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Thermodynamics of AdS5 Black Holes

The black hole entropy:

S =
A

4G5

Thermodynamics: study dependence on mass M, charge Q, . . ..

Black holes in AdS5 interesting: dual to N = 4 SYM in D = 4.

Very well studied.

This talk: elucidate supersymmetric black holes in AdS5.

Research supported by DoE with
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Review: Schwarzchild AdS5 Black Hole

I Small (upper) black hole branch: nearly flat space.

I Large (lower) branch: conformal fluid in N = 4 SYM.

I Cusp: minimal temperature, maximal free energy.

I Hawking-Page transition: “thermal AdS gas” with G = 0
(red line) dominates when black holes have G > 0.



Supersymmetric AdS5 Black Holes

BPS black holes do not support conventional themodynamics:

I They are extremal T = 0.

I Their mass is determined by conserved charges:

M =
3∑

I=1

QI︸ ︷︷ ︸
on S5

+
b∑

i=a

Ji︸ ︷︷ ︸
in AdS5

I “Thermodynamics”: dependence on potentials (Φ,Ω)
conjugate to charges (Q, J).



Phase Diagram of SUSY AdS5 Black Holes

I Phase diagram strikingly similar to AdS-Schwarzchild.

I Free energy G ≡ 0 and temperature T ≡ 0.

I The W and the τ are BPS analogues.



Outline

More on non-BPS thermodynamics:

I Compare rotation and electric charge.

I The approach to the BPS limit.

BPS black holes:

I General BPS thermodynamics.

I The constraint on charges.

I The potential ϕ′.



The Grand Canonical Ensemble

Physically: free energy G a function of

I temperature T .

I electric potentials ΦI (often equal Φ ≡ ΦI , I = 1, 2, 3).

I angular velocities Ωa,b (often equal Ω ≡ Ωa = Ωb).

In practice:
Physical variables functions of parameters (a, b, q,m) and
coordinate position of horizon r2+:

∆r =
(r2+ + a2)(r2+ + b2)(1 + r2+) + q2 + 2abq

r2+
− 2m = 0



Parametric Representations
Four physical potentials in terms of four parameters (a, b, q, r2+):

T =
r4+[1 + (2r2+ + a2 + b2)]− (ab + q)2

2πr+[(r2+ + a2)(r2+ + b2) + abq]

Φ =
3qr2+

(r2+ + a2)(r2+ + b2) + abq

Ωa =
a(r2+ + b2)(1 + r2+) + bq

(r2+ + a2)(r2+ + b2) + abq

Ωb =
b(r2+ + a2)(1 + r2+) + aq

(r2+ + a2)(r2+ + b2) + abq

Free energy:

G

N2
=

−2r10+ + [1 − 2a2 − 2b2]r8+ + [−(a2 + b2)2 + 2(a2 + b2 − a2b2) − abq]r6+ + [−q2 + a4 + b4 − abq(a2 + b2) + 4a2b2

4(1 − a2)(1 − b2)r2+((r2+ + a2)(r2+ + b2) + abq)

−2a2b2(a2 + b2)]r4+ + [q2(a2 + b2) + 2abq(a2 + b2)2a2b2(a2 + b2) − a3b3(1 + ab)]r2+ + ab(q + ab)(q2 + a2b2 + 3abq)

4(1 − a2)(1 − b2)r2+((r2+ + a2)(r2+ + b2) + abq)

Strategy: study nonlinear dependences using parametric plots.



Critical Values of Potentials

The BPS mass interpreted in terms of potentials:

MBPS =
3∑

I=1

QI +
∑
i=a,b

Ji = Φ∗Q + Ω∗aJa + Ω∗bJb

Critical potentials:
Φ∗ = 3, Ω∗a = 1, Ω∗b = 1 essential also for non-BPS black holes.

Note: angular velocities Ωa,b ≤ 1 ⇒ Ω∗a,b maximal.

Plan: study Ω, then Φ, then approach to BPS.



