Entanglement and Complexity from TQFT

Dmitry Melnikov
International Institute of Physics - UFRN

TQFT seminar - IST, Lisbon
May, 2021

Based on work in collaboration with

- ITEP (Moscow) group: Serge Mironov, Andrei Mironov, Alexei Morozov and Andrey Morozov
- IIP (Natal) group: Gian Camilo, Fabio Novaes and Andrea Prudenziati

Quantum Entanglement

Spooky action at distance

- Quantum entanglement is the property of quantum correlations in a system

Consider a partition of the Hilbert space $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \ldots$ and a state

$$
|\Psi\rangle \in \mathcal{H}
$$

We define the (pure state) density matrix as

$$
\rho=|\Psi\rangle \otimes\langle\Psi|
$$

Quantum Entanglement

For a partitioned system with a generic $\rho \in \mathcal{H} \otimes \mathcal{H}^{*}$ we also define the reduced density matrix

$$
\rho_{1}=\operatorname{Tr}_{\mathcal{H}_{2}, \mathcal{H}_{3}, \ldots}(\rho)
$$

- ρ unentangled if $\forall \mathcal{H}_{k}, \rho_{k}=\left|\Psi_{k}\right\rangle \otimes\left\langle\Psi_{k}\right|$ for some $\left|\Psi_{k}\right\rangle$
- ρ entangled otherwise

Example: In the EPR (Bell) state, the spins are entangled

$$
\left|\Psi_{12}\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle)
$$

Quantum Entanglement

Measures of entanglement

- Entanglement (von Neumann) entropy

$$
S(A)=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right), \quad \rho_{A}=\operatorname{Tr}_{\bar{A}}(\rho)
$$

- Relative entropy

$$
S(A \| B)=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{B}\right)-S(A)
$$

- (Log) negativity (in terms of the eigenvalues of $\rho^{\Gamma_{A}}$)

$$
N\left(\rho^{\Gamma_{A}}\right)=\sum_{\lambda} \frac{|\lambda|-\lambda}{2}, \quad E(\rho)=\log _{2}(2 N(\rho)+1)
$$

Example

$$
\text { EPR: } \quad \rho_{A}=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right), \quad S_{A}=\log 2
$$

Quantum Entanglement

Classification (3-partite systems)

- Greenberger-Horne-Zeilinger states

$$
|\mathrm{GHZ}\rangle=\frac{1}{\sqrt{2}}(|\uparrow \uparrow \uparrow\rangle+|\downarrow \downarrow \downarrow\rangle)
$$

projector $|\uparrow\rangle\langle\uparrow| \otimes 1 \otimes 1$ (measurement of the first spin) makes the state unentangled

- W(olfgang Dür) states

$$
|\mathrm{W}\rangle=\frac{1}{\sqrt{3}}(|\uparrow \downarrow \downarrow\rangle+|\downarrow \uparrow \downarrow\rangle+|\downarrow \downarrow \uparrow\rangle)
$$

These are the only two classes of non-biseparable states, which cannot be connected by Local Operations and Classical Communication (LOCC)

Quantum Entanglement in TQFT

Quantum vs topological entanglement

Aravind's conjecture ('97): classifies types of entanglement using topology (linking)

- Bell state: $|\mathrm{B}\rangle=\frac{1}{\sqrt{2}}(|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle)$
- GHZ state: $|\mathrm{GHZ}\rangle=\frac{1}{\sqrt{2}}(|\uparrow \uparrow \uparrow\rangle+|\downarrow \downarrow \downarrow\rangle)$

Recent elaborated map between link and QM states in the works of R. André and G. Quinta @Lisbon

Quantum Entanglement in TQFT

Formal definition of a TQFT

- Map (functor) Z between (the category of) topological spaces and (the category of) linear spaces:

1. d-dimensional $\Sigma \longrightarrow$ vector space $V=Z(\Sigma)$
2. $d+1$ dimensional $M, \Sigma=\partial M \longrightarrow$ vector $v=Z(M) \in V$
3. $\forall \Sigma_{1}, \Sigma_{2}$ and $M, \partial M=\Sigma_{1} \cup \Sigma_{2}, \longrightarrow$ linear map $Z(M): Z\left(\Sigma_{1}\right) \rightarrow Z\left(\Sigma_{2}\right)$

Hilbert space is encoded by boundary Σ. Its elements are different ways of gluing-in manifolds M, up to homeomorphisms, and possible linear relations.

