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Duality covariant approaches to strings

- Different strings related by dualities:  IIA/IIB T-duality,  IIB S-duality, …

- String dualities realised as global symmetries in lower-dimensional SUGRA

lower-dimensional phenomenon       VS       higher-dimensional phenomenon

Today’s talk :  Extended Field Theories   [ extend internal coords to transform under duality ]

 Double Field Theory  (DFT)                 Orthogonal groups  O(d,d)

 Exceptional Field Theory  (EFT)           Exceptional groups  Ed+1(d+1) [ max SUGRA   (U-duality) ]

[ half-max SUGRA   (T-duality) ]

gaugings, embedding tensor, … non-geometry, ß-supergravity, …

[ Siegel ’93] [ Hull & Zwiebach (Hohm) ’09 ’10] [ Hohm & Samtleben ’13 ]
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Dualities in SUGRA and Extended Field Theory

D Maximal sugra / EFT Half-maximal sugra DFT

9 R+ × SL(2) R+ ×O(1, 1 + n) R+ ×O(1, 1 + n)

8 SL(2)× SL(3) R+ ×O(2, 2 + n) R+ ×O(2, 2 + n)

7 SL(5) R+ ×O(3, 3 + n) R+ ×O(3, 3 + n)

6 SO(5, 5) R+ ×O(4, 4 + n) R+ ×O(4, 4 + n)

5 E6(6) R+ ×O(5, 5 + n) R+ ×O(5, 5 + n)

4 E7(7) SL(2)×O(6, 6 + n) R+ ×O(6, 6 + n)

3 E8(8) O(8, 8 + n) R+ ×O(7, 7 + n)

Table 1: Relevant duality groups in maximal and half-maximal supergravity as well as in

extended field theory. Only the non-chiral N = (1, 1) supergravity in D = 6 is displayed.

The R+ factor in the duality structure of DFT is actually a combination of an internal

R+ contained in the second column and a trombone rescaling.

are SL(2) rotated with respect to each other. Various maximally symmetric solutions

compatible with four-dimensional N = 4 gaugings of this type were discussed in [28,29].

It thus becomes crucial to have access to the SL(2) factor of the duality group in

the half-maximal extended field theory in order to generate N = 4 gaugings that may

stabilise the moduli upon reduction to a D = 4 gauged supergravity. One systematic

manner of obtaining N = 4 gaugings at SL(2) angles is by Z2-truncating gaugings of

N = 8 supergravity [30] for which moduli stabilisation is known to occur, e.g. the

CSO(p, q, r) gaugings (p + q + r = 8) of maximal supergravity [31–34]. Some of these

gaugings arise from consistent reductions of string/M-theory with fluxes2, and without

extra spacetime-filling sources. However, from a phenomenological point of view, these

gaugings are not yet fully satisfactory because they cannot arise from compactifications

(without boundaries) and, at the same time, produce Minkowski or de Sitter (dS) solu-

tions due to the no-go theorem of [41] (see also [42]). In order to circumvent this no-go

theorem, one may add sources (branes, orientifold planes, KK-monopoles, ...) and/or

introduce non-geometric fluxes [43, 44] whose higher-dimensional origin is not yet well

understood. The resulting four-dimensional supergravity is no longer compatible with

maximal supersymmetry but still can preserve some fraction thereof if the sources and

fluxes are judiciously distributed over the internal space. When they are set to preserve

N = 4 supersymmetry, no example of a perturbatively stable dS vacuum in D = 4

2See [11] (and references therein) for a unified account of electric gaugings, as well as [35–37] for

dyonic ones [38–40].
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Duality groups of half-maximal SUGRA and DFT differ for D<5

* n = additional vector multiplets
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… in this talk we will look at D=4 :

EFT  with  E7(7)  duality  group

SL(2)-DFT  with  SL(2) x O(6,6+n)  duality  group

DFT  with  R+ x O(6,6+n)  duality  group

[ Hohm & Samtleben ’13 ]

[ Siegel ’93]  

[ Hull & Zwiebach ’09]  

