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Work of Todorov et al.

Weak (quasi)Hopf algebras are allowed as true algebras of
symmetries in 2d CFTs (Mack, Schomerus 1989)
In particular variants of hidden quantum group symmetry
appear in (gauged) WZNW models
Todorov et al. (1991) build a preHilbert space of the theory
in covariant way from reps. of quantum groups in
Hamiltonian approach
Fields are related to q-coherent states which were given
ad hoc
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Setting for classical Perelomov coherent states

GC – complex connected ss Lie group with compact real
form G, B ⊂ GC Borel subgroup
χ : B → C a character of B; Cχ corr. 1-d B-module.
p : GC → GC/B a principal B-bundle
associated line bundle Lχ = GC ×χ Cχ
projection pL : Lχ → GC/B.
The left action of G on GC induces an action of G on Lχ
GC acts on the space Vχ = ΓLχ of holomorphic
(horizontal!) sections of Lχ by (g∗s)(x) = gs(g−1x). By
BOREL-WEIL theorem Vχ is an irreducible unitarizable
G-module.
An invariant unitary product on ΓLχ, antilinear in 1st and
linear in 2nd argument, is denoted 〈|〉.
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Given a (holomorphic) section s ∈ ΓLχ and a nonzero point q in
some fiber pL

−1(x)

s(x) = s(pL(q)) = lq(s)q,

for some number lq(s). The correspondence

s 7→ lq(s), lq : ΓLχ → C,

is a continuous linear functional. By Riesz’s theorem, there is a
unique element

eq ∈ ΓLχ such that lq(s) = 〈eq|s〉.

The vectors (sections) of the form eq ∈ Vχ = ΓLχ are called
coherent vectors. Their projective classes are called
coherent states. All this much more general (Rawnsley).
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Proposition. (Rawnsley)
(i) egq = g∗eq for all g ∈ GC.
(ii) ecq = c̄−1eq for all c ∈ C.
(iii) Coherent states i.e. the projective classes of all
coherent vectors belong to the same projective orbit.
(iv) The set of all eq where q ∈ (pL)−1(1GB) agrees with the
set (ray) of all heighest weight vectors in Vχ for fixed B.

(v) The set of all eq where q ∈ (pL)−1(u) for fixed u ∈ GC/B
is the heighest weight space for some subgroup of GC

conjugated to B.
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Corollary. Fix open U ⊂ GC/B, q ∈ Lχ and t : U→ GC a section
of p−1(U)→ U (principal B-bundle).
For each g ∈ p−1(U) ∃!b ∈ B such that g = t(gB)b.
The “homogeneity” formula holds:

geq = χ−1(b)et(gB)q (1)

Proof. g∗eq = t(gB)∗b∗eq = t(gB)∗χ
−1(b)eq; taking into account

that χ−1(b) is a scalar, this equals to χ−1(b)t(gB)∗eq, hence by
(i) of the Proposition, also to χ−1(b)et(gB)q.
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Definition. The local family of coherent states
corresponding to the triple (U, t, q) is the map

C(U,t,q) : U→ Vχ ≡ ΓLχ, C(U,t,q) : [g] 7→ et([g])q. (2)

Let W be the Weyl group of G. Gauss decomposition singles
out special (Uw, tw, q) which will have a generalization for
quantum groups.
For any w ∈W, there is a Zariski open subset GC

w ⊂ GC

consisting of all g ∈ GC for which ∃! decomposition g = wyb
where y ∈ GC belongs to the unipotent subgroup of the
opposite Borel B′, and b ∈ B.
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GC
w is also B-invariant, hence a total space of the restricted

fibration over a Zariski open subset Uw = GC
w/B ⊂ GC/B.

