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One formula to rule all machine learning problems

f*= min f(z) (argmin — z*)
TirxeX

o Growing interest in first-order gradient methods! due to their scalability and generalization performance

L\ an, Guanghui. First-order and Stochastic Optimization Methods for Machine Learning. Springer Nature, 2020
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some
One formula to rule all’machine learning problems ...and one algorithm to solve them.

f*= min f(z) (argmin — z*)
zirxeX

o Growing interest in first-order gradient methods! due to their scalability and generalization performance

o In the sequel,
> the set X' is convex and has a tractable projection operator Py
> all convergence characterizations are with feasible iterates =¥ € X
> gradient mapping means Gy (z*) = %[mk — Py (2% —nVf(z*))], where n is the step-size
» L-smooth means |V f(z) — Vf(y)| < L||z — y||,Vz,y € X

> 0 may refer to the generalized subdifferential, and §y refers to the indicator function for the set X’

L\ an, Guanghui. First-order and Stochastic Optimization Methods for Machine Learning. Springer Nature, 2020
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Worst-case iteration complexities of classical projected first-order methods'?

f(=z) gradient oracle L-smooth Stationarity measure GD/SGD Accelerated GD/SGD
. ky _ ¢% _ 1 1
Convex stochastic yes f@®)—f O ( \/;) (@] ( \/Z)
Convex deterministic yes f(ack) —f* = (@] (%) (@} (%)
. ky _ o% _ 1 1
Convex stochastic no f@®) = f o ( \/Z) o ( k)
. ky2 — 1\3 1\3
Nonconvex stochastic yes Gy (™))% = (@] \/Z) (@] ( \/E)
Nonconvex deterministic yes HGn(ack)H2 = (@] %)4 (@] % 4
Nonconvex stochastic no dist(0, 8(f(zF) + sx (%)) = 2356 2356

o Basic structures, such as smoothness or strong convexity, help, but there are more structures that can be used:

» max-form, metric subregularity, Polyak-Lojasiewicz, Kurdyka-Lojasiewicz, weak convexity,3 growth cond...

1Y Nesterov, “Introductory lectures on convex optimization: A basic course,” Springer Science, 2013

2Y Carmon, J.C. Duchi, O. Hinder, and A. Sidford, “Lower bounds for finding stationary points I-Il." Mathematical Programming, 2019.
3D. Davis and D Drusvyatskiy, “Stochastic model-based minimization of weakly convex functions,” SIOPT, 2019.

43S, Ghadimi and G. Lan, “Accelerated gradient methods for nonconvex nonlinear and stochastic programming,” MathProg, 2016,

5J. Zhang, et al., “On complexity of finding stationary points of nonsmooth nonconvex functions,” arXiv:2002.04130, 2020.

6O Shamir, “Can We Find Near-Approximately-Stationary Points of Nonsmooth Nonconvex Functions?" arXiv:2002.11962, 2020.
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Worst-case iteration complexities of classical projected first-order methods'?

f(z) gradient oracle L-smooth Stationarity measure GD/SGD Accelerated GD/SGD
. By _ px _ 1 1
Convex stochastic yes f(z®) = f (@} ( \/E) O ( \/E)
Convex deterministic yes f(zk) — f* = (@] (%) (@] (%)
i (oY — = 1 1
Convex stochastic no f(z") = f (@] ( \/E) O( k)
. kyi 2 — 1 )3 -1 )3
Nonconvex stochastic yes |Gy ()" = (@} ( \/E) (@} ( \/E)
Nonconvex deterministic yes HGT,(zk)HQ = (@] %)4 (@] % 4
Nonconvex stochastic no dist(0, 8(f (zF) + sx (2%)))2 = 2356 7356

at the end of the presentation
vexity, help, but there are more structures that can be used:

o Basic structures, such as smoothness orW

» max-form, metric subregularity, Polyak-Lojasiewicz, Kurdyka-Lojasiewicz, weak convexity,3 growth cond...

1Y Nesterov, “Introductory lectures on convex optimization: A basic course,” Springer Science, 2013

2y Carmon, J.C. Duchi, O. Hinder, and A. Sidford, “Lower bounds for finding stationary points I-Il." Mathematical Programming, 2019.