[ Hohm, Hull & Zwiebach ’10] 

[ Hohm & Kwak ’11 ]

[ arXiv:1612.05230 ]



- Space-time :  external ( D=4 ) + generalised internal   (        coordinates in 56 of E7(7) )   

Generalised diffs  =  ordinary internal diffs  +  internal gauge transfos

 Generalised Lie derivative built from an E7(7)-invariant structure Y-tensor

Y PQ
MN @P ⌦ @Q = 0

Two maximal solutions :   M-theory  ( 7 dimensional )   &  Type IIB   ( 6 dimensional )

Closure requires a section constraint  :

Massive IIA arises as a deformation of EFT

yM

[ momentum, winding, … ]
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[ massless theories ]

[ Romans ’86 ] 

[ Hohm & Kwak ’11 (sec const violated) ] 

[ Ciceri, A.G. & Inverso ‘16 ]

E7(7)-EFT

L⇤UM = ⇤N@NUM � UN@N⇤M + Y MN
PQ @N⇤P UQ



- E7(7)-EFT action   [                           ]

with field strengths & potential term given by 

Dµ = @µ � LAµ

VEFT(M, g) = � 1
48 M

MN @MMKL @NMKL + 1
2 M

MN @MMKL @LMNK

� 1
2 g

�1@Mg @NMMN � 1
4 M

MN g�1@Mg g�1@N g � 1
4 M

MN @Mgµ⌫ @N gµ⌫

SEFT =

Z
d

4

x d

56

y e

⇥
R̂ + 1

48

g

µ⌫ DµMMN D⌫MMN � 1

8

MMN Fµ⌫MFµ⌫
N

+ e

�1 L
top

� VEFT(M, g)
⇤

- Two-derivative potential :   ungauged  N=8  D=4  SUGRA  when  

Fµ⌫
M

= 2 @[µA⌫]
M �

⇥
Aµ, A⌫

⇤M
E

+ two-form terms

�(x, y) = �(x)

6

( tensor hierarchy )

E7(7)-EFT



- Halving EFT with E7(7) symmetry to obtain SL(2)-DFT with SL(2) x O(6,6) symmetry

From  E7(7)-EFT  to  SL(2)-DFT

E7(7) ! SL(2)⇥ SO(6, 6)

56 ! (2,12) + (1,32)

yM ! y↵M + yA

α = ( + , - )  vector index of SL(2) 

M   vector index of SO(6,6) 
A    M-W spinor index of SO(6,6)

via a Z2 truncation  ( vector = +1 , spinor = -1 )  on coordinates, fields, etc.

EFT SL(2)-DFT
[ see Dibitetto, A.G. & Roest ’11 for SUGRA ]

- SL(2)-DFT section constraints : ⌘MN @↵M ⌦ @�N = 0 ✏↵� @↵[M | ⌦ @�|N ] = 0

⇥

- SL(2)-DFT generalised Lie derivative

,

L⇤U
↵M = ⇤�N@�NU↵M � U�N@�N⇤↵M + ⌘MN ⌘PQ @�N⇤�P U↵Q + 2 ✏↵� ✏�� @�N⇤�[M U |�|N ]

[ DFT corresponds to an  α = +  orientation ]
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- SL(2)-DFT action   [                           ]

with field strengths & potential term given by 

Dµ = @µ � LAµ

- Two-derivative potential :   ungauged  N=4  D=4  SUGRA  when  �(x, y) = �(x)

8

( tensor hierarchy )

SL(2)-DFT with SL(2) x O(6,6) symmetry

Fµ⌫
↵M

= 2 @[µA⌫]
↵M �

⇥
Aµ, A⌫

⇤↵M
S

+ two-form terms

2.3 Bosonic pseudo-action

We now present the pseudo-action governing the dynamics of the theory. It can be derived

by Z2-truncating the pseudo-action of E7(7)-EFT [5], as described in the appendix A, and

must be supplemented with the twisted self-duality relations

F
µ⌫

↵M = �1

2
e "

