Symp(starshaped domain)

based on work with

Joé Brendel and Grisha Mikhalkin

October 12, 2021

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

The problem

Take $K \subset (\mathbb{R}^{2n}, \omega_0)$, compact, simply connected, ∂K smooth $\omega_0 = \sum_{j=1}^n dx_j \wedge dy_j$ Symp $(K) := \{\varphi \colon K \to K \text{ diffeo}, \varphi \text{ extends to } U \supset K, \varphi^* \omega_0 = \omega_0\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The problem

Take $K \subset (\mathbb{R}^{2n}, \omega_0)$, compact, simply connected, ∂K smooth $\omega_0 = \sum_{j=1}^n dx_j \wedge dy_j$ Symp $(K) := \{\varphi \colon K \to K \text{ diffeo}, \varphi \text{ extends to } U \supset K, \varphi^* \omega_0 = \omega_0\}$

Problem 1 Is Symp(K) connected ?Problem 2 Understand the topology of Symp K

(e.g. homotopy type)

Motivation for Problem 1:

With Brendel and Mikhalkin have constructed many non-isotopic symplectic embeddings $K \rightarrow (M, \omega)$ for certain K.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Motivation for Problem 1:

With Brendel and Mikhalkin have constructed many non-isotopic symplectic embeddings $K \rightarrow (M, \omega)$ for certain K.

Example

Assume that $K = C^{2n}(1) := \times_n \overline{D}(1)$ or a suitable $K \supset C^{2n}(1)$ with ∂K smooth.

Take
$$(M, \omega) = \mathsf{B}^{2n}(n+1)$$
 or $\mathbb{C}\mathsf{P}^n(n+1)$

or $C^{2n}(2)$ or $\times_n S^2(2)$.

Then there exists a sequence $(\varphi_j)_{j\geq 1} \colon K \stackrel{s}{\hookrightarrow} (M, \omega)$ such that: \exists symplectomorphism ψ of (M, ω) with

$$\varphi_j = \psi \circ \varphi_i \tag{(*)}$$

only if i = j.

cf. Gutt-Usher

If the answer to Problem 1 is yes, then (*) can be upgraded to

 $\operatorname{im} \varphi_j = \operatorname{im}(\psi \circ \varphi_i)$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Strategy to analyse topology of Symp(K):

Split problem into two:

 $\varphi \in \mathsf{Symp}(\mathcal{K})$ "splits as"

 $\varphi|_{\partial K}$ " \in " SCont (∂K) and $\varphi_c \in \operatorname{Symp}_c(K^\circ)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Strategy to analyse topology of Symp(K):

Split problem into two:

 $\varphi \in \mathsf{Symp}(K)$ "splits as"

 $arphi|_{\partial \mathcal{K}}$ " \in " SCont $(\partial \mathcal{K})$ and $arphi_c \in \operatorname{Symp}_c(\mathcal{K}^\circ)$

(1) Symp_c(K°) is in general hard to understand.
BUT (Gromov):
If K⁴ is starshaped, then Symp_c(K°) is contractible.
In this case, Symp(K) ≃ SCont(K) ...

(2) SCont(∂K) can sometimes be understood.
It is "generically small" (contractible)

Technically, one tries to set up a **fibration**:

First trial: Look at restriction

$$\rho\colon \mathsf{Symp}(K) \to \mathsf{Diff}^+_{\omega_{\partial}}(\partial K)$$
$$\varphi \mapsto \varphi|_{\partial K}$$

Is a fibration, can be useful if ∂K is fibred by circles (Lalonde–Pinsonnault)

In general, wish a smaller base, with more geometry.