Define the local section tw : GC
w/B→ GC

w ⊂ GC by tw([g]) = wy
where g = wyb as above. We denote

Cw := C(w,v0) := C(GC
w/B,tw,q)

where v0 = eq is a fixed highest weight vector in Vχ.
Corollary above becomes
Proposition. If g = wyb is the Gauss decomposition in Gw then
for all g ∈ G

gv0 = χ−1(b)Cw(gB), (3)

and Cw is the unique element in O(GC
w/B)⊗ Vχ for which this

holds.
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The collection of maps {Cw,w ∈W} will be generalized to the
quantum group setting below. They can be viewed as
Cw ∈ O(GC

w/B)⊗ Vχ where O(GC
w/B) is the complex algebra of

all algebraic functions on GC
w/B.
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Basic idea of ncg

A space and its geometry is determined by a (sufficient)
collection of objects which live on the space.
Objects: functions (observables), bundles, sheaves,
stacks...
Organize into: (operator) algebras, algebras/spaces of
cocycles, categories, higher categories
Space-algebra duality is of spectral nature
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Dualities: examples of the idea

Gel’fand-Neimark theorem: The category of compact
Hausdorff spaces is antiequivalent to the category of
commutative unital C∗-algebras (evaluation functionals,
maximal ideals, spectral theory of Banach algebras)
Giraud’s theorem: Category satisfying the Giraud’s
axioms is a category of sheaves on a Grothendieck site the
(evaluation presheaves, Yoneda arguments, using
generating sets)
Gabriel-Rosenberg theorem: A (quasicompact
quasiseparated) algebraic scheme (X,OX) is determined
by the abelian category of quasicoherent sheaves of
OX-modules (abelian sheaves and the spectra of
categories, almost minimal topologizing subcategories)
Serre-Swan, Stone, Tannaka, Bondal-Orlov, Isbell...
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Multiplication and comultiplication

Functions multiply and add pointwise, therefore functions on a
space form a commutative algebra. In ncg we give up
noncommutativity. All morphisms dualize.
In particular, if a space X is replaced by a function algebra
Fun(X), then a group is a function algebra with additional
comultiplication ∆, dual to the operation on the group:
∆(f)(x⊗ y) = f(x · y); f ∈ Fun(X× X) ∼= Fun(X)⊗̂Fun(X).
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Bialgebras

Bialgebra B – associative algebra (B,m, η) and a coalgebra:
has comultiplication ∆ : H→ H⊗ H which is coassociative

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆

and counital: ∃ε : H→ C,

(ε⊗ id) ◦∆ ∼= id ∼= (id⊗ ε) ◦∆.

Compatibility: ∆, ε homomorphisms of algebras.
In the case of a group X = G, ε(f) = f(1G), f ∈ Fun(G).
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Sweedler notation

Sweedler notation: ∆(a) =
∑

a(1) ⊗ a(2).

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆∑∑
a(1)(1) ⊗ a(1)(2) ⊗ a(2) =

∑∑
a(1) ⊗ a(2)(1) ⊗ a(2)(2)

so we write simply ∑
a(1) ⊗ a(2) ⊗ a(3)

“only the order matters”

Zoran Škoda Coherent states for quantum groups



Motivation and Perelomov coherent states
Coherent states for Hopf algebras

Quantum group examples

Noncommutative geometry
Hopf algebras and quantum spaces
Quantum principal bundles
Families of coherent states

Hopf algebra of functions

A Hopf algebra is a bialgebra (B,m, η,∆, ε) with an antipode
map S : B→ Bop,

m ◦ (S⊗ id) ◦∆ = η ◦ ε = m ◦ (id⊗ S) ◦∆.

For a group G, (Sf)(g) = f(g−1), g ∈ G, f ∈ Fun(G)
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(Co)modules

Algebras have actions, modules: ν : A⊗M→ M.
Coalgebras have coactions, comodules: ρ : M→ C⊗M.
Extend Sweedler to ρ(m) =

∑
m(−1) ⊗m(0).

Modules over bialgebras have a tensor product:
ν(a,m⊗ n) =

∑
νM(a(1),m)⊗ νN(a(2), n); dually comodules over

bialgebras have a tensor product. Over Hopf algebras we also
have duals (via antipode).
In physics, comultiplication so that the Hilbert space of
multiparticle state inherits symmetry via tensor product of
representations and quantum numbers appropriately “add”.
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Comodule algebras as quantum spaces

X space, G group, then an action G× X→ X dualizes to a
coaction ρ : Fun(X)→ Fun(G× X) ∼= Fun(G)⊗̂Fun(X).
Multiplication is moreover an algebra map ! We say that
Fun(G) is a left comodule algebra over Fun(G).
Similarly we think of noncommutative left and right
comodule algebras over Hopf algebras as quantum
G-spaces.
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Coinvariants