3D. Davis and D. Drusvyatskiy, “Stochastic model-based minimization of weakly convex functions,” SIOPT, 2019

4S. Ghadimi and G. Lan, “Accelerated gradient methods for nonconvex nonlinear and stochastic programming,” MathProg, 2016

5J. Zhang, et al., “On complexity of finding stationary points of nonsmooth nonconvex functions,” arXiv:2002.04130, 2020.

50 Shamir, "Can We Find Near-Approximately-Stationary Points of Nonsmooth Nonconvex Functions?" arXiv:2002.11962, 2020
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Worst-case is often too pessimistic

o GD: b+l = gk — 1V f(zk) o Rates are not everything!

> overall computational effort is what matters
()

Global quadratic upper bound » constants &implementations are key

Qulx.x")

L
-X"':drgmxm{/tX‘J+~(Vf(X‘>-fo"‘g\X*XAHﬁ} o Knowledge of smoothness, the value of L,...

> challenging

[Vi(@) = Vil < Ly —=| TzT 100 < 1)+ T e )+ S
L is a global worst-case constant
f(x*) [ H ” .
1o o Must “somehow” adapt to a “different” function
—
xry

> online and without knowing L

» can reduce overall computational effort!
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Warmup: f is convex

f*= min f(z) (argmin — z*)
rreX
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A classical approach: Line-search

o Long history: Backtracking, Armijo, steepest descent... o Universal accelerated gradient method?!

1) k Ly|jz® — o]tV
f@) =0 —m—
2

Local quadratic upper bound

Quu(x.x")

> adapts to Hélder smoothness (v € [0, 1])

o xkF! :Algm):n{/[XAJ+\'\-_/(XA\,xka\,\+ I;foxAH:;}
[IV/(@) = Vi®)llz < Lullz - yll3
> has extensions to primal-dual optimization?
IV f(@) = VIl < Ly — | 1‘2T )< /[x‘)+v/(x*\'(xfx*)Aguxfx* 2

. li ly locall H H H H
L is a global worst-case constant @) spples ony ey > sets accuracy a priori & monotonic step-sizes
< >‘x

2
1 o Not as universal as we wish it to be

> different procedures for stochastic gradients3

1y, Nesterov, “Universal Gradient Methods for Convex Optimization Problems,” Mathematical Programming, 2015
ZA Yurtsever, Q. Tran-Dinh, and V. Cevher, “A Universal Primal-Dual Convex Optimization Framework,” NeurlPS, 2015
35, Vaswani et al , “Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates,” NeurIPS, 2019

IELTN{l  Adaptation and Universality in First-Order Optimization | Volkan Cevher, https://lions.epfl.ch Slide 6/ 18 EPFL


https://lions.epfl.ch

A contemporary approach: Online convex optimization (0OCO)

Algorithm: A basi ne | - blem123 o Minimize the total loss vs the best action in hindsight:
ithm: asic online learning problem

k k
1: fOl’t:L...,kdO _ t .
R(k) =) foe") = min Y fi(e).
t=1 t=1

2: Player chooses some action z! € X C RP
3: Environment reveals a convex loss fi(-)
4: Player suffers the loss f(x? . " s " .
Y fi(a®) > “somehow"” adapts to a “different” function!
5. end for

o For general convex fi, optimal regret is sublinear:
R(k) =0 (Vk).

o We can trivially convert regret to rate via f; = f:

k
1 Lo RO
Sl ) =T
t=1

IN. Cesa-Bianchi and G. Lugosi, “Prediction, learning, and games,” Cambridge University Press, 2006
25 Shalev-Shwartz, “Online learning and online convex optimization,” Found. Trends Mach. Learn., 2012.

3E Hazan, “Introduction to online convex optimization," arXiv:1909.05207, 2019.