Quantum Entanglement in TQFT

Properties of the TQFT functor

- Inner product

- For a disjoint union $Z\left(\Sigma_{1} \sqcup \Sigma_{2}\right)=Z\left(\Sigma_{1}\right) \otimes Z\left(\Sigma_{2}\right)$
- Composition of maps

$$
\because\left(\begin{array}{ll}
\vdots \\
\vdots & \\
\vdots & \\
\vdots \\
\vdots \\
\vdots
\end{array}\right.
$$

This provides a heuristic representation of a tensor multiplication and a path integral

Quantum Entanglement in TQFT

Functor as path integral in a QFT
State can be constructed from a path integral ($-\infty<t<0$)

$$
|\Psi(\Sigma)\rangle=\left.\int \mathcal{D} A\right|_{A(\Sigma)=A_{\Sigma}} \mathrm{e}^{i S_{\mathrm{Cs}}\left[\mathcal{M}_{3}\right]}
$$

with fixed configuration A_{Σ} at Cauchy surface Σ at $t=0$

- partition function $\langle\Psi(\Sigma) \mid \Psi(\Sigma)\rangle=Z$
- density matrix $\hat{\rho}=|\Psi(\Sigma)\rangle \otimes\left\langle\Psi\left(\Sigma^{\prime}\right)\right|$
- reduced density matrix, $\Sigma=\Sigma_{1} \cup \Sigma_{2}, \quad \rho_{1}\left(\Sigma_{1}, \Sigma_{1}^{\prime}\right)=\operatorname{Tr}_{\Sigma_{2}} \rho$
von Neumann entropy

$$
S_{\mathrm{E}}\left(\Sigma_{1}\right)=-\operatorname{Tr}_{\Sigma_{1}} \rho_{1} \log \rho_{1}
$$

How does one compute S_{E} ?

Quantum Entanglement in TQFT

How is entanglement characterized by topology?

Entangled vs. nonentangled

- Consider $\Sigma=\Sigma_{A} \cup \Sigma_{B}$. Two classes of states:

$$
\left|\Psi_{1}\right\rangle=\Sigma_{A}
$$

- We expect the left one to be unentangled

Quantum Entanglement in TQFT

Replica trick

- compute $\operatorname{Tr} \rho_{A}^{n}$

$$
S_{\mathrm{E}}=-\left.\frac{d}{d n} \operatorname{Tr} \rho_{A}^{n}\right|_{n=1}
$$

(Unnormalized) density matrices

Normalized reduced density matrices

$$
\rho_{2}(A)=\left[\| \begin{array}{l}
\| \\
\|
\end{array}\right]^{-1} \frac{\Sigma_{A}}{\Sigma_{A}}
$$

Quantum Entanglement in TQFT

Entanglement entropy

$$
\operatorname{Tr}\left(\rho_{1}^{A}\right)^{n}=1, \quad \operatorname{Tr}\left(\rho_{2}^{A}\right)^{n}=[\square]^{1-n}
$$

Consequently,

$$
S_{\mathrm{E}}\left(\rho_{1}\right)=0, \quad S_{\mathrm{E}}\left(\rho_{2}\right)=\log
$$

The donut is a top. invariant, $\operatorname{Tr}_{\mathcal{H}} \mathbf{1}=\operatorname{dim} \mathcal{H}=Z\left(\Sigma \times S^{1}\right)$
General observation: (Rényi) entropies are expressed in terms of topological invariants of closed 3D manifolds.

