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One formula to rule all machine learning problems

f? = min
x:x∈X

f(x) (argmin→ x?)

◦ Growing interest in first-order gradient methods1 due to their scalability and generalization performance

◦ In the sequel,
I the set X is convex and has a tractable projection operator PX
I all convergence characterizations are with feasible iterates xk ∈ X

I gradient mapping means Gη(xk) = 1
η

[xk − PX (xk − η∇f(xk))], where η is the step-size

I L-smooth means ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖,∀x, y ∈ X

I ∂ may refer to the generalized subdifferential, and δX refers to the indicator function for the set X

1Lan, Guanghui. First-order and Stochastic Optimization Methods for Machine Learning. Springer Nature, 2020.

Adaptation and Universality in First-Order Optimization | Volkan Cevher, https://lions.epfl.ch Slide 2/ 18

https://lions.epfl.ch


One formula to rule ��>
some

all machine learning problems ...and one algorithm to solve them.

f? = min
x:x∈X

f(x) (argmin→ x?)

◦ Growing interest in first-order gradient methods1 due to their scalability and generalization performance

◦ In the sequel,
I the set X is convex and has a tractable projection operator PX
I all convergence characterizations are with feasible iterates xk ∈ X

I gradient mapping means Gη(xk) = 1
η

[xk − PX (xk − η∇f(xk))], where η is the step-size

I L-smooth means ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖,∀x, y ∈ X

I ∂ may refer to the generalized subdifferential, and δX refers to the indicator function for the set X
1Lan, Guanghui. First-order and Stochastic Optimization Methods for Machine Learning. Springer Nature, 2020.

Adaptation and Universality in First-Order Optimization | Volkan Cevher, https://lions.epfl.ch Slide 2/ 18

https://lions.epfl.ch


Worst-case iteration complexities of classical projected first-order methods12

f(x) gradient oracle L-smooth Stationarity measure GD/SGD Accelerated GD/SGD

Convex stochastic yes f(xk)− f? = O
(

1√
k

)
O
(

1√
k

)
Convex deterministic yes f(xk)− f? = O

(
1
k

)
O
(

1
k2

)
Convex stochastic no f(xk)− f? = O

(
1√
k

)
O
(

1√
k

)
Nonconvex stochastic yes ‖Gη(xk)‖2 = O

(
1√
k

)
3 O

(
1√
k

)
3

Nonconvex deterministic yes ‖Gη(xk)‖2 = O
(

1
k

)
4 O

(
1
k

)
4

Nonconvex stochastic no dist(0, ∂(f(xk) + δX (xk)))2 = ?356 ?356

◦ Basic structures, such as smoothness or strong convexity, help, but there are more structures that can be used:
I max-form, metric subregularity, Polyak-Lojasiewicz, Kurdyka-Lojasiewicz, weak convexity,3 growth cond...

1Y. Nesterov, “Introductory lectures on convex optimization: A basic course,” Springer Science, 2013.
2Y. Carmon, J.C. Duchi, O. Hinder, and A. Sidford, “Lower bounds for finding stationary points I–II." Mathematical Programming, 2019.
3D. Davis and D. Drusvyatskiy, “Stochastic model-based minimization of weakly convex functions,” SIOPT, 2019.
4S. Ghadimi and G. Lan, “Accelerated gradient methods for nonconvex nonlinear and stochastic programming," MathProg, 2016.
5J. Zhang, et al., “On complexity of finding stationary points of nonsmooth nonconvex functions,” arXiv:2002.04130, 2020.
6O. Shamir, “Can We Find Near-Approximately-Stationary Points of Nonsmooth Nonconvex Functions?" arXiv:2002.11962, 2020.
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Worst-case is often too pessimistic

◦ GD: xk+1 = xk − 1
L
∇f(xk)

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

L

2
kx � xkk2

2

�

f(xk)

QL(x,xk)

Global quadratic upper bound

◦ Rates are not everything!

I overall computational effort is what matters

I constants &implementations are key

◦ Knowledge of smoothness, the value of L,...

I challenging

◦ Must “somehow” adapt to a “different” function

I online and without knowing L

I can reduce overall computational effort!
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Warmup: f is convex

f? = min
x:x∈X

f(x) (argmin→ x?)
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A classical approach: Line-search

◦ Long history: Backtracking, Armijo, steepest descent...

