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The String Landscape

The Geometric Origin of our Universe

String Theory (a unified ToE) exists in (9+1)-D; We live in (3+1)-D

Extra dimension X = 6-dimensional manifold (10− 4 = 6);

Geometry (algebraic/differential geometry/topology) of X determines physics

of our world.

The Vacuum Degeneracy Problem TOO MANY possibilities for X

e.g., X Calabi-Yau 3-folds (topology/combinatorics tends to grow

exponentially)
Complex Dim 1 2 3 . . .

CYn T 2 T 4,K3 > 1010 ?

Reflexive Polytopes

see: YHH, The CY Landscape: from geometry, to physics, to ML, Springer

LNM, 2021.

YANG-HUI HE (London/Oxford/Nankai) ML Mathematical Structures ML Maths, Sep, 2021 2 / 31



The Typical Calculation: Inevitability of Algebraic Geometry

Each X (+ bundles, discrete symmetries) gives a (3+1)-d universe

particles and interactions ∼ cohomology theory; masses ∼ metric; Yukawa ∼

Triple intersections/integral of forms over X

X ∼ algebraic variety ∼ degree/coefficient data, numerical metrics

Ubi materia, ibi geometria

– Johannes Kepler (1571-1630)

Our Universe:


(1) probabilistic/anthropic?

(2) Sui generis/selection rule?

(3) one of multi-verse ?
cf. Exo-planet/Habitable Zone search

cf. exact SM: Braun-YHH-Ovrut (2005), Candelas-de la Ossa-YHH-Szendroi

(2009), Anderson-Gray-Lukas-Ovrut-Palti (2012), . . .
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A Wild Question: NN Doesn’t Care/Know about maths

Typical Problem in String Theory:

INPUT

(integer, real) tensor −→
OUTPUT

integer

Q: Can we “machine-learn the landscape?"

[YHH 1706.02714] Deep-Learning the Landscape, PLB 774, 2017

( Science, Aug, vol 365 issue 6452 )

Hodge Number of a Complete Intersection CY is the association rule, e.g.

X =

(
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 0 2 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 0 0 1 1 0 0 1

)
, h1,1(X) = 8 ; −→ 8

CICY is 12× 15 integer matrix with entries ∈ [0, 5] is simply represented as a

12× 15 pixel image of 6 colours Proper Way ; ML in matter of seconds/minutes
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Progress in String Theory

Major International Annual Conference Series

1986- First “Strings” Conference

2002- First “StringPheno” Conference

2006 - 2010 String Vacuum Project (NSF)

2011- First “String-Math” Conference

2014- First String/Theoretical Physics Session in SIAM Conference

2017- First “String-Data” Conference

YHH (1706.02714), Seong-Krefl (1706.03346), Ruehle (1706.07024),

Carifio-Halverson-Krioukov-Nelson (1707.00655) A host of activity ;
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from String Landscape to the Mathematical Landscape

Machine Learning Mathematical
Structures

Why stop at string/geometry?

q.v. Review Paper: YHH 2101.06317
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How does one *DO* mathematics, I ?

Russell-Whitehead Principia Mathematica [1910s] programme (since at least

Frege, even Leibniz) to axiomatize mathematics, but . . .

Gödel [1931] Incompleteness ; Church-Turing [1930s] Undecidability

Automated Theorem Proving (ATP) The practicing mathematician hardly ever

worries about Gödel

Newell-Simon-Shaw [1956] Logical Theory Machine:

proved subset of Principia theorems

Type Theory [1970s] Martin-Löf, Coquand, . . . Coq interactive proving

system: 4-color (2005); Feit-Thompson Thm (2012); Lean (2013)

Univalent Foundation / Homotopy Type Theory [2006-] Voevodsky

We can call this Bottom-up Mathematics
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How does one do mathematics, II ?

Late C20th - increasing rôle of computers: 4-color [Appel-Haken-Koch 1976];

Classif. Finite Simple Groups [ Galois 1832 - Gorenstein et al. 2008] . . .

Buzzard: “Future of Maths” 2019: already plenty of proofs unchecked

(incorrect?) in the literature, MUST use computers for proof-checking;

XenaProject, Lean establish database of mathematical statements

Davenport: ICM 2018 “Computer Assisted Proofs”.

Hale & Buzzard: Foresee within 10 years AI will help prove “early PhD” level

lemmas, all of undergrad-level maths formalized;

Szegedy: more extreme view, computers > humans @ chess (1990s); @ Go

(2018); @ Proving theorems (2030)
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How does one *DO* mathematics, III ?

Historically, Maths perhaps more Top-Down: practice before foundation

Countless examples: calculus before analysis; algebraic geometry before

Bourbaki, permutation groups / Galois theory before abstract algebra . . .

A lot of mathematics starts with intuition, experience, and experimentation

The best neural network of C18-19th? brain of Gauß ; e.g., age 16

Out[ ]=

20 40 60 80 100
x

5

10

15

20

25

π(x):=#{p≤x}

(w/o computer and before complex analy-

sis [50 years before Hadamard-de la Vallée-

Poussin’s proof]): PNT π(x) ∼ x/ log(x)

BSD computer experiment of Birch & Swinnerton-Dyer [1960’s] on plots of

rank r & Np on elliptic curves
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Question

To extend the analogy: AlphaGo is top-down (need to see human games);

even AlphaZero is not bottom-up (need to generate samples of games)

In tandem with the bottom-up approach of Coq, Lean, Xena . . . how to put

in a little intuition and human results? If I gave you 100,000 cases of

e.g.