If a discrete group G acts on a set X from the right then the
function on X/G are in obvious 1-1 correspondence with
G-invariant functions on X, that is f(xg) = f(x).
In terms of dual coaction, ρ(x) = x⊗ 1.
x is a ρ-coinvariant if this equality holds. Thus we think of
coinvariants as functions on the orbits. The coinvariants of a
comodule M form a submodule McoH.
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Classical principal bundles

Principal G-bundle is a right G-space for which the map

X× G→ X×X/G X, (x, g) 7→ (x, xg)

is a homeomorphism. Its inverse is a translation or division
map τ .
In algebraic case, the local triviality of bundle X (in faithfully
flat topology) follows if we assume in addition that X is
fathfully flat and locally of finite type over X/G.
If G is affine algebraic group and X affine G-variety, we can
dualize this to Hopf algebra H = Fun(G) and E = Fun(X).
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Hopf-Galois extensions

For a Hopf algebra H, a Hopf-Galois extension
U := EcoH ↪→ E is a right comodule algebra E for which the
canonical map

E⊗U E→ E⊗ H, e⊗ e′ 7→
∑

ee′(0) ⊗ e′(1),

is a vector space isomorphism. This is dual to principal
bundle condition (affine case).
GC/B is a projective variety so the bundles over it are not
affine. Therefore we need to globalize Hopf-Galois
extensions to do bundles over quantum analogues.
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Aside: C∗-principal bundles

In approach via operator algebras, every space is determined
by a single C∗-algebra of functions, but no good principal
bundle theory is developed (unlike vector bundles which are
just projective modules). In addition our local trivializations
involve unbounded elements, what is technical to deal with.
Our bundles will be naturally algebraic so we take advantage of
this. Price: the space is not determined by a single algebra but
we need to glue local coordinate patches using category theory
and localization functors!
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Localization of rings

Commutative algebraic geometry: given ring R, the base of
Zariski topology on Spec R given by principal localizations of
the ring. Ring R, f ∈ R, ring of fractions R[f−1] consisting of
equivalence classes of pairs (r , f ) viewed as fractions r/f .
For a noncommutative ring R this works mostly only when we
invert very special, (say left) Ore sets S:

∀s ∈ S′,∀r ∈ R ∃s′ ∈ S ∃r ′ ∈ R, s′r = r ′s
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Localization functor

Each left Ore localization of a ring R ↪→ R[S−1], induces the
extension of scalars, the localization functor

Q∗ = R[S−1]⊗R − : RMod → R[S−1]Mod

which is an exact functor having a fully faithful and exact right
adjoint Q∗ (restriction of scalars, forgetful functor).
In algebraic geometry, modules over a ring are identifies with
quasicoherent sheaves of modules over corresponding affine
scheme. More general exact functors on abelian categories
having fully faithful right adjoints will be viewed as restriction
functors for quasicoherent sheaves on noncommutative
schemes.
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Noncommutative schemes

Let A be an abelian category and Q∗λ : A→ Aλ, λ ∈ Λ a
family of exact localization functors where each Q∗Λ has a
right adjoint functor Qλ∗ : Aλ → A; we say that the family is
a cover if it is conservative (morphism f invertible iff each
Q∗λ invertible)
A is representing an affine scheme if it is of the form
RMod for some ring R; thus we identify rings and (spectra
of) their categories of modules
A is QcohX for a noncommutative scheme X if it has a
cover by localizations Q∗λ : A→ Aλ where each Aλ is affine
(+ subtle conditions by Rosenberg)

Zoran Škoda Coherent states for quantum groups



Motivation and Perelomov coherent states
Coherent states for Hopf algebras

Quantum group examples

Noncommutative geometry
Hopf algebras and quantum spaces
Quantum principal bundles
Families of coherent states

Noncommutative G-schemes

Q: What is an action of a Hopf algebra H on
noncommutative scheme X ?
A: Action of the corresponding monoidal category (of
H-modules) on QcohX which is admissible (subtle
condition of Z.Š)
Admissibility follows if it is true over an affine cover: there
we can express everything by comodule algebras (not
categories).
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Noncommutative G-torsors