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

Lk

2
kx � xkk2

2

�

f(xk)

QLk
(x,xk)

Local quadratic upper bound

applies only locally

◦ Universal accelerated gradient method1

f(xk)− f? = O
(
Lν‖x0 − x?‖1+ν

k
1+3ν

2

)
I adapts to Hölder smoothness (ν ∈ [0, 1])

‖∇f(x)−∇f(y)‖2 ≤ Lν‖x− y‖ν2

I has extensions to primal-dual optimization2

I sets accuracy a priori & monotonic step-sizes

◦ Not as universal as we wish it to be

I different procedures for stochastic gradients3

1Y. Nesterov, “Universal Gradient Methods for Convex Optimization Problems,” Mathematical Programming, 2015.
2A. Yurtsever, Q. Tran-Dinh, and V. Cevher, “A Universal Primal-Dual Convex Optimization Framework,” NeurIPS, 2015.
3S. Vaswani et al., “Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates,” NeurIPS, 2019.
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A contemporary approach: Online convex optimization (OCO)

Algorithm: A basic online learning problem123

1: for t = 1, . . . , k do
2: Player chooses some action xt ∈ X ⊂ Rp
3: Environment reveals a convex loss ft(·)
4: Player suffers the loss ft(xt)
5: end for

◦ One procedure to rule them all...

I smooth, non-smooth, stochastic!

◦ Not as adaptive as we like in optimization

I The “offline” fast rate 1/k2 is not immediate

◦ Minimize the total loss vs the best action in hindsight:

R(k) =
k∑
t=1

ft(xt)− min
x∈X

k∑
t=1

ft(x).

I “somehow” adapts to a “different” function!

◦ For general convex ft, optimal regret is sublinear:

R(k) = O
(√

k
)
.

◦ We can trivially convert regret to rate via ft = f :

f

(
1
k

k∑
t=1

xt

)
− f? ≤

R(k)
k

.

1N. Cesa-Bianchi and G. Lugosi, “Prediction, learning, and games,” Cambridge University Press, 2006.
2S. Shalev-Shwartz, “Online learning and online convex optimization,” Found. Trends Mach. Learn., 2012.
3E. Hazan, “Introduction to online convex optimization," arXiv:1909.05207, 2019.
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The curious case of AdaGrad1

Algorithm: AdaGrad (scalar)2

1: Input: Iterations k; x0 ∈ X
2: for t = 0, ..., k − 1 do
3: Obtain a gradient estimate gt
4: ηt = D/

(
2
∑t

i=1 ‖gt‖
2)1/2

5: xt+1 = PX
(
xt − ηtgt

)
6: end for
7: Output: x̄k = 1

k

∑k

t=1 x
t

◦ Is it an adaptive optimization method?

◦ Is it a universal optimization method?

◦ AdaGrad does not need to know smoothness

1. gt ∈ ∂f(xt)
2. gt = ∇f(xt)
3. Egt = ∇f(xt) & E[‖g −∇f(x)‖2|x] ≤ σ2

◦ AdaGrad adapts and achieves optimal regret1

R(k) ≤

√√√√2D2
k∑
t=1

‖gt‖2
2,

where D = supx,y∈X ‖x− y‖2.

◦ When f is L-smooth, AdaGrad output satisfies2

E [f(x̄k)]− f? = O
(
LD2

k
+
σD
√
k

)
.

1J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” JMLR, 2011.
2K.Y. Levy, A. Yurtsever, and V. Cevher, “Online adaptive methods, universality and acceleration," NeurIPS 2018.
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Enter AcceleGrad:1 Exploiting the linear coupling idea2

Algorithm: AcceleGrad for unconstrained optimization

1: Input: Iterations k; y0, z0 ∈ Rp
2: for t = 0, . . . , k − 1 do
3: Obtain a gradient estimate gt
4: αt = max

(
1, t+1

4

)
5: ηt = 2D√

G2+
∑t

i=0
α2
i
‖gi‖2

6: xt+1 = 1
αt
yt + (1− 1

αt
)zt,

7: zt+1 = PX (zt − αtηtgt)
8: yt+1 = xt+1 − ηtgt
9: end for
10: Output: ȳk ∝α

∑k

t=1 αt−1yt

◦ Is it an adaptive optimization method?

◦ Is it a universal optimization method?