Set $\lambda = \sum x_i \, dy_i - y_i \, dx_i$ Have: $\varphi^* d\lambda = d\lambda$ Since $H^1(\partial K; \mathbb{R}) = 0$: $\varphi^* \lambda = \lambda + dh$ With $\alpha := \lambda_{\partial}$: $\varphi^*_{\partial} \alpha = \alpha + dh_{\partial}$: $\varphi_{\partial} \notin \text{Cont}(\partial K)$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Set $\lambda = \sum x_i \, dy_i - y_i \, dx_i$ Have: $\varphi^* d\lambda = d\lambda$ Since $H^1(\partial K; \mathbb{R}) = 0$: $\varphi^* \lambda = \lambda + dh$ With $\alpha := \lambda_{\partial}$: $\varphi^*_{\partial} \alpha = \alpha + dh_{\partial}$: $\varphi_{\partial} \notin \text{Cont}(\partial K)$

But one can get rid of dh_{∂} in a good way (Abbondandolo–Majer):

Want to deform $\alpha + dh_{\partial}$ to α by the Moser method: Search vector field X_t such that its flow μ_t solves

 $\mu_t^*(\alpha + t \, dh_{\partial}) = \alpha \quad \forall \, t \in [0, 1].$

Set $\lambda = \sum x_i \, dy_i - y_i \, dx_i$ Have: $\varphi^* d\lambda = d\lambda$ Since $H^1(\partial K; \mathbb{R}) = 0$: $\varphi^* \lambda = \lambda + dh$ With $\alpha := \lambda_{\partial}$: $\varphi^*_{\partial} \alpha = \alpha + dh_{\partial}$: $\varphi_{\partial} \notin \text{Cont}(\partial K)$

But one can get rid of dh_{∂} in a good way (Abbondandolo–Majer):

Want to deform $\alpha + dh_{\partial}$ to α by the Moser method: Search vector field X_t such that its flow μ_t solves

$$\mu_t^*(\alpha + t \, dh_\partial) = \alpha \quad \forall \, t \in [0, 1].$$

Which Moser vector field X_t ?

Ansatz:

$$X_t = f_t R_{\alpha}$$

where R_{α} the Reeb field of α : $d\alpha(R_{\alpha}, \cdot) = 0$, $\alpha(R_{\alpha}) = 1$

$$0 \stackrel{!}{=} \frac{d}{dt} (\mu_t^* (\alpha + t \, dh_{\partial}))$$

= $\mu_t^* (\mathcal{L}_{X_t} (\alpha + t \, dh_{\partial}) + dh_{\partial})$
= $\mu_t^* (\underbrace{\imath_{X_t} d(\alpha}_{=0} + t \, dh_{\partial}) + d\imath_{X_t} (\alpha + t \, dh_{\partial}) + dh_{\partial}).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

$$0 \stackrel{!}{=} \frac{d}{dt} (\mu_t^* (\alpha + t \, dh_\partial))$$

= $\mu_t^* (\mathcal{L}_{X_t} (\alpha + t \, dh_\partial) + dh_\partial)$
= $\mu_t^* (\underbrace{\iota_{X_t} d(\alpha + t \, dh_\partial) + d\iota_{X_t} (\alpha + t \, dh_\partial) + dh_\partial).$

Hence need $X_t = f_t R_{\alpha}$ such that

$$d\imath_{X_t}(\alpha + t \, dh_{\partial}) + dh_{\partial} = 0.$$

Enough:

$$i_{X_t}(\alpha + t dh_{\partial}) + h_{\partial} = 0.$$

Since $\imath_{X_t}(\alpha + t \, dh_\partial) = f_t \left(1 + t \, dh_\partial(R_\alpha)\right)$, can take

$$f_t := -rac{h_\partial}{1+t\,dh_\partial(R_lpha)}, \qquad t\in[0,1].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Obtain, with $h(\varphi)$ the function with $\varphi^* \alpha = \alpha + dh_{\partial}$:

$$\begin{array}{rcl} \rho(\mathsf{Symp}(\mathcal{K})) & \to & \mathsf{SCont}(\partial \mathcal{K}) \\ \varphi & \mapsto & \varphi \circ \mu(h(\varphi)) \end{array}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

is a strong deformation retract.

Proposition The following are Hurewicz fibrations.