Q: What is a principal bundle in the setup of
noncommutative schemes ?
A: Very complicated (Z.Š, G. Böhm, Rosenberg,
unfinished) but it satisfies the descent along torsors:
equivariant sheaves over the total space are sheaves over
the base space and the base space embeds affinely. This
is a categorification of the condition that functions on the
quotient X/G correspond to coinvariants in the algebra of
functions on G-space X .
Easy: In any case, it is Hopf-Galois in coordinate patches
obtained by localization functors if the action restricts to
those.
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The notion of equivariant sheaves extends to Hopf
algebras and noncomm. geometry (Lunts, Škoda 2002,
2008).
Locally equivariant sheaves are equivalent to relative Hopf
modules over a H-comodule algebra E : left E action and
right H-coaction compatible. Then for a faithfully flat
Hopf-Galois extension EMH ∼= EcoHM (Schneider’s
theorem, 1991) – this is a special case of the descent
along globalized torsors (G. Böhm, Z. Š) !
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Trivial principal bundles

(Classical topology) If t : Y → X is a global section of a
principal G-bundle p : X → Y then

γt (f )(y) = f (τ(t(p(y)), y))

defines a map of C(G)-comodule algebras C(G)→ C(Y ).
We say that a H-comodule algebra E is cleft if there is
comodule map γ : H → E , and trivial if γ is in addition an
algebra map. These are isomorphic to Hopf algebraic
semidirect (smash) product algebras.
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Locally trivial principal bundles

(Classical topology) A principal bundle is locally trivial if
there is a cover of the base by the opens over which there
are sections.
An Ore localization of an H-comodule algebra E → E [S−1]
is coaction compatible if coaction ρ extends to a
comodule algebra action ρS

E
ρ //

��

E ⊗ H

��
E [S−1]

ρS // E [S−1]⊗ H

Then we can talk about localized coinvariants of ρ in
E [S−1

i ]. Locally trivial if E [S−1] is trivial over E [S−1]coH for
some cover by Ore sets Si .
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Gluing modules

Localization functors Q∗λ : A→ Aλ analogues of the restrictions
to open sets Uλ. When a family of objects in Aλ-s corresponds
to one object in A ? This can be answered by descent theory:
objects in Aλ and Aµ need to be compatible in both consecutive
localizations with the help of transition cocycles. This is the
hard part of in noncommutative case which we skip, except that
the global sections of an associated line bundle are

ΓLχ ∼=

{
f =

∏
λ

fλ | fλγλ(χ) = fµγµ(χ)∀λ, µ, in
Q∗λQµ∗Eµ
and Q∗µQλ∗Eλ

}
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Idea

The orbit of heighest weight vector v0 is {gv0,g ∈ G}.
Dualize actions to coaction to express the orbit in those
terms. For this we need to localize to an affine open set in
the orbit, hence localize.
We know how the sections of line bundle look like
noncommutatively
We know the classical case

gv0 = χ−1(b)Cw (gB),

in Gauss decomposition. Therefore we ask to have in
some local trivialization by localizations,

ρwvχ = Cwγw (χ)

where Cw is in V ⊗ GcoB
w . Here π : G → B surjective

epimorphism of Hopf algebras which are viewed as
algebras of functions on a group G and on its subgroup B.Zoran Škoda Coherent states for quantum groups
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Details

• (D1) A surjective map of Hopf ∗-algebras π : G → B.
• (D2) A group–like element χ ∈ B (∆(χ) = χ⊗ χ). Define
V = Vχ = IndGBC = Cχ�BG (cotensor product, think here of
holomorphically induced representation)
• (D3) A coinvariant inner product 〈|〉 on Vχ, i.e.

〈v |z〉1H =
∑
〈v(0)|z(0)〉z(1)v∗(1)

• (D4) A weight covector vχ ∈ Vχ ((id ⊗ π)ρvχ = vχ ⊗ χ) with
norm 1.
• (D5) A Zariski local trivialization {w = (ιw ,G[S−1

w ], γw )}w∈W
(W some index set, in our examples Weyl group)
of G as a right B-comodule algebra.
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Haar integral

A left-invariant integral (= left Haar integral) on a Hopf algebra
H is a linear functional

∫
on H such that

〈h ⊗
∫
,∆(f )〉 = 〈h,1〉〈

∫
, f 〉, ∀h ∈ H∗.

A left Haar integral
∫

is normalized if 〈
∫
,1〉 = 1.