Angular Velocity

I Maximal free energy (at cusp) is higher.

I Hawking-Page phase transition reached at lower temperature.

I Interpretation: rotation destabilizes black hole.



A Small Electric Potential Φ < Φ∗

Same angular velocities, but with electric potential Φ = 1.5.

I Maximal free energy (at cusp) is lowered.

I HP phase transition reached at even lower temperature.

I Electric potential stabilizes black hole.



The Critical Electric Potential Φ = Φ∗

Same angular velocities, critical electric potential Φ = Φ∗ = 3.

I Free energy never positive: no small black hole branch.

I Electric potential stabilizes black hole.

I The BPS case Ω = Ω∗ = 1:
not a curve: G = T = 0 identically.



Critical Angular Velocity Ω = Ω∗

Small electric potential, critical angular velocity Ω = Ω∗ = 1.

I Free energy always positive: no large black hole branch.

I For each Φ:
a minimal temperature where free energy diverges.

I Minimal temperature → 0 as Φ→ (Φ∗)− but “dangerous”
approach to BPS.



Status

I Thermodynamics of non-BPS black holes in AdS5.

I Rotation Ω has critical value Ω∗ = 1 and tends to destabilize.

I Electric potential Φ has critical value Φ∗ = 3 and stabilizes.

We now turn to thermodynamics of BPS black holes in AdS5.



BPS Potentials

BPS black holes all have:

I Potentials T = 0, Φ = Φ∗, Ω = Ω∗ identically.

The BPS potentials

Φ′ =
Φ− Φ∗

T
, Ω′ =

Ω− Ω∗

T

(Basic) interpretation of “prime”:
derivative with respect to temperature ∂T |T=0.

Corrolary: convention so Ω′ < 0 (because Ω < 1 for T > 0).



BPS Potentials: Statistical Mechanics

Partition function adapted to the BPS limit M = M∗:

Z = Tr exp
(
− β

[
(M −M∗)− (Ω− Ω∗)J − (Φ− Φ∗)Q

])
=

T→0
Tr exp

(
Ω′J + Φ′Q

)
At linear order: the BPS surface itself, nothing more.

(Sufficient) assumption: there is gap.



Projective Thermodynamics

BPS black holes have free energy G = 0 identically.

At linear order G gives: M = M∗ and nothing more.

Conclusion: BPS thermodynamics is projective:

W (Φ′,Ω′) =
G

T
= −S − Φ′Q − Ω′J

The first law of BPS black hole thermodynamics:

dW = −QdΦ′ − JdΩ′

Black hole entropy follows from W by a Legendre transform.



BPS Temperature

“The” temperature T = 0.

“Small” values of Φ′, Ω′a,b favors highly excited states
⇒ a notion of temperature.

Some features of physical temperature:

I Large for highly excited states ⇒ large free energy.

I It is positive.

Definition of BPS temperature:

τ = − 1

Ω′a + Ω′b



Phase Diagram of SUSY AdS5 Black Holes Revisited

I The “free energy” is the BPS free energy W .

I The “temperature” is the BPS temperature τ .

I Phase diagram strikingly similar to AdS-Schwarzchild.



Comparison with AdS-Schwarzchild

SUSY AdS5 and AdS-Schwarzchild have similar phase diagrams.

They are not identical:

I High temperature behavior on the small branch:

G ∼ T−3 , W ∼ τ−3

I High temperature behavior on the large branch:

G ∼ −T 3 , W ∼ −τ2

Interpretation:
Large BPS black holes behave like gas in two spatial dimensions.



Parametric Representation

The BPS free energy depends on (Φ′,Ω′a,Ω
′
b):

W

N2
= − (a + b)(2− a− b)

12(1− a)(1− b)
Φ′+

(a + b)2(1 + a)

4(1− a)2(1− b)
Ω′

a+
(a + b)2(1 + b)

4(1− a)(1− b)2
Ω′

b

The parameters a, b are solutions to the constraints

−
√
a + b + ab

1− a
Ω′a −

√
a + b + ab

1− b
Ω′b −

√
a + b + ab

3(a + b)
Φ′ = π ,

(a + b)(1 + a)

1− a
Ω′a −

(a + b)(1 + b)

1− b
Ω′b +

a− b

3
Φ′ = 0 .