 $\mathsf{Symp}(\mathcal{K}) \xrightarrow{\rho} \rho(\mathsf{Symp}(\mathcal{K})) \xrightarrow{\circ\mu} \mathsf{SCont}(\partial \mathcal{K})$

・ロト < 団ト < 三ト < 三ト < 回 < つへの

Proposition The following are Hurewicz fibrations.

$$\operatorname{Symp}(K) \xrightarrow{\rho} \rho(\operatorname{Symp}(K)) \xrightarrow{\circ \mu} \operatorname{SCont}(\partial K)$$

Proof. Need to prove

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Easy, since the fibers are groups: Take any section, and correct. \Box

The fiber is:

$$\begin{array}{lll} \mathsf{Symp}_{\partial}(K) & := & \{\varphi \in \mathsf{Symp}(K) \mid \rho(\varphi) = \mathrm{id}_{\partial K}\} \\ & \downarrow r_1 \\ \mathsf{Symp}_{\mathcal{T}\partial}(K) & := & \{\varphi \in \mathsf{Symp}_{\partial}(K) \mid \mathcal{T}_p \varphi = \mathrm{id} \ \forall p \in \partial K\} \\ & \downarrow r_2 \\ & \mathsf{Symp}_c(K^\circ) \end{array}$$

- r_1 : strong deformation retraction
- r_2 : weak deformation retraction

The fiber is:

$$\begin{array}{lll} \mathsf{Symp}_{\partial}(K) &:= & \{\varphi \in \mathsf{Symp}(K) \mid \rho(\varphi) = \mathrm{id}_{\partial K}\} \\ & \downarrow r_1 \\ \mathsf{Symp}_{\mathcal{T}\partial}(K) &:= & \{\varphi \in \mathsf{Symp}_{\partial}(K) \mid \mathcal{T}_p \varphi = \mathrm{id} \ \forall p \in \partial K\} \\ & \downarrow r_2 \\ & \mathsf{Symp}_c(K^\circ) \end{array}$$

- r_1 : strong deformation retraction
- r_2 : weak deformation retraction

So get, up to homotopy equivalence, the Hurewicz fibration

$$\operatorname{Symp}_{c}(K^{\circ}) \, \hookrightarrow \, \operatorname{Symp}(K) \xrightarrow{(\circ\mu)\circ\rho =: M} \, \operatorname{SCont}(\partial K)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

For Problem 1 wish to know:

When are $\operatorname{Symp}_{c}(K^{\circ})$ and $\operatorname{SCont}(\partial K)$ connected?

 $\operatorname{Symp}_{c}(K^{\circ})$: Good and bad news:

• If K is starshaped and 4-dimensional:

 $Symp_{c}(K^{\circ}) \text{ is contractible } ("Gromov")$ Then $Symp(K) \xrightarrow{\simeq}_{M} SCont(\partial K)$

For Problem 1 wish to know:

When are $\operatorname{Symp}_{c}(K^{\circ})$ and $\operatorname{SCont}(\partial K)$ connected?

 $\operatorname{Symp}_{c}(K^{\circ})$: Good and bad news:

• If K is starshaped and 4-dimensional:

 $\operatorname{Symp}_{c}(K^{\circ}) \text{ is contractible } ("Gromov")$ Then $\operatorname{Symp}(K) \xrightarrow{\simeq}_{M} \operatorname{SCont}(\partial K)$

Remark This comes from the proof of

$$\operatorname{Symp}_0(S^2 \times S^2) \simeq \operatorname{SO}(3) \times \operatorname{SO}(3)$$

$$S^{2} \times S^{2} \supset D^{\circ} \times D^{\circ} \quad \text{Symp}_{c}(D^{\circ} \times D^{\circ}) \simeq \text{pt}$$
$$\supset T_{1}^{*}S^{2} \quad \text{Symp}_{c}(T_{1}^{*}S^{2}) = \mathbb{Z} = \langle \tau_{\text{DS}} \rangle$$

• But for $K^{2n\geq 6}$ nothing is known.