◦ AcceleGrad does not need to know smoothness

1. gt ∈ ∂f(xt)
2. gt = ∇f(xt)
3. Egt = ∇f(xt) & ‖g‖ ≤ G

◦ AcceleGrad output satisfies:1 Ef(ȳk)− f? =

1. O
(
GD
√

log(k)√
k

)
2. O

(
DG+LD2 log(LD/G)

k2

)
3. O

(
GD
√

log k√
k

)
◦ Caveats:
I needs a bound G on the subgradient norms
I needs a bound D on X where the solution lives
I cannot handle constraints!

1K.Y. Levy, A. Yurtsever, and V. Cevher, “Online adaptive methods, universality and acceleration," NeurIPS 2018.
2L. Orecchia and Z. Allen-Zhu, “Linear coupling: An ultimate unification of gradient and mirror descent,” arXiv:1407.1537, 2014.
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1. O
(
GD
√

log(k)√
k

)
2. O

(
��HHDG+LD2 log(LD/‖g0‖)

k2

)
3. O

(
GD
√

log k√
k

)
◦ Caveats:
I needs a bound G on the subgradient norms
I needs a bound D on X where the solution lives
I cannot handle constraints!

1K.Y. Levy, A. Yurtsever, and V. Cevher, “Online adaptive methods, universality and acceleration," NeurIPS 2018.
2L. Orecchia and Z. Allen-Zhu, “Linear coupling: An ultimate unification of gradient and mirror descent,” arXiv:1407.1537, 2014.

Adaptation and Universality in First-Order Optimization | Volkan Cevher, https://lions.epfl.ch Slide 9/ 18

https://lions.epfl.ch


UniXGrad:1 Universal eXtra Gradient method

Algorithm: UniXGrad
Input: Iterations k; y0 ∈ X ; αt = t
1: for t = 0, . . . , k − 1 do
2: ỹt ∝α αtyt−1 +

∑t−1
i=1 αixi

3: Obtain a gradient estimate g(1)
t = gt(ỹt)

4: ηt = 2D
/√

1 +
t−1∑
i=1

α2
i

∥∥∥g(1)
i − g(2)

i

∥∥∥2

∗

5: xt = PX

(
yt−1 − αtηtg(1)

t

)
6: x̄t ∝α αtxt +

∑t−1
i=1 αixi → output

7: Obtain a gradient estimate g(2)
t = gt(x̄t)

8: yt = PX

(
yt−1 − αtηtg(2)

t

)
9: end for

◦ UniXGrad does not need to know smoothness

1. gt(·) ∈ ∂f(·)
2. gt(·) = ∇f(·)
3. Egt(·) = ∇f(·) & E[‖gt(x)−∇f(x)‖2|x] ≤ σ2

◦ UniXGrad output satisfies:1 Ef(x̄k)− f? =
1. 6D

k2 + 14GD√
k

2. 20
√

7D2L
k2

3. 224
√

14D2L
k2 + 14

√
2σD√
k

◦ First universal and adaptive algorithm
I optimal rates in the “offline” setting
I builds on mirror-prox2 & optimistic MD3

I new online-to-offline conversion lemma14

1A. Kavis, K.Y. Levy, F. Bach, and V. Cevher, “Unixgrad: A universal, adaptive algorithm with optimal guarantees for constrained optimization," NeurIPS 2019.
2A. Nemirovski, “ Prox-method with rate of convergence ... smooth convex-concave saddle point problems,” SIOPT, 2005.
3A. Rakhlin and K. Sridharan, “Optimization, learning, and games with predictable sequences,” NeurIPS 2013.
4A. Cutkosky, “Anytime online-to-batch, optimism and acceleration,” ICML 2019.
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f is nonconvex

f? = min
x:x∈X

f(x) (argmin→ x?)
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Detour: Weak convexity (WeCo) & approximate stationarity1

◦ Smooth: Gradient mapping norm
I ‖Gη(xk)‖2 = 1

η2 ‖xk − PX (xk − η∇f(xk))‖2

I possible to compute

◦ Non-smooth: Generalized subdifferential distance
I dist(0, ∂(f(xk) + δX (xk)))2

I hard in general (even approximately)23

◦ f is ρ-weakly convex if f(x) + ρ
2 ‖x‖

2 is convex.

