar{\omega}_{A}^{R S}\right) \bar{n}^{M N} \bar{n}^{R S}=\Lambda_{+}\left(4 \bar{R}_{01}^{01}-3 \bar{H}^{A 01} \bar{H}_{A 01}\right)-\Lambda_{-} 4 \bar{\omega}^{A 01} \bar{H}_{A 01}= \\
= & \Lambda_{+}\left(4 R_{01}^{01}-3 H^{a 01} H_{a 01}-3\left(e^{2 \sigma} V^{01} V_{01}+e^{-2 \sigma} W^{01} W_{01}\right)\right)+\Lambda_{-}\left(-4 \omega^{a 01} H_{a 01}+2 V^{01} W_{01}\right) .
\end{aligned}
$$

Full $S_{B H}$ invariance

$$
\begin{aligned}
\widehat{s}_{B H}=\frac{\widehat{S}_{B H}}{\widehat{\Delta \psi}}= & \frac{1}{4 G_{D}} \int_{\widehat{\Sigma}} d^{D-3} x e^{-2 \widehat{\bar{\phi}}} \sqrt{\hat{\bar{g}}_{h}}\left(1+\left(\Lambda_{+} \frac{\widehat{\delta L^{(1)}}}{\delta \bar{R}_{0101}}+\Lambda_{-} 4 \widehat{\bar{H}}^{A 01} \widehat{\bar{\omega}}_{A}^{01}\right) \widehat{\bar{n}}_{01} \widehat{\bar{n}}_{01}\right) \\
= & \frac{1}{4 G_{D}} \int_{\Sigma} d^{D-3} x e^{-2 \bar{\phi}} \sqrt{\overline{\bar{g}}_{h}}\left(1+\left(\Lambda_{+} \frac{\delta L^{(1)}}{\delta \bar{R}_{0101}}+\Lambda_{-} 4 \bar{H}^{A 01} \bar{\omega}_{A}^{01}\right) \bar{n}_{01} \bar{n}_{01}\right) \\
& \widehat{\widehat{s}}_{B H}=s_{B H}
\end{aligned}
$$

Full $S_{B H}$ invariance

$$
\begin{aligned}
\widehat{s}_{B H}=\frac{\widehat{S}_{B H}}{\widehat{\Delta \psi}}= & \frac{1}{4 G_{D}} \int_{\widehat{\Sigma}} d^{D-3} x e^{-2 \widehat{\bar{\phi}}} \sqrt{\hat{\bar{g}}_{h}}\left(1+\left(\Lambda_{+} \frac{\widehat{\delta L^{(1)}}}{\delta \bar{R}_{0101}}+\Lambda_{-} 4 \widehat{\vec{H}}^{A 01} \widehat{\bar{\omega}}_{A}^{01}\right) \widehat{\bar{n}}_{01} \widehat{\bar{n}}_{01}\right) \\
= & \frac{1}{4 G_{D}} \int_{\Sigma} d^{D-3} x e^{-2 \bar{\phi}} \sqrt{\bar{g}_{h}}\left(1+\left(\Lambda_{+} \frac{\delta L^{(1)}}{\delta \bar{R}_{0101}}+\Lambda_{-} 4 \bar{H}^{A 01} \bar{\omega}_{A}^{01}\right) \bar{n}_{01} \bar{n}_{01}\right) \\
& \widehat{s}_{B H}=s_{B H}
\end{aligned}
$$

Invariance for $\Lambda_{-}=0$ (bosonic) and $\Lambda_{+}=\Lambda_{-}$(heterotic) separately implies invariance of integrand for all Λ_{-}, Λ_{+}(non-stringy).

Example: BTZ and its corrected dual

T-DUALITY IS ALSO A SOLUTION GENERATING TECHNIQUE!

We solved BTZ BH and generated its T-dual for $\Lambda_{+}=0$. We can now compute explicitly the entropy:

$$
S_{B H}=\frac{\pi r_{+}}{2 G_{3}}+\frac{4 \pi \Lambda_{-} h r_{-}}{l G_{3}}=\widehat{S}_{B H}
$$

Example: BTZ and its corrected dual

T-DUALITY IS ALSO A SOLUTION GENERATING TECHNIQUE!

We solved BTZ BH and generated its T-dual for $\Lambda_{+}=0$. We can now compute explicitly the entropy:

$$
S_{B H}=\frac{\pi r_{+}}{2 G_{3}}+\frac{4 \pi \Lambda_{-} h r_{-}}{l G_{3}}=\widehat{S}_{B H} .
$$

As in TMG, the Λ_{-}contribution goes with r_{-}and not r_{+}.

Example: BTZ and its corrected dual

T-DUALITY IS ALSO A SOLUTION GENERATING TECHNIQUE!

We solved BTZ BH and generated its T-dual for $\Lambda_{+}=0$. We can now compute explicitly the entropy:

$$
S_{B H}=\frac{\pi r_{+}}{2 G_{3}}+\frac{4 \pi \Lambda_{-} h r_{-}}{l G_{3}}=\widehat{S}_{B H} .
$$

As in TMG, the Λ_{-}contribution goes with r_{-}and not r_{+}. We split the $O\left(\alpha^{\prime}\right)$ entropy $S_{B H}^{(1)}$ in the following table:

$$
S_{B H}^{(1)}=\frac{4 \pi \Lambda_{-}}{G_{3}} e^{-2 \bar{\phi}} \sqrt{\bar{g}_{\psi \psi}} \quad \bar{H}^{201} \quad \bar{\omega}_{201}
$$

Example: BTZ and its corrected dual

T-DUALITY IS ALSO A SOLUTION GENERATING TECHNIQUE!