ICHHEEIIN  Adaptation and Universality in First-Order Optimization | Volkan Cevher, https://lions.epfl.ch Slide 7/ 18


https://lions.epfl.ch

A contemporary approach: Online convex optimization (0OCO)

Algorithm: A basi ne | - blem123 o Minimize the total loss vs the best action in hindsight:
ithm: asic online learning problem

k K
1: fort=1,...,k do

T Rk:z,xt—minz/x.
2: Player chooses some action z! € X C RP (k) f(@) TEX fil@)
3: Environment reveals a convex loss fi(-) t=1 t=1
. t
* Player suffers the loss f(a*) > “somehow"” adapts to a “different” function!
5. end for

o For general convex fi, optimal regret is sublinear:
o One procedure to rule them all... R(k) =0 (\/E)

» smooth, non-smooth, stochastic!

o We can trivially convert regret to rate via f; = f:
o Not as adaptive as we like in optimization

k
> The “offline” fast rate 1/k? is not immediate l t | e R(k)
f % E z 7 < =
t=1

IN. Cesa-Bianchi and G. Lugosi, “Prediction, learning, and games,” Cambridge University Press, 2006
25 Shalev-Shwartz, “Online learning and online convex optimization,” Found. Trends Mach. Learn., 2012.

3E Hazan, “Introduction to online convex optimization," arXiv:1909.05207, 2019.
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The curious case of AdaGrad!

o AdaGrad does not need to know smoothness

Algorithm: AdaGrad (scalar)? 1. gt € 8f(x?)
1: Input: Iterations k; zo € X 2. gt = Vf(zh)
j o :g’b.t.a:irlwC a_glr:doient estimate g¢ 3. Bge = V1) & Ellly = VI @)Ple] < o*
4: ne =D/ (2 Zle Hgt||2) 12 o AdaGrad adapts and achieves optimal regret!
5: it = Py (ﬂﬁt - ntgt)
6: end for

7. Output: T = %Zle xt R(k) <

k
20 " gill3,
t=1

where D = sup,, ,ex |z — ylly.

o When f is L-smooth, AdaGrad output satisfies?

_ . LD?* oD
E[f(zx)] - f _O<k‘+\/ﬁ>.

1) Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” JMLR, 2011
2K.Y. Levy, A. Yurtsever, and V. Cevher, “Online adaptive methods, universality and acceleration,” NeurlPS 2018
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The curious case of AdaGrad!

o AdaGrad does not need to know smoothness

Algorithm: AdaGrad (scalar)? 1. gt € Of(ah)
1: Input: lterations k; zg € X 2. gt = Vf(xt)
2: fOI’t:O,..-,-k‘—l d(? - 3. Egt =Vf(:0t) &E[||g—Vf(x)||2|a?} < o2
3: Obtain a gradient estimate g¢
1/2
4: ne =D/ (2 22:1 Hgt||2) / o AdaGrad adapts and achieves optimal regret!
5: it = Py (ﬂﬁt - ﬁtgt)
k
6: end for
2 2
7 Output: 7, = £ 3°° 4t R(k) < 42D " llgill3,
t=1

where D = sup, ,ex |z — ylly.
o Is it an adaptive optimization method?

o When f is L-smooth, AdaGrad output satisfies?

2 (oa
E[f(zx)] - f* = O (LD + D) .

o Is it a universal optimization method?

k vk

1) Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” JMLR, 2011
2K.Y. Levy, A. Yurtsever, and V. Cevher, “Online adaptive methods, universality and acceleration,” NeurlPS 2018
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Enter AcceleGrad:! Exploiting the linear coupling idea®

Algorithm: AcceleGrad for unconstrained optimization

1: Input: lterations k; yo, 20 € RP

2. fort=0,...,k—1do

3: Obtain a gradient estimate g¢
4 o+ = max (1, %)

5. —_— 2D
t

G2y o?lleil?

t+1 — 1 _ L

't = by 4+ (1 - 55)a,
zt+1 = Px (2t — aemige)
Yer1 =T — g

end for .

0: Output: Jp Xa » , | -1yt

© o N O

=

o AcceleGrad does not need to know smoothness
1. gt € Of(x?)
2. gt = Vf(ah)
3. Bge = Vf(a') & |lg <G

o AcceleGrad output satisfies: Ef(gy) — f* =

GD +/Tog(k)
1 o (2

2
5 0 (DG+LD klzog(LD/G))

GD y/logk
e

o Caveats:
> needs a bound G on the subgradient norms
> needs a bound D on X where the solution lives

» cannot handle constraints!