Theorem. Let
∫

be a left integral on a Hopf ∗-algebra H, and
(V , ρ, 〈, 〉) a simple unitary right H-comodule. Fix a vector
w ∈ V. Define the operator A : V → V by

A|v〉 =
∑
〈w(0)|v〉w(0)′

∫
w∗(1)w(1)′

Then A is a scalar operator.
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Resolution of unity

Define the vertical measure by dµχ = γλ(χ)(γλ(χ))∗.
Theorem. Cλdµλ(χ)C∗λ does not depend on λ hence it defines
a well-defined element in G ⊗ EndVχ. The Haar integral

α =

∫
G

Cλdµλ(χ)C∗λ

is a scalar operator. Therefore, for α 6= 0 and every linear
operator H,

H|v〉 = α−1
∫
G

H|Cλ〉dµλ(χ)〈Cλ|v〉.
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Ordinary linear groups

M(n,C) of n × n matrices with (commutative) entries in a field C
is isomorphic to Cn2

as a C-vector space. This isomorphism
induces a structure of affine C-variety on M(n,C). The regular
functions on that variety are polynomials in matrix entries.
Introduce n2 regular functions

t i
j : M(n,C)→ C, t i

j (a) = ai
j , a ∈ M(n,C), i , j = 1, . . .n.

Then Fun(M(n,C)) ∼= C[t1
1 , t

1
2 , . . . , t

n
n ] is the ring of global

regular functions on M(n,C). If we divide this by the ideal
〈det T − 1〉 we get Fun(SL(n,C)).
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Matrix bialgebras

Let G be a bialgebra, possibly noncommutative, over a field C
and G = (g i

j )
i=1,...,n
j=1,...,n an n × n-matrix over G. G is a matrix

bialgebra with basis G if the set of entries of G generates G
and if the comultiplication ∆ and counit ε satisfy

∆G = G ⊗G i.e. ∆g i
j =

∑n
k=1 g i

k ⊗ gk
j

εG = 1 i.e. ε(g i
j ) = δi

j

A matrix Hopf algebra G with basis T = (t i
j ) is a Hopf algebra

which possess with matrix subbialgebra B with basis T such
that the Hopf envelope map H(id) : H(B)→ G is onto.
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Quantum matrix bialgebra

Let q ∈ C,q 6= 0. The quantum matrix bialgebra
Mq(n,C) = O(Mq(n,C)) is the free matrix bialgebra NM(n,C)
with basis T = (tαβ ) modulo the smallest biideal I such that the
following relations hold in quotient:

α = β, γ < δ (same row) tαγ tαδ = qtαδ tαγ
α < β, γ = δ (same column) tαγ tβγ = qtβγ tαγ
α < β and γ < δ tαγ tβδ − tβδ tαγ = (q − q−1)tβγ tαδ
α < β and δ < γ tαγ tβδ = tβδ tαγ
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Quantum determinant

The quantum determinant D ∈Mq(n,C) is defined by any of
the formulas

D =
∑

σ∈Σ(n)

(−q)l(σ)−l(τ)tτ(1)
σ(1) tτ(2)

σ(2) · · · t
τ(n)
σ(n)

and is central element. Analogously quantum minors (not
central).
Quantum special linear group:

G = SLq(n) = Mq(n)/〈D − 1〉

Quantum Borel subgroup

B = SLq(n)/〈t i
j , i < j〉

Let bi
j = t i

j + I be the generators of B. Both are matrix Hopf
algebras.
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Zoran Škoda Coherent states for quantum groups



Motivation and Perelomov coherent states
Coherent states for Hopf algebras

Quantum group examples

Quantum linear groups
Noncommutative Gauss decomposition
CS and resolution of unity
Open problems

Quantum Borel subgroup coacts on SLq(n) from the right

ρB : SLq(n)→ SLq(n)⊗ B

For every permutation w permute permute the rows of T and
look at the multiplicative set Sw generated by the principal (right
lower corner) quantum minors.
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Theorem. (hard) Sw is an Ore set for every w .
(easy) The corresponding localization is compatible with natural
coaction ρB.
(easy for some q) These Ore localizations cover G.
(easy) There is a unique quantum Gauss decomposition
T = wUwAw where w is a permutation matrix, Uw is a matrix
whose entries are localized coinvariants of G[S−1

w ]. Elements of
Uw and Aw generate G[S−1

w ].
(hard) γw : bi

j 7→ (Aw )i
j is a map of B-comodule algebras

B → G[S−1
w ]. Hence we have the locally trivial principal

B-bundle.
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SUq(2)