Quantum Entanglement in TQFT

Rényi entropies

$$
S_{n}=\frac{1}{1-n} \operatorname{Tr} \rho^{n}
$$

Relative entropy
$S\left(\rho_{1} \| \rho_{2}\right)=\lim _{n \rightarrow 1} \frac{1}{n-1}\left(\operatorname{Tr} \rho_{1}^{n}-\operatorname{Tr} \rho_{1} \rho_{2}^{n-1}\right)=\log [\square 0]$

Quantum Entanglement in TQFT

Examples in $S U(N)_{k}$ Chern-Simons

- $\Sigma=S^{2}: \quad Z\left(S^{2} \times S^{1}\right)=1 \Rightarrow S_{\mathrm{E}}=0$.
- $\Sigma=S^{2} \backslash\left\{P_{i}\right\}: \quad \operatorname{dim} \mathcal{H}_{a b}=\sum_{c} N_{a b c}, \quad \Phi_{a} \star \Phi_{b}=\oplus_{c} N_{a b c} \Phi_{c}$

- $\Sigma=T^{2}: \quad Z\left(T^{2} \times S^{1}\right)=\binom{k+N-1}{N-1}, k \in \mathbb{Z}$

$$
|\Psi\rangle=\longleftrightarrow
$$

Quantum Entanglement in TQFT

Local operations and entanglers

- Entanglement entropy is insensitive to local unitary operations

- Non-local operators can affect entanglement

Or

- Entangling operators are represented by manifolds of the form

Quantum Entanglement in TQFT

3-partite entanglement

- Count different ways to link Σ_{1}, Σ_{2} and Σ_{3}

Knot and Knot Complement States

Quantum Chern-Simons theory on a torus
Hilbert Space

$$
\operatorname{dim} \mathcal{H}_{T^{2}}=\binom{k+N-1}{N-1}
$$

Basis vectors

$$
\left|R_{i}\right\rangle=>, \quad i=1, \ldots, \operatorname{dim} \mathcal{H}_{T^{2}}
$$

Scalar product

$$
\begin{aligned}
& =Z\left(S^{2} \times S^{1} ; R_{i}, R_{j}\right)=\delta_{i j}
\end{aligned}
$$

Knot and Knot Complement States

Torus knot states, $K_{m, n}=m \alpha+n \beta$

$$
\rangle \equiv|m, n ; R\rangle=\sum_{i} W_{R, R_{i}}^{(m, n)}\left|R_{i}\right\rangle
$$

Knot operators

- $W_{R, R_{i}}^{(m, n)}$ must be the topological invariants
- Torus knots can be obtained via the $\operatorname{PSL}(2, Z)$ action on T^{2}

$$
\binom{m}{n}=\left(\begin{array}{cc}
m & p \\
n & q
\end{array}\right)\binom{1}{0}
$$

which produces (m, n)-knot from an unknot $(1,0)$

- The operator

$$
|m, n ; R\rangle=\hat{W}^{(m, n)}|1,0 ; R\rangle
$$

must realize $\operatorname{PSL}(2, Z)$ representations

Knot and Knot Complement States

Unitary representations of $\operatorname{PSL}(2, Z)$

- There exist unitary representations but they are not faithful: linear dependencies between torus knot states.
- For $N=2$,

$$
S_{R_{j}, R_{l}}=\sqrt{\frac{2}{k+2}} \sin \left(\frac{\pi(2 j+1)(2 l+1)}{k+2}\right), \quad T_{R_{j}, R_{l}}=e^{\frac{2 \pi i j(j+1)}{k+2}} \delta_{j, l}
$$

- For $N=1$,

$$
S_{q_{j}, q_{l}}=\frac{2}{\sqrt{k}} \exp \left(\frac{2 \pi i}{k} q_{j} q_{l}\right), \quad T_{q_{j}, q_{l}}=\exp \left(\frac{\pi i}{k} q_{j} q_{l}\right) \delta_{j, l}
$$