Iky. Levy, A. Yurtsever, and V. Cevher, “Online adaptive methods, universality and acceleration," NeurlPS 2018

2L Orecchia and Z Allen-Zhu, "Linear coupling: An ultimate unification of gradient and mirror descent,” arXiv:1407.1537, 2014
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Enter AcceleGrad:! Exploiting the linear coupling idea®

Algorithm: AcceleGrad for unconstrained optimization

1: Input: lterations k; yo, 20 € RP

2. fort=0,...,k—1do

3: Obtain a gradient estimate g¢
4 o+ = max (1, %)

D

2
Y atllall?
t+1 1 _ 1

't =y (1 - 55)a,
zt+1 = Px (2t — aemige)
yer1 = ' — g

end for .

0: Output: Jp Xa » , | -1yt

5: n =

© o N O

=

o AcceleGrad does not need to know smoothness

1. g € 0f(at)
2. gt =Vf(z")
3. Bge = Vf(z") & |lg| <G

o AcceleGrad output satisfies: Ef(gy) — f* =

GD +/Tog(k)
1 o (2

2
5 O (><£+LD 1Z§<LD/HgoH>>

GD y/logk
e

o Caveats:

> needs a bound G on the subgradient norms
> needs a bound D on X where the solution lives

» cannot handle constraints!

Iky. Levy, A. Yurtsever, and V. Cevher, “Online adaptive methods, universality and acceleration," NeurlPS 2018

2L Orecchia and Z Allen-Zhu, "Linear coupling: An ultimate unification of gradient and mirror descent,” arXiv:1407.1537, 2014
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Enter AcceleGrad:! Exploiting the linear coupling idea®

o AcceleGrad does not need to know smoothness

1. gt € Of(at)

Algorithm: AcceleGrad for unconstrained optimization

1: Input: lterations k; yo, 20 € RP

— t
2 fort=0,...,k—1do 2. gt =V f(z")
3: Obtain a gradient estimate g; 3. BEgt = Vf(z') & |lgll £ G
4 at = max (1,%)
5 - oD o AcceleGrad output satisfies:> Ef(gx) — f* =
t 2012 GD +/log(k)
\/KJ{:_O ai!gln Lo (T)
6: 41— 1 1— L
’ arve (=500, 5 o (PLELD? 10s(LD/llgoll)
7: Zt41 = PX gzt — CttT]tgt) . %2
. — ptt+1
8: Yt+1 =T Nt gt GD iosk
9: end for 3.0 Vi
_ k
10: Output: 7 xqo Zt:l at—1Yt
o Caveats:
o Is it an adaptive optimization method? > needs a bound G on the subgradient norms

o Is it a universal optimization method? > needs a bound D on X where the solution lives

» cannot handle constraints!

Iky. Levy, A. Yurtsever, and V. Cevher, “Online adaptive methods, universality and acceleration," NeurlPS 2018
2L Orecchia and Z Allen-Zhu, "Linear coupling: An ultimate unification of gradient and mirror descent,” arXiv:1407.1537, 2014
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UniXGrad:! Universal eXtra Gradient method

Algorithm: UniXGrad

Input: lterations k; yo € X; ar =t
1: fort=0,...,k—1do

_ t—1

2: Yt Xa atYt—1 + Z._ QT

3: Obtain a gradient estimate g< ) — = 9¢(9t)
e ne = 2D / \/ —g?

5: zt = PX Yt—1 — OétﬂtQ( ))

6: Tt X Oétl‘ + Zi:l o;r; — output

7: Obtain a gradient estimate g§2) = g¢(Z¢)
8: Yyt = Px (yt 11— atmgg ))

9: end for

LA. Kavis, K.Y. Levy, F. Bach, and V. Cevher, “Unixgrad: A universal, adaptive algorithm with optimal guarantees for constrained optimization,” NeurlPS 2019
27 Nemirovski, “ Prox-method with rate of convergence ... smooth convex-concave saddle point problems,” SIOPT, 2005
3A. Rakhlin and K. Sridharan, “Optimization, learning, and games with predictable sequences,” NeurlPS 2013.