µ⌫⇢�

⌘MN"↵� M
�N�P

F⇢� �P , (2.17)

where e is the determinant of the vierbein and M↵M�N ⌘ M↵�MMN is a symmetric

matrix parameterising the scalar manifold. The dynamics of the theory is completely

specified by imposing the above twisted self-duality equations after varying the pseudo-

action

SSL(2)-DFT =

Z
d4x d24y e

⇥
R̂ + 1

4 g
µ⌫ D

µ

M↵� D
⌫

M
↵�

+ 1
8 g

µ⌫ D
µ

MMN D
⌫

M
MN

�1
8 M↵�

M
MN

Fµ⌫ ↵MF
µ⌫

�N + e�1 Ltop � VSL(2)-DFT(M, g)
⇤
.

(2.18)

The gauge invariance of this pseudo-action is guaranteed by the fact that the section

constraints (2.6) are in one-to-one correspondence with the truncation of the E7(7)-EFT

section constraint. Nevertheless, gauge invariance can be checked explicitly using the

fact that the vierbein and the scalar matrix M↵M�N transform under generalised di↵eo-

morphisms as a scalar density and as a symmetric tensor of weight �(e
µ

a) = 1/2 and

�(M↵M�N) = 0, respectively. This implies6 in particular

�⇤eµ
a = ⇤�P @

�P

e
µ

a + 1
2 @�P⇤

�P e
µ

a ,

�⇤M
↵� = ⇤�P @

�P

M↵� � 2M�(↵ @
�P

⇤�)P +M↵� @
�P

⇤�P ,

�⇤M
MN = ⇤�P @

�P

MMN � 2MP (M @
�P

⇤|�|N) + 2 ⌘P (M MN)R @
�P

⇤�Q ⌘
QR

.

(2.19)

Equipped with these formulae and the transformations (2.17), it is then possible to ver-

ify that each term in the pseudo-action is invariant under generalised di↵eomorphisms

and tensor gauge transformations. The relative coe�cients between the various term can

be fixed by requiring invariance under external di↵eomorphisms but this computation is

more involved and we expect it to follow the same steps as in E7(7)-EFT.

The kinetic terms: In line with the structure of extended field theories, the Einstein-

Hilbert term is constructed from a modified Riemann tensor

R̂
µ⌫

ab = R
µ⌫

ab[!] + F
µ⌫

↵M ea⇢ @
↵M

e
⇢

b , (2.20)

6There is an ambiguity in how to distribute the density term between the transformation of M

↵�

and the one of M

MN . Note however that this is irrelevant for the gauge invariance of the pseudo-action

(2.18). In order to recover later on the correct transformation of M

MN in DFT, we have chosen here

to move the whole density term to the transformation of M

↵� .
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where Rµν
ab[ω] is the curvature of the spin connection in the external space-time and

carries weight λ(Rµν
ab[ω]) = 0. The corresponding modified Ricci scalar then transforms

as scalar of weight λ(R̂) = −1 under generalised diffeomorphims.

The second, third and fourth terms respectively correspond to the kinetic terms for

the Mαβ ∈ SL(2)/SO(2) scalars, the MMN ∈ SO(6, 6)/(SO(6)× SO(6)) scalars and the

vector fields in the theory. Furthermore, we will parameterise Mαβ and its inverse as

Mαβ =
1

ImS

⎛

⎝
|S|2 ReS

ReS 1

⎞

⎠ and Mαβ =
1

ImS

⎛

⎝
1 −ReS

−ReS |S|2

⎞

⎠ , (2.21)

where S(x, y) ≡ χ0+ i e−φ is the complex axion-dilaton of SL(2)-DFT. In particular, the

rigid SL(2) symmetry acts linearly on Mαβ and as a fractional linear transformation on

the complex field S . The specific parameterisation of MMN will not play any role in

this work.

