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Introduction

Hawking: black holes emit a thermal radiation, losing the information on
initial state. Computing quantum corrections that restore unitarity is a
major challange for any theory of quantum gravity
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The tension between information transfer and causal structure of
space-time leads to apparent violation of effective field theory at horizon
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initial state. Computing quantum corrections that restore unitarity is a
major challange for any theory of quantum gravity

The tension between information transfer and causal structure of
space-time leads to apparent violation of effective field theory at horizon

® [Mathur, AMPS] Structure at horizon (fuzzball /firewall)

® [Papadodimas-Raju, Maldacena-Susskind] Smoothness but large non-localities
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These problems can be formulated more concretely in string theory,
where we have control over the microscopic degrees of freedom that store
the Bekenstein-Hawking entropy.

This picture is valid at a special point of the moduli space, where we
adiabatically switch off the gravity interactions and we are left with
strings and branes in flat space.

9s
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Weakly coupled analysis

Microstate counting at zero coupling [Strominger-Vafa]
Db

N5 D5-branes on T* x S,
N; D1-branes on S,

Np units of momentum
P =ny,/RonS,

Entropy: long effective (1,5) string on circle of radius R.rf = N1 NsR.
Momentum fractionation: n,/Reys

Higgs branch: D-strings dissolve as zero-size instantons. CFT with target
space (T*)MNs /Sy, n,. Long effective string from twisted sector.
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Questions we would like to answer:
® How do these microstates look like at finite coupling?

® What is their “effective” causal structure?

Naive expectation: as gravity becomes stronger, brane bound states
become smaller. Horizon grows as coupling is increased: microstates
confined at UV scale. [Horowitz-Polchinski, Damour-Veneziano]
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But: less naive mechanisms from holography. Examples:
e Confining N = 1 gauge theory [Kiebanov-Strassler]
® Mass-deformed N' =4 SYM / ABJM [Polchinski-Strassler, LLM]

Naively singular RG flow resolved by new scale in the IR < topological
cycles with flux

52
dynamically generated
z scale ~ Agcp
IR uv uv
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Microstate geometries

Many works on applying this principle to black holes
[Mathur, Bena-Warner, ...]
® Brane bound states can expand as coupling is increased. After
backreaction: smooth, horizonless, bubbling geometries
e Concrete mechanism to hold structure at horizon (non-perturbative
black hole hairs). Topology with flux: evade “no solitons without
horizon" theorem [Gibbons-Warner|
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Long strings

Microstate geometries represent non-generic, coherent states.

Shubbles K SBH
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Long strings

Microstate geometries represent non-generic, coherent states.

Shubbles K SBH

® They are still useful “classical islands’. When perturbed, they decay
toward more typical states and we are interested in studying this
evolution.

® To do this, we would like an exact worldsheet description of these
solutions. Remarkably, it can be done.
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Circular supertube

® Focus on two-charge black hole

® Simplest example of microstate geometry is obtained by dualizing
supertube bound states in NS5-P duality frame
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Circular supertube

® Focus on two-charge black hole

® Simplest example of microstate geometry is obtained by dualizing
supertube bound states in NS5-P duality frame

(5) 2 () = ()

flat space -7 TTo(eeeeeeeopemis

5-brane throat

(AdSs x S%)/Zs

cap

[Lunin Mathur 01]
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® Over-rotating solutions with J = nins/k

® We can approach the BH phase by increasing the orbifold order

Np

Line of " increasing k
2-charge states

A 5
S =27 N1N5NP—J2

e

We'll show that the backreaction of this family of supertubes is under
control at the exact level in o.
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A well known cap

NS5 branes Exact description of near-horizon region:
H ' / [Ooguri-Vafa, Giveon-Kutasov]
il \\ _ w51 SL(2,R) SU(2)
H / M (ST
¢
Non-singular CFT: capped version of NS5's throat
SL(2,R)
RN U(1)
ds? = dp* + tanh? p dy)?
When branes come together: cigar — tube
SL(2,R) SU(2) SU(2)
(55T Tp) /e R0 < ) [
SU(2)
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F-theory for NS5 branes