4. Cutkosky, “Anytime online-to-batch, optimism and acceleration,” ICML 2019
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UniXGrad:! Universal eXtra Gradient method

o UniXGrad does not need to know smoothness

Algorithm: UniXGrad
1 gt(-) €9f(")

Input: lterations k; yo € X; ar =t

1 fort=0,...,k—1do 2. ge(-)=VF()
_ t—1
2 Gt Xa otyt—1 4+, QT 3. Egi() = Vf(-) & E[llge(z) — Vf(2)|]?]z] < o®
3: Obtain a gradient estimate g< ) = = 9¢(9t)
2 o UniXGrad output satisfies:* Ef(Z)) — f* =
«  m=ow/ \/ e 1. 8@ 4 10D
- 2 20ﬁD2L
5: at =P yt 1= aunegy W . H
’ & - 3. 224 VI4D2L 4+ 14 V20D
6: Tt Xo arxt 4 Zi:l a;x; — output ke vk
7 Obtain a gradient estimate g§2) = g¢(Tt) o First universal and adaptive algorithm
s yt = Py (yt N *atmgg )) > optimal rates in the “offline” setting
9: end for > builds on mirror-prox? & optimistic MD3

> new online-to-offline conversion lemmal#

LA. Kavis, K.Y. Levy, F. Bach, and V. Cevher, “Unixgrad: A universal, adaptive algorithm with optimal guarantees for constrained optimization,” NeurlPS 2019
27 Nemirovski, “ Prox-method with rate of convergence ... smooth convex-concave saddle point problems,” SIOPT, 2005
3A. Rakhlin and K. Sridharan, “Optimization, learning, and games with predictable sequences,” NeurlPS 2013.

4. Cutkosky, “Anytime online-to-batch, optimism and acceleration,” ICML 2019
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f is nonconvex

f*= min f(z) (argmin — z*)
rreX
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Detour: Weak convexity (WeCo) & approximate stationarity'

o Smooth: Gradient mapping norm o Non-smooth: Generalized subdifferential distance
> 1Gn(@®)|1? = ;5 llz® — Px(a® =V f(*)? > dist(0, 9(f(z*) + dx (2*)))?
> possible to compute > hard in general (even approximately)?3

o f is p-weakly convex if f(z) + 5||z||? is convex. o Moreau envelope (ME):

o1/p(@) = min {10) + 11y~ ol
T <— argmin

Ve, (@) = pla — @)

o Small [V¢y,,(z)| implies near-stationarity:!

dist(0,0(f (*) + 6x (2")))? < [V, (z")|?

Figure: ME with f(z) = |22 — 1|, X =R, and ©; = L. > also implies small |G, (z*)||? if f is smooth

1D. Davis and D. Drusvyatskiy, “Stochastic model-based minimization of weakly convex functions,” SIOPT, 2019.

3). Zhang, et al., “On complexity of finding stationary points of nonsmooth nonconvex functions,” arXiv:2002.04130, 2020.

30. Shamir, “Can We Find Near-Approximately-Stationary Points of Nonsmooth Nonconvex Functions?" arXiv:2002.11962, 2020.
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The King of all optimization algorithms: Adam' (60K+ citations)

o The King does not need to know smoothness

1. g € Of(at)

Algorithm: (variable metric) Adam

1. Input: lterations k; o € X, B1,2 € [0,1] .

2 fort=0,...,k—1do 2. ge =Vf(z')

3: Obtain a gradient estimate g; 3. Bgr = Vf(z') & E[llg — Vf(#)]?|2] < o

4 me = Bime—1 + (1 — B1)gt

5 0t = Bave—1 + (1 — B2)g? 3
51/2 o The King adapts and achieves optimal regret

6 o P;t (xt _ Oétﬁt_l/th) g P p g

7: end for R(k) =0 (\/E) ’

8 Output: zt=(*): ¢, (k) is randomly chosen in {1,..., k}. with constant 1 in OCO

o The King’s output satisfies for WeCo?*

1
EVel, = M) = 0 (=)

1D.P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv:1412.6980, 2014
2S.J Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond," arXiv:1904.09237, 2019

3A. Alacaoglu, Y. Malitsky, P. Mertikopoulos, and V. Cevher, “A new regret analysis for adam-type algorithms,” ICML 2020

Alacaoglu, Y. Malitsky, and V. Cevher, “Convergence of adaptive algorithms for weakly convex constrained optimization,” arXiv:2006.06650, 2020.
lions@epfl
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The King of all optimization algorithms: Adam' (60K+ citations)

An Adam-type algorithm
oT ing does not need to know smoothness

1. gt € 0f(z?)