The topological term: The topological term is obtained from the one of E7(7)-EFT

and takes the form of a surface term in five dimensions

Stop = − 1

24

∫

Σ5

d5x d24y εµνρστ εβα ηMN Fµν
αM DρFστ

βN . (2.22)

The potential: The potential resulting from the truncation of the E7(7)-EFT expression

takes the following form

VSL(2)-DFT(M, g) = MαβMMN
[
− 1

4 (∂αMMγδ)(∂βNMγδ)− 1
8 (∂αMMPQ)(∂βNMPQ)

+ 1
2 (∂αMMγδ)(∂δNMβγ) +

1
2(∂αMMPQ)(∂βQMNP )

]

+ 1
2 M

MNMPQ(∂αMMαδ)(∂δQMNP ) +
1
2 M

αβMγδ(∂αMMMQ)(∂δQMβγ)

− 1
4 M

αβ MMN
[
g−1(∂αMg) g−1(∂βNg) + (∂αMgµν) (∂βNgµν)

]

− 1
2 g

−1 (∂αMg) ∂βN(MαβMMN ) ,
(2.23)

and depends on both SL(2) and SO(6, 6) scalars.

Vector and tensor field equations: The field equations for the vectors Aµ
αM can be

derived by varying the Lagrangian (2.18)

δAL =
[1
4
Dµ

(
2 eMαβMMNFµν βN + εµνρσFρσ αM

)
+ e Ĵ ν

αM + eJ ν
αM

]
δAν

αM , (2.24)

where the first and second terms come from the variation of the kinetic and topological

term7, respectively. The currents Ĵ and J in (2.24) are defined by

δLEH = e Ĵ ν
αM δAν

αM and δLkin. scal = eJ ν
αM δAν

αM , (2.25)

7This variation is once again easily derived by truncating the expression of E7(7)-EFT.
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- 6 dimensional solution of sec. constraints :    N=1 SUGRA in D=10

9

- Scherk-Schwarz (SS) reductions with SL(2) x O(6,6) twist matrices 

    yield N=4 , D=4 gaugings

U↵M
�N = e� e↵

� UM
N

f↵MNP = �3 e�� e↵� ⌘Q[M UN
R UP ]

S @�RUS
Q

⇠↵M = 2UM
N@�N (e��e↵�)

- Moduli stabilisation requires gaugings  G = G1 x G2  at relative SL(2) angles

Section constraints & SL(2) angles 

f+

f�
G2 ( sec. constraint violated )

[ not possible in DFT ]

G1
✏↵� @↵[M | ⌦ @�|N ] 6= 0

[ de Roo & Wagemans ’85 ]

[ as in DFT ]

[ Schön & Weidner ’06 ]
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Example : SO(4) x SO(4) gaugings and non-geometry

- SS with                              :  Half of the coords of  type +   &   half of  type - 

- SL(2)-superposition of two chains of non-geometric fluxes  ( H , ! , Q , R )±

Most general family (8 params) of SO(4) x SO(4) gaugings of N=4 SUGRA

-  SO(4) x SO(4) SUGRA :  AdS4 & dS4 vacua ( sphere/hyperboloid reductions)

- ``Hybrid ±” sources to cancel flux-induced tadpoles :   SL(2)-dual NS-NS branes

f+abc = H(+)
abc , f+ijk = H(+)

ijk , f+abc̄ = !(+)
ab

c , f+ijk̄ = !(+)
ij

k

f+āb̄c = Q(+)ab
c , f+īj̄k = Q(+)ij

k , f+āb̄c̄ = R(+)abc , f+īj̄k̄ = R(+)ijk

f�ijk = H(-)
ijk , f�abc = H(-)

abc , f�ijk̄ = !(-)
ij

k , f�abc̄ = !(-)
ab

c

f�īj̄k = Q(-)ij
k , f�āb̄c = Q(-)ab

c , f�īj̄k̄ = R(-)ijk , f�āb̄c̄ = R(-)abc

f+

f�

[ de Roo, Westra, Panda & Trigiante ’03 ]   [ Dibitetto, A.G. & Roest ’12 ]

U(y↵M ) 2 O(6, 6)



