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The problem

Take K C (R?",wp), compact, simply connected, K smooth

wo = 71 dxj A\ dyj

Symp(K) :={¢: K — K diffeo, ¢ extends to U D K, ¢*wy = wo}

Problem 1 Is Symp(K) connected ?
Problem 2 Understand the topology of Symp K

(e.g. homotopy type)



Motivation for Problem 1:

With Brendel and Mikhalkin have constructed many non-isotopic
symplectic embeddings K — (M, w) for certain K.



Motivation for Problem 1:

With Brendel and Mikhalkin have constructed many non-isotopic
symplectic embeddings K — (M, w) for certain K.

Example
Assume that K = C*"(1) := x,D(1)
or a suitable K O C2"(1) with K smooth.

Take (M,w) = B?"(n+1) or CP"(n+ 1)

or C2"(2) or x,5%(2).
Then there exists a sequence (;)j>1: K <+ (M,w) such that:
3 symplectomorphism ¢ of (M,w) with

pj = Yo (%)

only if i = .



¥1

¥2

cf. Gutt—Usher

If the answer to Problem 1 is yes, then (x) can be upgraded to

imypj = im(y o ¢;)



Strategy to analyse topology of Symp(K):

Split problem into two:

© € Symp(K) “splits as”

vlok “€" SCont(OK) and ¢, € Symp (K°)



Strategy to analyse topology of Symp(K):

Split problem into two:

© € Symp(K) “splits as”

vlok “€" SCont(OK) and ¢, € Symp (K°)

(1) Symp.(K®) is in general hard to understand.

BUT (Gromov):
If K* is starshaped, then Symp_(K®) is contractible.
In this case, Symp(K) =~ SCont(K) ...

(2) SCont(0K) can sometimes be understood.

It is “"generically small” (contractible)



Technically, one tries to set up a fibration:

First trial:  Look at restriction
p: Symp(K) — Diff} (9K)
¢ = plok

Is a fibration, can be useful if 0K is fibred by circles
(Lalonde—Pinsonnault)

In general, wish a smaller base, with more geometry.



Set A =Y x;dy; — yidx;

Have: p*d\ = dA

Since HY(OK;R) = 0: "\ = A+ dh

With a = As: pha = a+dhy:  ps¢ Cont(OK)
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But one can get rid of dhy in a good way
(Abbondandolo—Majer):

Want to deform a + dhy to o by the Moser method:

Search vector field X; such that its flow p; solves

pi(la+tdhy) = a Vte|0,1].



Set A =Y. x;dy; — yidx;

Have: p*d\ = dA
Since HY(OK;R) = 0: "\ = A+ dh
With a = As: pha = a+dhy:  ps¢ Cont(OK)

But one can get rid of dhy in a good way
(Abbondandolo—Majer):

Want to deform a + dhy to o by the Moser method:
Search vector field X; such that its flow p; solves

pi(la+tdhy) = a Vte|0,1].

Which Moser vector field X; ?

Ansatz:
Xt — ft Ruz

where R, the Reeb field of a:  da(R,,-) =0, «a(R,) =1
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(,u’;F (a+t dha))

(ﬁxt(Oé +t dha) + dha)
(1x,d(a+t dhy) + dix, (o + t dhy) + dhy).
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0 = (1y (o + t dhy))

(ﬁxt(Oé +t dha) + dha)
(thd(a +t dha) + dZXt(CM + tdha) + dha).
——

=0

Q.

A

= pu
= pu

Hence need X; = f; R, such that
dix, (o + t dhy) + dhy = 0.
Enough:
1x, (o + tdhg) + hg = 0.
Since ux, (o + t dhy) = f; (1 4 t dhy(R.)), can take

ha

ffp = ———m———
‘ 1+ tdhy(Rs)’

t €[0,1].



Obtain, with h(y) the function with ¢*a = « + dhy:

p(Symp(K)) — SCont(9K)
v = pou(h(¢))

is a strong deformation retract.



Proposition The following are Hurewicz fibrations.

Symp(K) -2 p(Symp(K)) —% SCont(9K)



Proposition The following are Hurewicz fibrations.
Symp(K) -2 p(Symp(K)) —% SCont(9K)
Proof. Need to prove

Sx{0} ———=E
o -~ l
- P
Sx[0,1] ——B.

