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Harmonic Maps

Start with a map
u : M ! N

where M,N are “geometric spaces” (Riemannian manifolds,
metric measure spaces, metric spaces, etc.).

The energy of the map u is taken by

Measuring the stretch of the map at each point p 2 M.

Integrating this quantity over M.
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Harmonic Maps

Definition
For u : (M, g) ! (N, h) (Riemannian manifolds) the energy is

E(u) :=

ˆ
M

|du|2dx

where du 2 �(T ⇤M ⌦ f ⇤TN) is the differential and

|du|2(x) := g
ij(x)h↵�(u(x))

@u↵

@xi
(x)

@u�

@xj
(x).
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Harmonic Maps

Definition
For Riemannian manifolds M,N, the map u : M ! N is
harmonic if it is a critical point for the energy functional E .

Restricting to Euclidean case, this means for all v 2 C0(⌦,R)
with E [v ] < 1:

lim
t!0

E [u + tv ]� E [u]

t
= 0.

More generally, the Euler-Lagrange Equation is:

�gu
� + g

ij(x)��↵�(u(x))
@u↵

@xi
(x)

@u�

@xj
(x) = 0.
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Harmonic maps

Smooth Examples
harmonic functions

geodesics

isometries

totally geodesic maps

minimal surfaces

holomorphic maps between Kähler manifolds
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Harmonic maps into CAT() spaces

Today we consider maps

u : ⌃ ! (X , d) where

⌃ is a Riemann surface
(X , d) is a compact locally CAT() space:

(X , d) is a geodesic space.
(X , d) has curvature  .

Christine Breiner, Brown University Harmonic Maps into CAT() spaces



Harmonic maps into CAT() spaces

Today we consider maps

u : ⌃ ! (X , d) where

⌃ is a Riemann surface
(X , d) is a compact locally CAT() space:

(X , d) is a geodesic space.

(X , d) has curvature  .

Christine Breiner, Brown University Harmonic Maps into CAT() spaces



Harmonic maps into CAT() spaces

Today we consider maps

u : ⌃ ! (X , d) where

⌃ is a Riemann surface
(X , d) is a compact locally CAT() space:

(X , d) is a geodesic space.
(X , d) has curvature  .

Christine Breiner, Brown University Harmonic Maps into CAT() spaces

jKZOh-ereY.FI#Fe-&;☒¥é$¥



Harmonic maps into CAT() spaces

Definition (Korevaar-Schoen)

Let u : ⌦ ⇢ C ! (X , d). For u 2 L2(⌦,X ), we let

e
u
✏ (z) :=

1
2⇡✏

ˆ
@D✏(z)

d2(u(z), u(⇣))

✏2 d✓.

Then the energy of u is defined

E [u] := sup
�2C1

0 (⌦)
�2[0,1]

lim sup
✏!0

ˆ
⌦
�(z)eu

✏ (z)dxdy .
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Harmonic maps into CAT() spaces

If E [u] < 1 then there exists a function eu 2 L1(⌦,R) such that

e
u
✏ (z)dxdy * e

u(z)dxdy (weakly as measures).

Definition
A map u : ⌦ ! X is harmonic if it is locally energy minimizing.
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Harmonic maps into CAT() spaces
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Motivation - Uniformization

Uniformization Theorem For Riemann Surfaces [Koebe,
Poincaré]

Every simply connected Riemann surface is conformally
equivalent to the open disk, the complex plane, or the
Riemann sphere.

A consequence:

Every smooth Riemannian metric g defined on a closed
surface S is conformally equivalent to a metric of constant
Gauss curvature.
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Every simply connected Riemann surface is conformally
equivalent to the open disk, the complex plane, or the
Riemann sphere.

A consequence:

Every smooth Riemannian metric g defined on a closed
surface S is conformally equivalent to a metric of constant
Gauss curvature.

Christine Breiner, Brown University Harmonic Maps into CAT() spaces



Non-smooth Uniformization

Measurable Riemann Mapping Theorem
[Moorey ‘38, Ahlfors-Bers ‘60]

Let µ : C ! C be an L1 function with ||µ||L1 < 1. Then
there exists a unique homeomorphism f : C ! C such that

@z̄ f (z) = µ(z)@z f (z).