- SL(2)-DFT captures the duality group of N=4 SUGRA in D=4 

- SL(2)-DFT sec. constraints :  N=1 SUGRA in D=10    &    N=(2,0) SUGRA in D=6  

- SL(2)-DFT action extendable to SL(2) x SO(6,6+n) and deformable as EFT 

- Non-geometric gaugings at non-trivial SL(2) angles :  full moduli stabilisation 

- Flux formulation of SL(2)-DFT : sec. cons violating terms & dual NS-NS branes 

- Cosmological applications of SL(2)-DFT ( de Sitter, inflation, … ) 
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Summary & Future directions

[ Aldazabal, Graña, Marqués & Rosabal ‘13 ]

[ Hassler, Lüst & Massai  ‘14 ]

[ Ciceri, A.G. & Inverso ’16 ]

[ not possible in DFT ]



Muito obrigado !! 

Thanks a lot !!
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Extra material

13
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Dualities in SUGRA and Extended Field Theory

D Maximal sugra / EFT Half-maximal sugra DFT

9 R+ × SL(2) R+ ×O(1, 1 + n) R+ ×O(1, 1 + n)

8 SL(2)× SL(3) R+ ×O(2, 2 + n) R+ ×O(2, 2 + n)

7 SL(5) R+ ×O(3, 3 + n) R+ ×O(3, 3 + n)

6 SO(5, 5) R+ ×O(4, 4 + n) R+ ×O(4, 4 + n)

5 E6(6) R+ ×O(5, 5 + n) R+ ×O(5, 5 + n)

4 E7(7) SL(2)×O(6, 6 + n) R+ ×O(6, 6 + n)

3 E8(8) O(8, 8 + n) R+ ×O(7, 7 + n)

Table 1: Relevant duality groups in maximal and half-maximal supergravity as well as in

extended field theory. Only the non-chiral N = (1, 1) supergravity in D = 6 is displayed.

The R+ factor in the duality structure of DFT is actually a combination of an internal

R+ contained in the second column and a trombone rescaling.

are SL(2) rotated with respect to each other. Various maximally symmetric solutions

compatible with four-dimensional N = 4 gaugings of this type were discussed in [28,29].

It thus becomes crucial to have access to the SL(2) factor of the duality group in

the half-maximal extended field theory in order to generate N = 4 gaugings that may

stabilise the moduli upon reduction to a D = 4 gauged supergravity. One systematic

manner of obtaining N = 4 gaugings at SL(2) angles is by Z2-truncating gaugings of

N = 8 supergravity [30] for which moduli stabilisation is known to occur, e.g. the

CSO(p, q, r) gaugings (p + q + r = 8) of maximal supergravity [31–34]. Some of these

gaugings arise from consistent reductions of string/M-theory with fluxes2, and without

extra spacetime-filling sources. However, from a phenomenological point of view, these

gaugings are not yet fully satisfactory because they cannot arise from compactifications

(without boundaries) and, at the same time, produce Minkowski or de Sitter (dS) solu-

tions due to the no-go theorem of [41] (see also [42]). In order to circumvent this no-go

theorem, one may add sources (branes, orientifold planes, KK-monopoles, ...) and/or

introduce non-geometric fluxes [43, 44] whose higher-dimensional origin is not yet well

understood. The resulting four-dimensional supergravity is no longer compatible with

maximal supersymmetry but still can preserve some fraction thereof if the sources and

fluxes are judiciously distributed over the internal space. When they are set to preserve

N = 4 supersymmetry, no example of a perturbatively stable dS vacuum in D = 4

2See [11] (and references therein) for a unified account of electric gaugings, as well as [35–37] for

dyonic ones [38–40].