Easy, since the fibers are groups: Take any section, and correct.



The fiber is:

Sympy(K) = {p € Symp(K) | p(p) = idok}
In
Sympry(K) = {p € Sympy(K) | Tpp = id Vp € 0K}
Lr
Symp(K°)

r : strong deformation retraction

> . weak deformation retraction



The fiber is:

Sympy(K) = {p € Symp(K) | p(p) = idok}
In
Sympry(K) = {p € Sympy(K) | Tpp = id Vp € 0K}
Lr
Symp(K°)

r : strong deformation retraction

> . weak deformation retraction

So get, up to homotopy equivalence, the Hurewicz fibration

Symp.(K°) < Symp(K) Lomop =M, SCont(9K)



For Problem 1 wish to know:

When are Symp_(K°) and SCont(9K) connected?
Symp(K®°): Good and bad news:

e If K is starshaped and 4-dimensional:
Symp(K?) is contractible  (“Gromov")

Then Symp(K) % SCont(0K)



For Problem 1 wish to know:

When are Symp_(K°) and SCont(9K) connected?
Symp(K®°): Good and bad news:

e If K is starshaped and 4-dimensional:

Symp(K?) is contractible  (“Gromov")
Then  Symp(K) % SCont(9K)
Remark This comes from the proof of

Sympy(S? x 52) ~ SO(3) x SO(3)

S$2x 82 5 D°x D°  Symp.(D° x D°) ~ pt

D TyS?  Symp(T{5?) =7 = (mps)




e But for K2"2% nothing is known.

Not even whether Symp_(Int B®) is connected.



e But for K2"2% nothing is known.

Not even whether Symp_(Int B®) is connected.
Note: mo(Diffc(Int B")) = ©"*1
(group of exotic spheres 1)

It is unknown whether exotic components have symplectic
representatives.

But some have for another w! (Casals—Keating—Smith)



SCont(0K): Sometimes, this can be understood.

Example 1 (Eliashberg, Casals—Spacil)

SCont(S*, ap) =~ SU(2)

Hence Symp(B*) ~ SU(2)



SCont(0K): Sometimes, this can be understood.

Example 1 (Eliashberg, Casals—Spacil)

SCont(S*, ap) =~ SU(2)

Hence Symp(B*) ~ SU(2)

This is shown by Lalonde—Pinsonnault using “only” Gromov's
Symp.(Int B*) ~ pt

Hence get new proof of ()



Example 2 777

Assume that K* is a starshaped toric domain such that " contains
no segment of rational slope:

(i) If a1 # ap, then SCont(OK) is connected.

(ii) If K is invariant under (z1,z2) — (22, z1), then SCont(9K)
has two components.



Proof. Fix ¢ € SCont(0K).
Step 1. ¢ maps p-fibers to u-fibers.
Proof. ¢t preserves the fibers T, = u~1(p)

and there is a Kronecker (linear flow):



Proof. Fix ¢ € SCont(0K).
Step 1. ¢ maps p-fibers to u-fibers.

Proof. ¢t preserves the fibers T, = u~1(p)

and there is a Kronecker (linear flow):

Since ¢ preserves q«, it preserves Ry,

hence takes flow lines to flow lines.

Take an irrational T, and a flow line.

It is mapped to a flow line, and ¢ is continuous.
So p(Tp) = Ty

The irrational T, are dense by assumption.



Step 2. If p(Ci) = Cy, then o(T,) = Tp.

Indeed, ¢ preserves a A da:



Step 2. Ifo(C) = Gy, then p(T,) = Tp.

Indeed, ¢ preserves a A da:

Step 3. End of proof of (i):

Take G = {¢ € SCont(9K) | o(CG1) = G}

Fix ¢ € G. Look again at irrational torus T,:

©(Tp) = Tp and p o ¢, = ¢l o ¢ for all t.

On the flow line through 0, ¢ is the translation by ¢(0).

This line is dense, so ¢ is translation by ¢(0).



Irrational tori are dense, so
o(1,0) = (1,0 + F(p))

2

©*a = a becomes Z,u,-dF;(u)) =0
i=1



Example 3

Generically, SConto(S3, @) is contractible. ...

cf. (Casals—Spacil)
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