An equivalent construction lifts the dynamics to (10,2) dimensions:

. 51 SL(2,R) x SU(2)
MO =B g v

SL(2) SU(2)

p
= ,
gol = ei(rfa)og ePol ei(T+o)03 4 (
Gsu = 6’5(1/)—4/))(73 3i001 611(1/1+¢)(r3 ! I <>)é

< = —
— 0
a

Gauge action generated by null directions in SL(2) x SU(2)

H: (gs|, Ssu) — (emo3gs|€iﬁa3, e—i(mggsueiﬁa3)
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Gauged WZW action:
§ = Swaw + /sz [AT + AT + SAA]
Integrating out the gauge fields gives a “smeared” geometry

ds? = ns {dp2 +do* + %(sin2 0 cosh® pdg” + cos® 0 sinh® pdy?)

Z " o
2 2 w2 a2y f

|x — xk| a?(cosh” p — sin” 0)
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Gauged WZW action:
S = Swazw + % /sz [AT + AT + SAA|
Integrating out the gauge fields gives a “smeared” geometry

ds? = ns {d,o2 +do* + %(sin2 0 cosh? pd¢? + cos? 6 sinh? pdz/)Q)] ,

|x — xk| a2(cosh® p —sin®0)  a?X

Z 2 .2n5 ) == yT\\

Source locations are distinguished by non-perturbative effects in o’. They are
not encoded in the geometry, but rather in a Liouville superpotential

[Fateev-Zamolodchikov-Zamolodchikov]

W = e Vs(pti®)



NS5-P supertube

We tilt the NS5 branes in order to make a single NS5-P supertube
wrapping the (ns, k) cycle of the (¢4, 9) torus

d¢  k

dﬂ N ’17,5Rg

This is implemented by a tilting of the null currents in 10+2 dimensions

SL(2,R) x SU(2) x Ry x Sy

G/H=T"x UM x U(D)r

j:Jn55+7(at+ag), j:JnSS‘i’i(at‘i’ay)
Ry Ry
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NS5-P supertube

Increasing k

R ————

k=5
We tilt the NS5 branes in order to make a single NS5-P supertube
wrapping the (ns, k) cycle of the (¢,7) torus

do  k
dg_nng

This is implemented by a tilting of the null currents in 10+2 dimensions

SL(2,R) x SU(2) x Ry x Sy

G/H=1"x U x U()r

(0t +09), T = Joss + 55— (9t + 7).
Y

= Jns
J 5+Rz7
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NS5-P supertube

Integrating out the gauge fields produces the (9+1)d geometry:

NS5 ring

2
ds? = —dudv +ns (dp2 + d92) + %’ {sinze costh d¢?* + cos®0 sinth d’L/Jz]

1 2kn5
3l Ry

20dvd¢—% i

2

+ dzqdz®

Js

a2’

@p

e Stringy effects resolve the location of the supertube strands

® Naive singularity at brane source ¥ = ( is a mirage; it is a locus
where the gauge action degenerates. The 1042 geometry is smooth

[cf Witten 91]
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NS5-F1 supertube

Switching vector to axial gauging in y gives the T-dual frame

(48 ()

® We obtain a dilaton: e=2% = (kR,)?/n2 + .
Large R, = large AdS region

® The supertube monodromy now links together the vanishing cycles
of the Z;, orbifold.

J mostly
along SL(2,R)

5-brane throat

(AdSs x S%)/Z J mostly

along R; x Sy

cap
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Three-charge supertubes

How much of this structure carry over to three-charge NS5-F1-P black
holes with large horizon?
® Special class of three-charge solutions are “spectrally flowed”
two—charge supertubes [Giusto, Lunin, Mathur, Saxena, Turton 04 - 12]

Line of increasing k
2-charge states
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Three-charge supertubes

In worldsheet theory, this is obtained by rotating the null currents:

SL(2,R) x SU(2) x Ry x Sy

G/H=T"x U2 x U(1)r

with

U : T =0LJs +1J5" + 130t + 1,05, (L1)=0
UlDr: J= IS 4 o 5V 4 13t + rady, (r,r)=0

® ry =ry=1,r3=r4 = a: preserves SUSY

® Arbitrary left/right gauging: non-extremal microstates
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Non-extremal microstates: JMaRT solution