The dilatation of f at z is H(z) := 1+|µ(z)|
1�|µ(z)| .
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Non-smooth Uniformization

Other non-smooth uniformization results:
Reshetnyak ‘93

Bonk-Kleiner ‘02

Rajala ‘17

Lytchak-Wenger ‘20

We use global existence and branched covering results to
show:

For (S, d) a locally CAT() sphere, there exists a harmonic
homeomorphism h : S2 ! (S, d) which is
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Global Existence

Theorem (B.-Fraser-Huang-Mese-Sargent-Zhang, ‘20)
Let ⌃ be a compact Riemann surface and (X , d) be a compact,

locally CAT() space. Let � : ⌃ ! X be a finite energy,

continuous map. Then either:

there exists a harmonic map u : ⌃ ! X homotopic to �
or

there exists an almost conformal harmonic map

v : S2 ! X.

What’s missing for a uniformization theorem?
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Global Existence

Generalizes Sacks-Uhlenbeck existence of minimal two
spheres.
No PDE available.
Exploits local convexity properties of CAT() spaces.
Existence and regularity of Dirichlet solutions required.
Produce harmonic map via harmonic replacement.
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Local analysis

Definition
We will say a harmonic map u : ⌃ ! (X , d) from a Riemann
surface into a locally CAT() space is non-degenerate if, at
every point, infinitesimal circles map to infinitesimal ellipses.
(That is, tangent maps of u do not collapse along any ray.)
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Local analysis

Theorem (B.-Mese ‘20)
A proper, non-degenerate harmonic map from a Riemann

surface to a locally CAT() surface is a branched cover.
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Alexandrov Tangent Cones

Definition
Given a geodesic space (X , d), the Alexandrov Tangent Cone

of X at q is the cone over the space of directions Eq given by

TqX := [0,1)⇥ Eq/ ⇠

with metric

�((s, [�1]), (t , [�2])) := t
2 + s

2 � 2st cos([�1], [�2]).
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Alexandrov Tangent Maps

Definition
Let u : D ! X be a harmonic map into a CAT() space (X , d).
Let

log� : (X , d�) ! (TqX , �)

such that log�(q
0) := (d�(q, q0), [�q0 ]). Then for maps u� which

converge to a tangent map of u, the maps

log� �u� : D ! TqX

converge to what is called an Alexandrov tangent map of u.
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Key Points

In general, tangent cones need not be well behaved. We
prove:

In general, Alexandrov tangent maps need not be
harmonic. We prove:
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If 1s ,d) is a CATCH surface then

Tops is a metre cone over a finite length
simple closed curve .

If u:{→ Hid) harmonic alkd) is

locally CATCH manifold, then
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Key points

Kuwert classified homogeneous harmonic maps from C into an
NPC cone (C, ds2) where

ds
2 = �2|z|2(1��)

dz
2.

For a non-degenerate, harmonic u, tangent maps are thus of
the form

v⇤(z) =

8
<

:
cz↵/� with ↵/� 2 N, if k = 0,

c

⇣
1
2

⇣
k
� 1

2 z↵ + k
1
2 z̄↵

⌘⌘1/�
, if 0 < k < 1.
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Application: Almost conformal harmonic maps

Lemma
A non-trivial almost conformal harmonic map u : ⌃ ! (S, d)
from a Riemann surface to a locally CAT() surface is

non-degenerate.
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Application: Uniformization

Theorem (B.-Mese ‘20)
If (S, d) is a locally CAT() sphere, then there exists a map

h : S2 ! (S, d) such that

h is an almost conformal harmonic homeomorphism.

h and h�1 are 1-quasiconformal.

h is unique up to a Möbius transformation.

the energy of h is twice the Hausdorff 2-dimensional

measure of (S, d).
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Application: Uniformization

There exists a finite energy map.

Use global existence and local analysis to find almost
conformal, harmonic branched cover u.

Use u to define an equivalence relation on S2 and a
complex structure on the quotient space Q.

Christine Breiner, Brown University Harmonic Maps into CAT() spaces

convex geometry

$2 . Set pnqifulp)=ulq) .
- idoit =u

IT ! • id is homeomorphism

Qi ($?d) -B is discrete
- Removable sing th'm

for

hoarmonic maps