Figure: ME with f(x) = |x2 − 1|, X = R, and v̂t = I.1

◦ Moreau envelope (ME):

ϕ1/ρ(x) = min
y∈X

{
f(y) +

ρ

2
‖y − x‖2

}
x̂← arg min

∇ϕ1/ρ(x) = ρ(x− x̂)

◦ Small ‖∇φ1/ρ(x)‖ implies near-stationarity:1

dist(0, ∂(f(xk) + δX (xk)))2 ≤ ‖∇φ1/ρ(xk)‖2

I also implies small ‖Gη(xk)‖2 if f is smooth
1D. Davis and D. Drusvyatskiy, “Stochastic model-based minimization of weakly convex functions,” SIOPT, 2019.
3J. Zhang, et al., “On complexity of finding stationary points of nonsmooth nonconvex functions,” arXiv:2002.04130, 2020.
3O. Shamir, “Can We Find Near-Approximately-Stationary Points of Nonsmooth Nonconvex Functions?" arXiv:2002.11962, 2020.
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The King of all optimization algorithms: Adam1 (60K+ citations)

Algorithm: (variable metric) Adam
1: Input: Iterations k; x0 ∈ X , β1,2 ∈ [0, 1]
2: for t = 0, . . . , k − 1 do
3: Obtain a gradient estimate gt
4: mt = β1mt−1 + (1− β1)gt
5: v̂t = β2vt−1 + (1− β2)g2

t

6: xt+1 = P
v̂

1/2
t
X

(
xt − αtv̂−1/2

t mt

)
7: end for
8: Output: xt∗(k): t∗(k) is randomly chosen in {1, . . . , k}.

◦ The King is naked:2 AMSGrad
I φ(gt) = max(v̂t−1, vt), and vt = β2vt−1 + (1− β2)g2

t

I F. Orabona: parameterfree.com (Dec 6)

◦ The King does not need to know smoothness

1. gt ∈ ∂f(xt)
2. gt = ∇f(xt)
3. Egt = ∇f(xt) & E[‖g −∇f(x)‖2|x] ≤ σ2

◦ The King adapts and achieves optimal regret3

R(k) = O
(√

k
)
,

with constant β1 in OCO.

◦ The King’s output satisfies for WeCo4

E‖∇φt1/ρ(xt∗(k))‖2 = O
( 1
√
k

)
.

1D.P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv:1412.6980, 2014.
2S.J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond," arXiv:1904.09237, 2019.
3A. Alacaoglu, Y. Malitsky, P. Mertikopoulos, and V. Cevher, “A new regret analysis for adam-type algorithms,” ICML 2020
4A. Alacaoglu, Y. Malitsky, and V. Cevher, “Convergence of adaptive algorithms for weakly convex constrained optimization,” arXiv:2006.06650, 2020.
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The King of all optimization algorithms: Adam1 (60K+ citations)

Algorithm: (variable metric) Adam-type
1: Input: Iterations k; x0 ∈ X , β1,2 ∈ [0, 1]
2: for t = 0, . . . , k − 1 do
3: Obtain a gradient estimate gt
4: mt = β1mt−1 + (1− β1)gt
5: v̂t = φ(gt)

6: xt+1 = P
v̂

1/2
t
X

(
xt − αtv̂−1/2

t mt

)
7: end for
8: Output: xt∗(k): t∗(k) is randomly chosen in {1, . . . , k}.

◦ The King is naked:2 AMSGrad
I φ(gt) = max(v̂t−1, vt), and vt = β2vt−1 + (1− β2)g2

t

I F. Orabona: parameterfree.com (Dec 6)

◦���
�: An Adam-type algorithm

The King does not need to know smoothness

1. gt ∈ ∂f(xt)
2. gt = ∇f(xt)
3. Egt = ∇f(xt) & E[‖g −∇f(x)‖2|x] ≤ σ2

◦���
�: An Adam-type algorithm

The King adapts and achieves optimal regret3

R(k) = O
(√

k
)
,

with constant β1 in OCO.

◦���
��: An Adam-type algorithms’

The King’s output satisfies for WeCo4

E‖∇φt1/ρ(xt∗(k))‖2 = O
( 1
√
k

)
.