- Number of linearly-independent states is equal to the index of the principal congruence subgroup $\Gamma(k+N)$ - finite, $\left|P S L(2, Z) / \Gamma_{k+N}\right|$

Knot and Knot Complement States

Knot complement states

- Choose a knot (link) in S^{3} and cut its tubular neighborhood
- Then $\bar{\Sigma}$ is a disjoint union of tori $T^{2} \sqcup T^{2} \sqcup \cdots$

$$
\mathcal{H}=\mathcal{H}_{T^{2}} \otimes \mathcal{H}_{T^{2}} \otimes \cdots
$$

- The complement in S^{3} corresponds to the state

$$
|\mathcal{L}\rangle=\sum_{R_{1}, R_{2}, \ldots, R_{L}} Z\left(S^{3} ; R_{1}, R_{2}, \ldots, R_{L}\right)\left|R_{1}\right\rangle \otimes\left|R_{2}\right\rangle \otimes \cdots \otimes\left|R_{L}\right\rangle
$$

where L is the number of link components

Knot and Knot Complement States

Entanglement of the knot complement states

- Unlinked components have zero entanglement
- Hopf link has maximum entanglement, Borromean rings are not GHZ, ...
- All torus links $(L m, L n)$ have GHZ type of entanglement

$$
\left|\mathcal{L}_{(L m, L n)}\right\rangle=\sum_{R_{1}, \ldots, R_{L}} \sum_{R, Q} \frac{S_{R, R_{1}} S_{R, R_{2}} \cdots S_{R, R_{L}}}{\left(S_{0, R}\right)^{L-1}} S_{R, Q} Z\left(\mathcal{K}_{(m, n)}, Q\right)\left|R_{1}, \ldots R_{L}\right\rangle
$$

This state has simple coefficients in the basis $|\tilde{R}\rangle=S_{R, Q}|Q\rangle$

$$
\left|\mathcal{L}_{(L m, L n)}\right\rangle=\sum_{R, Q} \frac{S_{R, Q}}{\left(S_{0, R}\right)^{L-1}} Z\left(\mathcal{K}_{(m, n)}, Q\right)|\tilde{R}, \ldots \tilde{R}\rangle
$$

Complexity of Knot States

Motivation

- Recent discussion of complexity in holography and QFT.

Complexity=Volume

$$
\mathcal{C}=\frac{\operatorname{vol}(E R B)}{8 \pi L G_{N}}
$$

- Attempts to understand the holographic proposals of complexity in terms of circuit (network) constructions
- Path integral optimization

$$
\int D \varphi(x) \mathrm{e}^{-S_{M_{\Sigma}}[\varphi]} \delta\left(\varphi\left(x, t_{0}\right)-\varphi_{\Sigma}(x)\right)=\mathrm{e}^{C_{M}} \Psi_{\Sigma}
$$

In the path integral formulation, the complexity prefactor appears similarly to the framing ambiguity of links

Complexity of Knot States

Circuit complexity

- $\left|\Psi_{R}\right\rangle$ - reference state
- $\left|\Psi_{T}\right\rangle$ - target state
- $\left\{U_{n}\right\}$ - set of "elementary" unitary operations (gates)

$$
\left|\Psi_{T}\right\rangle=U_{N}\left|\Psi_{R}\right\rangle, \quad U_{N}=U_{n_{1}} U_{n_{2}} \cdots U_{n_{N}}
$$

What is the minimum number of gates necessary to generate the target state from the reference state?

$$
\text { Complexity : } \quad \mathcal{C}=\min _{U_{N}} N
$$

Geometric interpretation: let $\left\{U_{n}\right\}$ be generators of a Lie algebra

$$
U[\gamma]=\mathrm{P} \exp \left(i \int_{\gamma} a_{n} U_{n}\right), \quad \mathcal{C}=\min _{\gamma} \operatorname{Length}(\gamma)
$$

Complexity of Knot States

Complexity of torus knot states
Let the unknot be a reference state, while $\left|\Psi_{T}\right\rangle=|m, n ; R\rangle$. What is the complexity of the (m, n) knot state?