M2:ﬁqfﬁ2+@%ﬁég@¢ﬁ+§Jw2+Qd@2+M%

%( —r? cosh p+r? +a2+Ms)sin29d¢2
%( —r )smh p+r++a1+Ms)c0520dw2
VMQs5 cos® 0
_ Q# [(alchp — azs1sp) dt + (azsicp — aicisp) dy} di
VMQs5 sin? 6
_ Q+ [(azc16p — a1s15p) dt + (arsicp — azcispy) dy] do
+ (dzadza)
2 2 2.2
2 818p\ 1 2 2 clcp—i-slsp 2
= — M = — _ ¥ = Ms7 .
Ty ala2<C1c ) ) aj + a3 —aiaz cporsy fo+ Ms]
1
fo= 5[(TJr —r2 )cosh2p+(a2—al)c0529+r++r +a2+a1} .

[Jejjala, Madden, Ross, Titchener 05]
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Non-extremal microstates: JMaRT solution

M
M2:ﬁq—ﬁ2+@fyw§@@ﬁ+§Jw2+Qﬂ@2+wﬂ Jr = (25 +1)

%( —r? COSh p+r? +a2+Ms)sin20d¢2 JR:(2§+1)
Qs 2 9 dup?
E(T+7T )smh p+r++a1+Ms)cos (0
/M 0
— % [(alclcp — agslsp) dt + (agslcp — alclsp) dy] diyp
VMQs sin® 6
— % [(azclcp — alslsp) dt —+ (alslcp — azclsp) dy] d¢
+ (dzadza)

2 2 2.2
S1S8p\ £1 cic, + s7s
ri:—alag( p) s M:a?-{—ag—alag#, Z:fo—i-Ms?.
cicp C1CpS1Sp
1
fO:g[(TJr_T )cosh2p+(a2—a )c0520+r++r +a2+a1},

[Jejjala, Madden, Ross, Titchener 05]

nins

2k

nins

2k
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Closed string spectrum

Gauging of null isometries is implemented by constructing appropriate
BRST charge

OBRST = jl{ [¢T9 +~GY + éT + A4y + ghosts]
resulting in linear constraints among quantum numbers:

L (2mg + nswa) — lo(2mgy + nswey) + 3E — 4Py =0

7"1(2777,51 + n5ﬁ}sl) — TQ(QT_TLsu + n51Dsu) +r3F — T4Py77‘ =0
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Closed string spectrum

Gauging of null isometries is implemented by constructing appropriate
BRST charge

OBRST = j{ [cT9 +~G9 + éT + 41 + ghosts]

resulting in linear constraints among quantum numbers:

l1(2m51 + n5wsl) - l2(2msu + n5wsu) + I3 FE — l4Py’l =0

7"1(2777,51 =+ n5ﬁ)51) = TQ(QT_TLsu + n51Dsu) +r3F — T4Py77‘ =0

® Principal discrete series Dji: states bound to the cap

® Constraints correlate cap energy Ec,p With asymptotic energy E.
For non-SUSY JMaRT solution: D} states have £ > 0 but
Ecap < 0. Reservoir of unstable modes: ergoregion instability

® Continuous series C; describes scattering states
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Two-point functions

e Ha-ly o D(=2ja + DI (ja — ma)L(ja + ma)

sl q;,sl — n- _ _ - -
(@ ) =nsp D(ZL) " T(2ja — DT (—ja — ma+ DD (—ja + g + 1)

Js13Ms1y sl ™ Jsli—Msl, — sl

stringy SUGRA

Discrete series of SL(2,R) arise as poles of two-point correlator. For
low-lying states it agrees with solutions of wave equation in the classical
geometry.

For scattering states, stringy contribution to phase shift. In the T-dual
Liouville picture this arises because energetic probes can explore stringy
structure “beyond the cap” (the finer supertube strands). Breakdown of
naive coset metric.