SLq(2) is a noncommutative Hopf algebra over C with 4
generators a,b, c,d , usually assembled in a matrix

T =

(
a b
c d

)
, with relations

ab = qba, ac = qca, bc = cb, bd = qdb, cd = qdc,

ad − da = (q − q−1)bc, detqT := ad − qbc = 1.

SUq(2) is a real form of SLq(2) determined by formulas

a∗ = d , b∗ = −qc, c∗ = −q−1b, d∗ = a.
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Haar integral on SUq(2)

A vector space basis of SLq(2) is

{akbr cs}k>0,r ,s≥0 ∪ {br csd t}r ,s,t≥0.

SLq(2) splits into a direct sum C[ζ]⊕ compl(ζ) where C[ζ] is the
span of the basis elements of the form (bc)r and compl(ζ) the
span of the rest of basis.
SUq(2) posses a unique Haar functional

∫
, found by

WORONOWICZ. With respect to the direct sum decomposition
above,

∫
is nontrivial only on C[ζ] where it is given by formulas

involving JACKSON’s q-integral, or equivalently∫
ζ r =

1− q−2

1− q−2(r+1)
, r = 0,1,2, . . .
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Manin plane
Manin plane

C2
q is an algebra with two generators x , y and a single relation

xy = qyx . Elements of the form x r ys form a basis of C2
q. The

latter is a right SLq(2)-comodule algebra via

ρ(x r ys) = (x ⊗ a + y ⊗ c)r (x ⊗ b + y ⊗ d)s.

C2
q splits into the homogeneous components

Vn = ⊕r+s=nCx r ys of dimension n + 1, which are irreducible
and unitary. We will find CS there by decomposing the coaction
at heighest weight r = 0. The Weyl group of SL2 has two
elements corresponding in q-case to the 2 charts or
localizations SLq(2)[b−1] and SLq(2)[d−1].
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The character is χ = λ−n where λ = a + I in Borel. From the
Gauss decomposition, γd (λ) = a− bd−1c,
γd (λ−1) = d ,γd (c + I) = c. Recall the condition

(ρB)dvχ = Cdγd (χ)

In the chart SLq(2)[d−1],

Cd :=
n∑

i=0

q−( i
2)

√[
n
i

]
q−2

vn
i ⊗ ui ,

where vn
i =

√[n
i

]
q−2x iyn−i are orthonormal and u = bd−1 is

the coordinate in (in fact the generator of) SLq(2)[d−1]coB.
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Resolution of unity

Using calculations with basis in SUq(2), and the expression for
Ramanujan’s q-beta function∫ 1

0
xα

(qx ; q)∞
(qβx ; q)∞

dqx =
Γq(α)Γq(β)

Γq(α + β)
.

one obtains∫
SUq(2)

uidn(ujdn)∗ =

{
0, i 6= j[n

i

]−1
q−2qnq2( i

2)[n + 1]−1
q , i = j

This implies the normalized resolution of unity formula

Id = q−n[n + 1]q

∫
SUq(2)

|C〉dµ(χ)〈C|.
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Zoran Škoda Coherent states for quantum groups



Motivation and Perelomov coherent states
Coherent states for Hopf algebras

Quantum group examples

Quantum linear groups
Noncommutative Gauss decomposition
CS and resolution of unity
Open problems

Covariant minimal uncertainty relations? Cf. Delbourgo;
connection to quantum moment map (and Spera’s work).
Extend the examples to Woronowicz quantum groups (the
Hopf algebras here are dense subalgebras).
For noncompact quantum groups, probably we need
operator algebraic framework to introduce the resolution of
the unity (or other replacement for Haar integral).
Apply back WZNW setup. How to deal with root of unity
problems ?
The connections to the approach by Jurčo and Štoviček
(avoiding quantum coset space).
Concrete computations: SUq(n)-resolution of unity
Quasiclassical precursors in Poisson geometry
(deformation of usual coherent states along given
r -matrix)?
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