3

Duality groups of half-maximal SUGRA and DFT differ for D<5

*

* There is also the chiral N=(2,0) SUGRA in D=6 with R+ x O(5,n) duality group 



SO(4) x SO(4) twist matrices

- O(6,6) twist : UM
N (y↵M ) =

✓
I6 06
� I6

◆✓
I6 b
06 I6

◆✓
u 06
06 u�t

◆
=

✓
um

n bmp (u�t)pn
�mp up

n (u�t)mn + �mp bpq (u�t)qn

◆with y↵M = (y↵m, y↵m̄) and m = 1, ..., 6 . For the sake of simplicity, from now on we

will consider sub-classes of twist matrices of the form U ⇢ SO(3, 3)(1) ⇥ SO(3, 3)(2) ⇢
SO(6, 6) . This translates into a further splitting of coordinates of the form y↵m = (y↵a, y↵i) ,

y↵m̄ = (y↵ā, y↵ī) with a = 1, 2, 3 , i = 4, 5, 6 , and a block-diagonal structure of the twist

parameters

�mn =

 
(�(1))ab 03

03 (�(2))ij

!
, bmn =

 
(b(1))ab 03

03 (b(2))ij

!
, um

n =

 
(u(1))ab 03

03 (u(2))i
j

!
,

(4.17)

where the (1),(2) labels refer to the SO(3, 3)(1),(2) factors.

SO(4)⇥ SO(4) gaugings:

This family of N = 4 gauged supergravities is obtained from twisting parameters of the

form

u(1),(2) =

0

BBB@

1 0 0

0 1
2 (cosY(1),(2) + cos eY(1),(2)) �1

2 (sinY(1),(2) + sin eY(1),(2))

0 1
2 (sinY(1),(2) + sin eY(1),(2))

1
2 (cosY(1),(2) + cos eY(1),(2))

1

CCCA
,

b(1),(2) =

0

B@
0 0 0

0 0 1
2 sin(Y(1),(2) � eY(1),(2))

0 �1
2 sin(Y(1),(2) � eY(1),(2)) 0

1

CA ,

�(1),(2) =

0

BB@

0 0 0

0 0 tan
⇣

1
2 (Y(1),(2) � eY(1),(2))

⌘

0 � tan
⇣

1
2 (Y(1),(2) � eY(1),(2))

⌘
0

1

CCA ,

(4.18)

which depend on four linear combinations of coordinates given by

Y(1) = (c̃01 � a00) (y
+1 � y+1̄) + (d̃01 � b00) (y

�1 � y�1̄) ,

eY(1) = (c̃01 + a00) (y
+1 + y+1̄) + (d̃01 + b00) (y

�1 + y�1̄) ,

Y(2) = (c̃02 � a03) (y
+4 � y+4̄) + (d̃02 � b03) (y

�4 � y�4̄) ,

eY(2) = (c̃02 + a03) (y
+4 + y+4̄) + (d̃02 + b03) (y

�4 + y�4̄) .

(4.19)

We are also setting � = 0 and e↵↵ = �↵↵ which in turn means ⇠↵M = 0 and #↵M = 0 .

The resulting family of N = 4 gauged supergravities turns out to depend on eight arbi-

trary parameters that activate sixteen components inside f↵MNP of the form [a.g: rename
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with y↵M = (y↵m, y↵m̄) and m = 1, ..., 6 . For the sake of simplicity, from now on we

will consider sub-classes of twist matrices of the form U ⇢ SO(3, 3)(1) ⇥ SO(3, 3)(2) ⇢
SO(6, 6) . This translates into a further splitting of coordinates of the form y↵m = (y↵a, y↵i) ,

y↵m̄ = (y↵ā, y↵ī) with a = 1, 2, 3 , i = 4, 5, 6 , and a block-diagonal structure of the twist

parameters

�mn =

 
(�(1))ab 03

03 (�(2))ij

!
, bmn =

 
(b(1))ab 03

03 (b(2))ij

!
, um

n =

 
(u(1))ab 03

03 (u(2))i
j

!
,

(4.17)

where the (1),(2) labels refer to the SO(3, 3)(1),(2) factors.