Strategy: study BPS thermodynamics using parametric plots.



Counting Parameters

The three black hole charges are functions of two parameters:

Q =
1

2
N2 a + b

(1− a)(1− b)
,

Ja =
1

2
N2 (a + b)(2a + b + ab)

(1− a)2(1− b)
,

Jb =
1

2
N2 (a + b)(a + 2b + ab)

(1− a)(1− b)2
.

All BPS black holes satisfy a constraint:(
Q∗3 +

1

2
N2J∗a J

∗
b

)
−
(

3Q∗ +
1

2
N2

)(
3Q∗2 − 1

2
N2(J∗a + J∗b)

)
= 0



Supersymmetry Breaking: Two Directions

Corollary: two distinct deformations break supersymmetry

I Recall: T = 0︸ ︷︷ ︸
extremality

⇔ M = Mext︸ ︷︷ ︸
lowest mass (given conserved charges)

.

I Standard SUSY breaking: mass exceeds Mext.
Description: raise the temperature ⇒ T > 0.

I Novel SUSY breaking: violate constraint by adjusting
conserved charges while preserving T = 0 (so M = Mext).

I The potential analogous to the temperature T :

ϕ = (Φ− Φ∗)− (Ωa − Ω∗a)− (Ωb − Ω∗b)



Excitations above the BPS Limit

I Both SUSY breaking parameters increase black hole mass
above the BPS bound:

M = MBPS +
1

2

(
CT

T

) [
T 2 +

( ϕ
2π

)2]
I CT is the black hole heat capacity

(proportional to T so CT/T is a constant).

I The excitations above the BPS limit are described by the
Schwarzian theory.

I Two kinds of excitations have same coefficient.
This is due to (spontaneously broken) N = 2 supersymmetry.



The BPS Limiting Procedure

I Interpretation of ϕ:
phase of supercharge relative to “the” preserved SUSY.

I The BPS black hole has T = 0 and ϕ = 0 but any ratio

ϕ′ =
ϕ

T

(The BPS relation M = M∗ preserved for any supercharge).

I The dependence of the BPS free energy on ϕ′ is interesting.



Dependence on ϕ′ is Physical

The first law of BPS black hole thermodynamics:

dW = −QdΦ′ − JdΩ′

The charges Q, J are distinct physical parameters:

The BPS free energy W depends on Φ′ and Ω′ independently.

The potential ϕ′ = Φ′ − Ω′ is not fixed.

It determines “mixture” of Q, J (for given M∗ = 3Q + 2J).



Dependence of BPS Free Energy on ϕ′ ≤ 0

I High temperature BPS free energy W non-vanishing on the
small black hole branch.

I Larger ϕ′ moves the cusp to smaller free energy and smaller
temperatures.

I Larger ϕ′ (smaller |ϕ′|) is stabilizing.



Dependence of Free Energy on ϕ′ ≥ 0

I Small black holes are subject to a maximal BPS
temperature.

I The maximal temperature decreases for larger ϕ′.

I In the limit ϕ′ →∞ there are only large black holes.



Interpretation of ϕ′: Microscopics

The supersymmetric index

Z = Tr (−)F exp
(

Ω′J + Φ′Q
)

counts states annihilated by a given supercharge Q.
(the grading (−)F is determined by Q).

The potential ϕ′ determines “which” supercharge Q.

Exactly one mixture of Q, J is realized as a black hole:
the extremum.



Summary

Main results:

I A formalism for thermodynamics of BPS black holes.
(“Projective” thermodynamics).

I BPS black holes in AdS5 are strikingly similar to
AdS-Schwarzchild.

I The potential ϕ′ plays a central role in BPS thermodynamics.