We solved BTZ BH and generated its T-dual for $\Lambda_{+}=0$. We can now compute explicitly the entropy:

$$
S_{B H}=\frac{\pi r_{+}}{2 G_{3}}+\frac{4 \pi \Lambda_{-} h r_{-}}{l G_{3}}=\widehat{S}_{B H} .
$$

As in TMG, the Λ_{-}contribution goes with r_{-}and not r_{+}. We split the $O\left(\alpha^{\prime}\right)$ entropy $S_{B H}^{(1)}$ in the following table:

$$
\begin{array}{lccc}
S_{B H}^{(1)}= & \frac{4 \pi \Lambda_{-}}{G_{3}} e^{-2 \bar{\phi}} \sqrt{\bar{g}_{\psi \psi}} & \bar{H}^{201} & \bar{\omega}_{201} \\
S_{B H}^{(1)}= & \frac{4 \pi \Lambda_{-}}{G_{3}} r_{+} & -h & \frac{r_{-}}{1 r_{+}}
\end{array}
$$

Example: BTZ and its corrected dual

T-DUALITY IS ALSO A SOLUTION GENERATING TECHNIQUE!

We solved BTZ BH and generated its T-dual for $\Lambda_{+}=0$. We can now compute explicitly the entropy:

$$
S_{B H}=\frac{\pi r_{+}}{2 G_{3}}+\frac{4 \pi \Lambda_{-} h r_{-}}{I G_{3}}=\widehat{S}_{B H} .
$$

As in TMG, the Λ_{-}contribution goes with r_{-}and not r_{+}. We split the $O\left(\alpha^{\prime}\right)$ entropy $S_{B H}^{(1)}$ in the following table:

$$
\begin{array}{lccc}
S_{B H}^{(1)}= & \frac{4 \pi \Lambda_{-}}{G_{3}} e^{-2 \bar{\phi}} \sqrt{\bar{g} \psi \psi} & \bar{H}^{201} & \bar{\omega}_{201} \\
S_{B H}^{(1)} & = & -h & \frac{r_{-}}{1 r_{+}} \\
\widehat{S}_{B H}^{(1)} & \frac{4 \pi \Lambda_{-}}{G_{3}} r_{+} & -h r_{-} & \frac{h}{2}
\end{array}
$$

There is a exchange of terms, as expected from $V^{01} W_{01}$ invariance.

Conclusions, open questions and future directions
$S_{B H}$ is invariant at $O\left(\alpha^{\prime}\right)$ even for non-stringy cases. (for very general BHs)

- Invariance for bosonic and heterotic implies it for any $\boldsymbol{\Lambda}_{-}, \boldsymbol{\Lambda}_{+}$.

Conclusions, open questions and future directions
$S_{B H}$ is invariant at $O\left(\alpha^{\prime}\right)$ even for non-stringy cases. (for very general BHs)

- Invariance for bosonic and heterotic implies it for any Λ_{-}, Λ_{+}.
- Why invariant order by order?
- Why invariant for non-stringy actions? What are the degrees of freedom counted in the non-stringy cases?

Conclusions, open questions and future directions
$S_{B H}$ is invariant at $O\left(\alpha^{\prime}\right)$ even for non-stringy cases. (for very general BHs)

- Invariance for bosonic and heterotic implies it for any Λ_{-}, Λ_{+}.
- Why invariant order by order?
- Why invariant for non-stringy actions? What are the degrees of freedom counted in the non-stringy cases?

Future directions:

- Check Double Field Theory guess (Arvanitakis, Blair 2015).
- $\widehat{S}_{B H}=S_{B H}$ for any invariant action?

Conclusions, open questions and future directions
$S_{B H}$ is invariant at $O\left(\alpha^{\prime}\right)$ even for non-stringy cases. (for very general BHs)

- Invariance for bosonic and heterotic implies it for any Λ_{-}, Λ_{+}.
- Why invariant order by order?
- Why invariant for non-stringy actions? What are the degrees of freedom counted in the non-stringy cases?

Future directions:

- Check Double Field Theory guess (Arvanitakis, Blair 2015).
- $\widehat{S}_{B H}=S_{B H}$ for any invariant action?
- What about temperature and first law quantities?
- Holographic entanglement entropy? Its invariance stems from the same mathematical property at leading order.

Conclusions, open questions and future directions
$S_{B H}$ is invariant at $O\left(\alpha^{\prime}\right)$ even for non-stringy cases. (for very general BHs)

- Invariance for bosonic and heterotic implies it for any Λ_{-}, Λ_{+}.
- Why invariant order by order?
- Why invariant for non-stringy actions? What are the degrees of freedom counted in the non-stringy cases?

Future directions:

- Check Double Field Theory guess (Arvanitakis, Blair 2015).
- $\widehat{S}_{B H}=S_{B H}$ for any invariant action?
- What about temperature and first law quantities?
- Holographic entanglement entropy? Its invariance stems from the same mathematical property at leading order.
- Use as generating technique for α^{\prime} corrected theories. Possibly extension to Non-Abelian T-duality.

THANK YOU!