SO(4)⇥ SO(4) gaugings:

This family of N = 4 gauged supergravities is obtained from twisting parameters of the

form

u(1),(2) =

0

BBB@

1 0 0

0 1
2 (cosY(1),(2) + cos eY(1),(2)) �1

2 (sinY(1),(2) + sin eY(1),(2))

0 1
2 (sinY(1),(2) + sin eY(1),(2))

1
2 (cosY(1),(2) + cos eY(1),(2))

1

CCCA
,

b(1),(2) =

0

B@
0 0 0

0 0 1
2 sin(Y(1),(2) � eY(1),(2))

0 �1
2 sin(Y(1),(2) � eY(1),(2)) 0

1

CA ,

�(1),(2) =

0

BB@

0 0 0

0 0 tan
⇣

1
2 (Y(1),(2) � eY(1),(2))

⌘

0 � tan
⇣

1
2 (Y(1),(2) � eY(1),(2))

⌘
0

1

CCA ,

(4.18)

which depend on four linear combinations of coordinates given by

Y(1) = (c̃01 � a00) (y
+1 � y+1̄) + (d̃01 � b00) (y

�1 � y�1̄) ,

eY(1) = (c̃01 + a00) (y
+1 + y+1̄) + (d̃01 + b00) (y

�1 + y�1̄) ,

Y(2) = (c̃02 � a03) (y
+4 � y+4̄) + (d̃02 � b03) (y

�4 � y�4̄) ,

eY(2) = (c̃02 + a03) (y
+4 + y+4̄) + (d̃02 + b03) (y

�4 + y�4̄) .

(4.19)

We are also setting � = 0 and e↵↵ = �↵↵ which in turn means ⇠↵M = 0 and #↵M = 0 .

The resulting family of N = 4 gauged supergravities turns out to depend on eight arbi-

trary parameters that activate sixteen components inside f↵MNP of the form [a.g: rename

30

with y↵M = (y↵m, y↵m̄) and m = 1, ..., 6 . For the sake of simplicity, from now on we
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parameters

�mn =

 
(�(1))ab 03

03 (�(2))ij

!
, bmn =

 
(b(1))ab 03

03 (b(2))ij

!
, um

n =

 
(u(1))ab 03

03 (u(2))i
j

!
,

(4.17)

where the (1),(2) labels refer to the SO(3, 3)(1),(2) factors.

SO(4)⇥ SO(4) gaugings:
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u(1),(2) =

0

BBB@

1 0 0

0 1
2 (cosY(1),(2) + cos eY(1),(2)) �1

2 (sinY(1),(2) + sin eY(1),(2))

0 1
2 (sinY(1),(2) + sin eY(1),(2))

1
2 (cosY(1),(2) + cos eY(1),(2))

1

CCCA
,

b(1),(2) =

0

B@
0 0 0

0 0 1
2 sin(Y(1),(2) � eY(1),(2))

0 �1
2 sin(Y(1),(2) � eY(1),(2)) 0

1

CA ,

�(1),(2) =

0

BB@

0 0 0

0 0 tan
⇣

1
2 (Y(1),(2) � eY(1),(2))

⌘

0 � tan
⇣

1
2 (Y(1),(2) � eY(1),(2))

⌘
0

1

CCA ,

(4.18)
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where



Deformed EFT   ( XFT )

- Generalised Lie derivative

L⇤UM = ⇤N@NUM � UN@N⇤M + Y MN
PQ @N⇤P UQ

in terms of an En(n)-invariant structure Y-tensor.  Closure requires sec. constraint

- Deformed generalised Lie derivative

in terms of an X deformation which is En(n)-algebra valued

- Closure & triviality of the Jacobiator require  ( together with sec. constraint )

XMN
P @P = 0 XMP

Q XNQ
R �XNP

Q XMQ
R +XMN

Q XQP
R = 0

X constraint Quadratic constraint   (gauged max. supergravity)

eL⇤UM = ⇤N@NUM � UN@N⇤M + Y MN
PQ @N⇤P UQ �XNP

M ⇤N UP

[ no density term ]

[ X deformation vs embedding tensor ]16

non-derivative



X deformation : background fluxes & Romans mass

XMN
P @P = 0

X constraint

section constraint

Y PQ
MN @P ⌦ @Q = 0 M-theory  ( n coords ) Type IIB  ( n-1 coords )

• SL(n) orbit 

• Freund-Rubin param. 
   ( n = 4 and n = 7 ) 

• massless IIA (subcase)

• SL(n-1) orbit 

• p-form fluxes 
   compatible with SL(n-1) 

• SL(2)-triplet of 1-form flux 
   ( includes compact SO(2) )

+

New massive Type IIA  ( n-1 coords )

• SL(n-1) orbit 

• p-form fluxes compatible with SL(n-1) 

• dilaton flux 

• Romans mass parameter  ( kills the M-theory coord )

Massive Type IIA described in a 
purely geometric manner !!