Algorithm: (variable metric) Adam-type
1. Input: lterations k; o € X, B1,2 € [0,1]

2 fort=0,...,k—1do 2. g¢ = Vf(zh)
3 Obtain a gradient estimate g; 3. BEgr = Vf(z') & E[llg — Vf(@)|?|2] < o?
4 me = Bime—1 + (1 — B1)gt
5: Oy = ¢(gt) An Adam-type algorithm

51/2 _ oT ifig adapts and achieves optimal regret?
6: :L‘t+1 = P;:.t (ft - Ozt@t 1/2mt) /hE/KI/g' P P &

R(k) =0 (Vk),

7: end for

& Output: xt*(*): ¢, (k) is randomly chosen in {1,..., k}. with constant 81 in OCO
1 .

An Adam-type algorithms’
o The King is naked:> AMSGrad oWoutput satisfies for WeCo*

> ¢(gt) = max(d¢—1,v¢), and vy = Bave—1 + (1 7,32)_9?

1
B9, @ )P =0 ().

> F. Orabona: parameterfree.com (Dec 6)

1D.P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv:1412.6980, 2014
25.J Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond," arXiv:1904.09237, 2019

3A. Alacaoglu, Y. Malitsky, P. Mertikopoulos, and V. Cevher, “A new regret analysis for adam-type algorithms,” ICML 2020

47 Alacaoglu, Y. Malitsky, and V. Cevher, “Convergence of adaptive algorithms for weakly convex constrained optimization,” arXiv:2006.06650, 2020
lions@epfl
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A comparison of algorithms

GD/SGD Accelerated GD/SGD AdaGrad AcceleGrad/UniXgrad Adam/AMSGrad
i 1)\t 1_)2 1) 3.4
Convex, stochastic (@] ( \/E) (@] ( T (@] ( \/E)
Convex, deterministic, L-smooth (@} (%)1 (@} (%)3 (@} (:12-)3’4
i - 1)1 1 \7 2
Nonconvex, stochastic, L-smooth O ( \/E) @] ( \/E)
Nonconvex, deterministic, L-smooth (@} (%)1 (@} (%)7 ?

1 Lan, First-order and Stochastic Optimization Methods for Machine Learning. Springer Nature, 2020

2 Duchi, Hazan, Singer, Adaptive subgradient methods for online learning and stochastic optimization, JMLR, 2011

3 Levy, Yurtsever, Cevher, Online adaptive methods, universality and acceleration, NeurlPS 2018

4 Kavis, Levy, Bach, Cevher, UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization, NeurlPS, 2019

5 Reddi, Kale, Kumar, On the convergence of adam and beyond, ICLR, 2018.
Alacaoglu, Malitsky, Mertikopoulos, Cevher, A new regret analysis for Adam-type algorithms, ICML 2020.

6 Barakat, Bianchi, Convergence Rates of a Momentum Algorithm with Bounded Adaptive Step Size for Nonconvex Optimization, ACML, 2020
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Conclusions

o Simple algorithms automatically adapt to strong convexity under broad assumptions
> GD achieves linear rate with n = 1/L!
> SGD achieves O (1/k)-rate with n, = O (1/k)?

> PDHG achieves linear rate under metric subregularity34>

o Adaptive methods are promising but are not yet truly universal...
> Accelegrad/UniXgrad does not adapt to strong convexity
> AdaGrad needs a different step-size policy
» Adam-type does not adapt to strong convexity

> MetaGrad comes close but is not universal yet®

o Still seeking one algorithm to rule them all!
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Logistic regression
o Data: ada

o Oracle: Deterministic
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Figure: Logistic regression on ada
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Neural network training: ADAM vs. AcceleGrad

Train Loss vs Epochs
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Figure: Resnet classifier optimization (train loss)
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Loss

Test Loss vs Epochs
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Figure: Resnet classifier optimization (test loss)
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