[Giveon-ltzhaki-Kutasov]
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Brane/flux transitions

Let us consider the sector of strings winding along S,,.
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Brane/flux transitions

Let us consider the sector of strings winding along S,,. Gauge symmetry
relates winding on S, with winding on the SL(2,R) circle o. In the cap,
this allows for unwinding processes.
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Brane/flux transitions

Let us consider the sector of strings winding along S,,. Gauge symmetry
relates winding on S, with winding on the SL(2,R) circle o. In the cap,
this allows for unwinding processes. Consider an operator that
implements (worldsheet) spectral flow in the null directions we are
gauging. Action on zero modes:

Ws] — Wg] + q , Wey —7 Wsy + (28+1)q ) u_)su - u_}su + (2§+1)q

1) —5(5+1
E—>E+, ny—>ny—s(8+)ks(s—’—)ng,q7 wy — wy + kq

4 )

ADM mass ADM m:bmentum
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Orbifold structure in the cap

Three-charge geometries have intersting orbifold structure at the cap

(p=0,0=0): Z, orbifold O ©0 ©=0D
(p=0,0=7/2): Zs, orbifold @ =1(10)
01 = ged(k,m), {2 = gcd(k,n) .

1(0,0) " (1,0) 1(0,0) err1 = (1,0)

® For non-SUSY solutions, Hirzebruch-Jung type singularities. Expect
tachyons in twisted sectors [Adam-Polchinski-Silverstein, Martinec-Moore]

® Worldsheet is not orbifold CFT: no stringy instability of JMaRT
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D-branes

Supertube configurations arise from Coulomb branch of NS5 branes.
Bringing NS5 brane together: Colulomb/Higgs transition associated to
light stretched W-branes. Cap becomes the linear dilaton tube dual to
little string theory.

]

W-brane _..e.._
e o
A g
/ NS5 § I 5 ®
et
. .
Coulomb branch Higgs branch
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Threshold of BH formation associated to Coulomb/Higgs transition.
Light degrees of freedom (the W-branes) modify the effective dynamics.

Hope: new degrees of freedom with fractionated tension (long/little
strings) modify the “effective” causal structure, and the scale of their
wavefunction is the horizon scale.

Np

Line of~ increasing k
2-charge states

J

In this picture, the experience of an infalling observer is determined by
the effective theory of the interactions with W-branes.
[Martinec 14]
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D-branes in supertubes are described by (twisted) conjugacy classes in
SL(2,R) x SU(2) x Ry x Sy, smeared along the gauge orbits in order to
obtain boundary states that can be projected to the coset

D=Cq-Cy, Cqg=Tr{hfcUh "), heG}

[Martinec, SM, Turton, 1906.11473]
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Linerarized deformations

Representation theory and the BRST cohomology dictate the form of
vertex operators that represent geometrical deformations of the
supertube.

V = P(0t,0Y, jsu jsi, ) @5 gou iy () Ry

JstsMsiMsl = Jsu,MsuMsu

® For circular array of NS5 branes: 4(N5 — 1) marginal deformations

o %0 o0

P ¢ — e ¢
o O

° o0 [P

X2
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Singular limits

Some perturbations are known at non-linear level. Example: elliptical
supertube

We can probe singular limits in the phase space when two NS5 strands
coincide. Perturbation theory breaks down and the non-abelian dynamics
is dominated by light D-brane states. Such strong coupling limits are
presumably associated to the formation of the typical microstates.
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Recap

Non-perturbative stringy effects reveal rich structure of two and
three-charge supertubes.

Singular limits in the phase space of microstate geometries are
associated to Coulomb/Higgs transitions: dynamics dominated by
condensation of light D-branes.

Coherent quantum structure over horizon scale?

Much to do: study of correlators and matching with dual CFT,
counting of perturbative stringy supertubes, RR fluxes ...
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Non-perturbative stringy effects reveal rich structure of two and
three-charge supertubes.

Singular limits in the phase space of microstate geometries are
associated to Coulomb/Higgs transitions: dynamics dominated by
condensation of light D-branes.

Coherent quantum structure over horizon scale?

Much to do: study of correlators and matching with dual CFT,
counting of perturbative stringy supertubes, RR fluxes ...

Thank youl
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