Not even whether $Symp_c(Int B^6)$ is connected.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• But for $K^{2n\geq 6}$ nothing is known.

Not even whether $\text{Symp}_c(\text{Int } B^6)$ is connected.

Note:
$$\pi_0(\text{Diff}_c(\text{Int } B^n)) = \Theta^{n+1}$$

(group of exotic spheres Σ^{n+1})

It is unknown whether exotic components have symplectic representatives.

But some have for another ω ! (Casals–Keating–Smith)

SCont(∂K): Sometimes, this can be understood.

Example 1 (Eliashberg, Casals–Spacil) SCont $(S^3, \alpha_0) \simeq SU(2)$

(*)

Hence $Symp(B^4) \simeq SU(2)$

SCont(∂K): Sometimes, this can be understood.

Example 1 (Eliashberg, Casals–Spacil)

$$\mathsf{SCont}(S^3, \alpha_0) \simeq \mathsf{SU}(2)$$
 (*)

Hence $\mathsf{Symp}(\mathsf{B}^4)\simeq\mathsf{SU}(2)$

This is shown by Lalonde–Pinsonnault using "only" Gromov's $Symp_c(Int B^4) \simeq pt$

Hence get new proof of (*)

Example 2 ???

Assume that K^4 is a starshaped toric domain such that Γ contains no segment of rational slope:

- (i) If $a_1 \neq a_2$, then SCont(∂K) is connected.
- (ii) If K is invariant under $(z_1, z_2) \mapsto (z_2, z_1)$, then SCont (∂K) has two components.

Proof. Fix $\varphi \in \text{SCont}(\partial K)$.

Step 1. φ maps μ -fibers to μ -fibers.

Proof. ϕ_{α}^{t} preserves the fibers $T_{p} = \mu^{-1}(p)$ and there is a Kronecker (linear flow):

Proof. Fix $\varphi \in \text{SCont}(\partial K)$.

Step 1. φ maps μ -fibers to μ -fibers.

Proof. ϕ_{α}^{t} preserves the fibers $T_{p} = \mu^{-1}(p)$ and there is a Kronecker (linear flow):

Since φ preserves α , it preserves R_{α} , hence takes flow lines to flow lines.

Take an irrational T_p and a flow line. It is mapped to a flow line, and φ is continuous. So $\varphi(T_p) = T_{p'}$.

П

The irrational T_p are dense by assumption.

Step 2. If $\varphi(C_1) = C_1$, then $\varphi(T_p) = T_p$.

Indeed, φ preserves $\alpha \wedge d\alpha$:

Step 2. If $\varphi(C_1) = C_1$, then $\varphi(T_p) = T_p$.

Indeed, φ preserves $\alpha \wedge d\alpha$:

Step 3. End of proof of (i): Take $G = \{\varphi \in \text{SCont}(\partial K) \mid \varphi(C_1) = C_1\}$ Fix $\varphi \in G$. Look again at irrational torus T_p : $\varphi(T_p) = T_p$ and $\varphi \circ \phi_{\alpha}^t = \varphi_{\alpha}^t \circ \varphi$ for all t. On the flow line through 0, φ is the translation by $\varphi(0)$.

This line is dense, so φ is translation by $\varphi(0)$.

Irrational tori are dense, so

. . .

$$\varphi(\boldsymbol{\mu}, \boldsymbol{\theta}) = (\boldsymbol{\mu}, \boldsymbol{\theta} + F(\boldsymbol{\mu}))$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

$$\varphi^* \alpha = \alpha$$
 becomes $\sum_{i=1}^2 \mu_i \, dF_i(\mu)) = 0$

Example 3

Generically, SCont₀(S^3 , α) is contractible. ... cf. (Casals–Spacil)

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

▲日 → ▲園 → ▲目 → ▲目 → ▲日 →

▲日 → ▲園 → ▲目 → ▲目 → ▲日 →

▲日 → ▲園 → ▲目 → ▲目 → ▲日 →