1D.P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv:1412.6980, 2014.
2S.J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond," arXiv:1904.09237, 2019.
3A. Alacaoglu, Y. Malitsky, P. Mertikopoulos, and V. Cevher, “A new regret analysis for adam-type algorithms,” ICML 2020
4A. Alacaoglu, Y. Malitsky, and V. Cevher, “Convergence of adaptive algorithms for weakly convex constrained optimization,” arXiv:2006.06650, 2020.
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A comparison of algorithms

GD/SGD Accelerated GD/SGD AdaGrad AcceleGrad/UniXgrad Adam/AMSGrad

Convex, stochastic O
(

1√
k

)
1 O

(
1√
k

)
1 O

(
1√
k

)
2 O

(
1√
k

)
3,4 O

(
1√
k

)
5

Convex, deterministic, L-smooth O
(

1
k

)
1 O

(
1
k2

)
1 O

(
1
k

)
3 O

(
1
k2

)
3,4 O

(
1
k

)
6

Nonconvex, stochastic, L-smooth O
(

1√
k

)
1 O

(
1√
k

)
1 O

(
1√
k

)
7 ? O

(
1√
k

)
8

Nonconvex, deterministic, L-smooth O
(

1
k

)
1 O

(
1
k

)
1 O

(
1
k

)
7 ? O

(
1
k

)
6

1 Lan, First-order and Stochastic Optimization Methods for Machine Learning. Springer Nature, 2020.
2 Duchi, Hazan, Singer, Adaptive subgradient methods for online learning and stochastic optimization, JMLR, 2011
3 Levy, Yurtsever, Cevher, Online adaptive methods, universality and acceleration, NeurIPS 2018
4 Kavis, Levy, Bach, Cevher, UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization, NeurIPS, 2019
5 Reddi, Kale, Kumar, On the convergence of adam and beyond, ICLR, 2018.
Alacaoglu, Malitsky, Mertikopoulos, Cevher, A new regret analysis for Adam-type algorithms, ICML 2020.
6 Barakat, Bianchi, Convergence Rates of a Momentum Algorithm with Bounded Adaptive Step Size for Nonconvex Optimization, ACML, 2020
7 Ward, Xu, Bottou, AdaGrad stepsizes: Sharp convergence over nonconvex landscapes, ICML 2019.
8 Alacaoglu, Malitsky, Cevher, Convergence of adaptive algorithms for weakly convex constrained optimization, arXiv, 2020.
Chen, Zhou, Tang, Yang, Cao, Gu, Closing the generalization gap of adaptive gradient methods in training deep neural networks, IJCAI 2020.
Chen, Liu, Sun, Hong, On the convergence of a class of adam-type algorithms for non-convex optimization, ICLR 2018.
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Conclusions

◦ Simple algorithms automatically adapt to strong convexity under broad assumptions
I GD achieves linear rate with η = 1/L1

I SGD achieves O (1/k)-rate with ηk = O (1/k)2

I PDHG achieves linear rate under metric subregularity345

◦ Adaptive methods are promising but are not yet truly universal...
I Accelegrad/UniXgrad does not adapt to strong convexity
I AdaGrad needs a different step-size policy
I Adam-type does not adapt to strong convexity
I MetaGrad comes close but is not universal yet6

◦ Still seeking one algorithm to rule them all!

1G. Lan, “First-order and Stochastic Optimization Methods for Machine Learning,” Springer Nature, 2020.
2P. Mertikopoulos, N. Hallak, A. Kavis, and V. Cevher, “On the almost sure convergence of stochastic gradient descent in non-convex problems,” NeurIPS, 2020.
3P. Latafat, N.M. Freris, and P. Patrinos, “A new randomized block-coordinate primal-dual proximal algorithm for distributed optimization,” IEEE TAC, 2019.
4A. Alacaoglu, O. Fercoq, and V. Cevher, “Random extrapolation for primal-dual coordinate descent," ICML, 2020.
5J. Liang, J. Fadili, and G. Peyré, “Convergence rates with inexact non-expansive operators.” MathProg, 2016.
6T. van Erven, and W.M. Koolen, “Metagrad: Multiple learning rates in online learning.” NeurIPS 2016.
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Logistic regression
◦ Data: a4a

◦ Oracle: Deterministic
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Figure: Logistic regression on a4a
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Neural network training: ADAM vs. AcceleGrad
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Figure: Resnet classifier optimization (train loss)
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Figure: Resnet classifier optimization (test loss)
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