17

[ algebraic system ]

[ QC = flux-induced tadpoles ]



- E7(7)-XFT action   [                           ]

- Two-One-Zero-derivative potential :  gauged 4D max. sugra when  �(x, y) = �(x)

Dµ = @µ � eLAµ

SXFT =

Z
d

4

x d

56

y e

⇥
R̂ + 1

48

g

µ⌫ DµMMN D⌫MMN � 1

8

MMN Fµ⌫MFµ⌫
N

+ e

�1 L
top

� VXFT(M, g)
⇤

Fµ⌫
M

= 2 @[µA⌫]
M

+X[PQ]
M Aµ

PA⌫
Q �

⇥
Aµ, A⌫

⇤M
E

+ two-form terms

VXFT(M, g,X) = VEFT(M, g) + 1
12 M

MNMKLXMK
P @NMPL + VSUGRA(M, X)

cross term gauged max. sugra

with field strengths & potential given by 

18

[        coords in the 56 of E7(7) ] yM

( deformed tensor hierarchy )

E7(7)-XFT action



Extended (super) Poincaré superalgebra

Extended (super) Poincaré algebra

{Q,Q} must be a linear combination of bosonic operators in the (0, 0) and
(1, 0) representations of the Lorentz group.

The only (1, 0) is the self-dual part of Mµ⌫ , but it would not commute with Pµ.

Thus, we need a new generator, Z
IJ

�QI

↵,QJ

�

 

= 2 ✏↵� Z IJ Z
IJ

= �Z
JI

that should be a linear combination of the internal symmetry generators,

Z
IJ

= (aa

IJ

) T

a

Z IJ are central extensions or central charges (which can be deduced from the
algebra and the Jacobi identities) ) Z IJ 2 Z(G).

The adjoint of the bracket above reads
n

Q̄I

↵̇, Q̄J

�̇

o

= �2 ✏↵̇�̇ Z IJ †

where we used ✏↵̇�̇ = �✏↵� .
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- Central charges  (internal symmetries)

- The algebra :
Extended (super) Poincaré algebra

[Pµ, P⌫ ] = 0 [Mµ⌫ , M⇢�] = i (⌘⌫⇢ Mµ� � ⌘⌫� Mµ⇢ � ⌘µ⇢ M⌫� + ⌘µ� M⌫⇢)

[Pµ, M⇢�] = i (⌘µ⇢ P� � ⌘µ� P⇢)

⇥

T

a, T

b

⇤

= if

ab

c

T

c [T a, Pµ] = [T a, Mµ⌫ ] = 0

⇥QI

↵, Pµ

⇤

=
⇥Q̄I

↵̇, Pµ

⇤

= 0
⇥QI

↵, T

a

⇤

= (b
a

)I

J

QJ

↵

⇥Q̄I

↵̇, T

a

⇤

= �Q̄J

↵̇ (b
a

) I

J

⇥QI

↵, Mµ⌫

⇤

=
1
2

(�µ⌫) �
↵ QI

�

⇥Q̄I

↵̇, Mµ⌫

⇤

= �1
2
Q̄I

�̇
(�̄µ⌫)�̇

↵̇

n

QI

↵, Q̄J

�̇

o

= 2 �IJ (�µ)↵�̇ Pµ

n

Q̄I

↵̇, Q̄J

�̇

o

= �2 ✏↵̇�̇ Z IJ † �QI

↵,QJ

�

 

= 2 ✏↵� Z IJ where Z
IJ

= (aa

IJ

) T

a

[Z
IJ

, anything] = 0
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