- Define $\operatorname{PSL}(2, Z)$ in terms of S and T generators - gates

$$
\left\langle S, T \mid S^{2}=(S T)^{3}=1\right\rangle
$$

- write $W^{(m, n)}=T^{a_{1}} S T^{a_{2}} S \cdots S T^{a_{r}}$
- complexity can be defined as

$$
\mathcal{C}=\min _{\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}} \sum_{i=1}^{r}\left(\left|a_{i}\right|+1\right)
$$

What is the shortest $S T$ word for a given $\operatorname{PSL}(2, Z)$ element?

Complexity of Knot States

Continued fractions

$$
\frac{m}{n}=a_{1}-\frac{1}{a_{2}-\frac{1}{\ddots-\frac{1}{a_{r}}}} \equiv\left[a_{1}, a_{2}, \ldots, a_{r}\right]=b_{1}+\frac{1}{b_{2}+\frac{1}{\ddots+\frac{1}{b_{r}}}}
$$

We note that this is equivalent to

$$
\frac{m}{n} \sim T^{a_{1}} S \circ T^{a_{2}} S \cdots \circ T^{a_{r}} S\binom{1}{0}, \quad T^{a} S: z \rightarrow a-\frac{1}{z}
$$

Theorem (Camilo et al.'19)
The continued fraction with all $b_{i}>0$ and $b_{r}>1$ gives a shortest word in terms of S and T generators. This presentation is unique.

Complexity of Knot States

Classical vs quantum

- Due to linear dependences the actual quantum complexity may be lower, so $\mathcal{C}=\sum_{i}\left(b_{i}+1\right)$ gives an upper bound
- In the semiclassical limit $k \rightarrow \infty$ the classical bound is saturated

Asymptotics and distribution of the classical complexity

Complexity of Knot States

Geometric interpretation

Farey tesselation: arcs connect the Farey neighbors m / n and p / q,

$$
|m q-n p|=1
$$

Each arc is an action of $T^{a} S$. In the hyperbolic geometry

- Curved triangles in the Farey tesselation have unit area
- Regularized area under the arc is proportional to the diameter

Complexity of Knot States

Geometric interpretation

- The complexity is a weighted length of the shortest path connecting ∞ and $\frac{m}{n}$, larger than \#steps
- it asymptotically approaches the distance from the origin (the area under the arc connecting 0 and $\frac{m}{n}$)
Similar behavior of the holographic subregion complexity

$$
\mathcal{C}(A)=\frac{\operatorname{vol}\left(\gamma_{A}\right)}{8 \pi L G_{N}}
$$

Complexity of Knot States

Geometric interpretation
Given a continued fraction $m / n=\left[b_{1}, \ldots, b_{r}\right]$

$$
C_{m, n} \equiv d_{\text {Caley }}=\sum_{i=1}^{r}\left(b_{i}+1\right)=d_{\text {Farey }}+d_{\text {Farey }}
$$

- r is the length of the shortest path
- The arc connecting m / n with 0 intersects Farey graph $\sum_{i} b_{i}$ times. This is the length of the path on the dual (Stern-Brocot) graph

Conclusions

- I introduced a TQFT interpretation of quantum entanglement

- Complicated measures of entanglement are easy to evaluate in TQFT

$$
S=\log [\square]
$$

- TQFT suggests an intuitive way to classify entaglement patterns

Conclusions

- Story of complexity was another investigation of TQFT states as quantum resources

$$
\mathcal{C}=\min _{\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}} \sum_{i=1}^{r}\left(\left|a_{i}\right|+1\right)
$$

- More recent work on complexity in TQFT in [Fliss'20,Leigh,Pai'20]
- Future directions: Quantum gravity looks like a possible field of application