5 3 4 3 5 1 4 4 1 2
5 0 4 5 2 4 4 2 2 4
1 1 2 2 0 4 1 4 5 0
5 0 1 1 0 2 0 5 0 1
2 5 0 1 1 3 2 3 0 3
3 2 2 3 0 0 2 2 1 0
2 2 5 1 4 4 0 0 1 2
5 0 0 0 4 5 0 4 1 1
4 3 4 3 3 1 0 0 2 5
2 0 5 0 3 0 4 4 1 5

 , or, labeled data e.g.

5 3 4 3 5 1 4 4 1 2
5 0 4 5 2 4 4 2 2 4
1 1 2 2 0 4 1 4 5 0
5 0 1 1 0 2 0 5 0 1
2 5 0 1 1 3 2 3 0 3
3 2 2 3 0 0 2 2 1 0
2 2 5 1 4 4 0 0 1 2
5 0 0 0 4 5 0 4 1 1
4 3 4 3 3 1 0 0 2 5
2 0 5 0 3 0 4 4 1 5

 −→ 3

Q: Is there a pattern? Can one conjecture & then prove a formula?

Q: What branch of mathematics does it come from?

Perfect for (unsupervised & supervised) machine-learning; focus on labeled

case because it encodes WHAT is interesting to calculate (if not how).
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Mathematical Data: perfect for mining

Mathematical Data is more structured than “real world” data, much less

susceptible to noise; Outliers even more interesting, e.g. Sporadics,

Exceptionals, . . .

Last 10-20 years: large collaborations of computational mathematicians,

physicists, CS (cf. SageMATH, GAP, Bertini, MAGMA, Macaulay2, Singular,

Pari, Wolfram, . . . ) computed and compiled vast data

links

Generic computation HARD

mining provides some level of “intuition” & is based on “experience”
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Methodology

Bag of Tricks Hilbert’s Programme of Finitary Methods, Landau’s theoretical

minimum, Migdal’s Mathmagics . . .

IMO Grand Challenge (2020-) Good set of concrete problems to try on AI

Standard ML Regressor & Classifiers (w/ NO KNOWLEDGE of the maths) UAT

NN: MLPs; CNNs; RNNs, . . . (gentle tuning of architecture and hyper-parameters)

SVM, Bayes, Decision Trees, PCA, Clustering, . . .

ML: emergence of complexity via connectivity ; Intution (?)

This Talk: Status Report of Experiments in the last couple of years

focus on supervised ML (“knows where to get to”)

all standard methods ' same performance

∼ 20-80 split; training on 20
(
precision, Matthews’ φ or R2

)
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Representation/Group Theory

ML Algebraic Structures (GAP DB) [YHH-MH. Kim 1905.02263, ]

When is a Latin Square (Sudoku) the Cayley (multiplication) table of a finite

group? Bypass quadrangle thm (0.95, 0.9)

Can one look at the Cayley table and recognize a finite simple group?

bypass Sylow and Noether Thm; (0.97, 0.95) rmk: can do it via character-table

T , but getting T not trivial

SVM: space of finite-groups (point-cloud of Cayley tables) seems to exist a

hypersurface separating simple/non-simple

ML Lie Structure Chen-YHH-Lal-Majumder [2011.00871] Weight vector → length

of irrep decomp / tensor product: (0.97, 0.93); (train on small dim, predict high dim: (0.9, 0.8))
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Combinatorics, Graph/Quivers

[YHH-ST. Yau 2006.16619] Wolfram Finite simple graphs DB

ML standard graph properties:

?acyclic (0.95, 0.96); ?planar (0.8, 0.6); ?genus >,=, < 0 (0.8, 0.7); ?∃

Hamilton cycles (0.8, 0.6); ?∃ Euler cycles (0.8, 0.6)

(Rmk: NB. Only “solving” the likes of traveling salesman stochastically)

spectral bounds (R2 ∼ 0.9) . . .

Recognition of Ricci-Flatness (0.9, 0.9) (todo: find new Ricci-flat graphs);

[Bao-Franco-YHH-Hirst-Musiker-Xiao 2006.10783]: categorizing different

quiver mutation (Seiberg-dual) classes (0.9 - 1.0, 0.9)
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Number Theory: A Classical Reprobate?

Arithmetic (prime numbers are Difficult!)

[YHH 1706.02714, 1812.02893:]

Predicting primes 2→ 3, 2, 3→ 5, 2, 3, 5→ 7; no way

fixed (or x/ log(x)-scaled) window of (yes/no)1,2,...,k to (yes/no)k+i for some

i (in binary); ML PRIMES problem (0.7, 0.8) NOT random! (prehaps related

to AKS algorithm [2002], PRIMES is in P)

Sarnak’s challenge: same window → Liouville Lambda (0.5, 0.001) Truly

random (no simple algorithm for Lambda)

[Alessandretti-Baronchelli-YHH 1911.02008]

ML/TDA@Birch-Swinnerton-Dyer X and Ω ok with regression & decision

trees: RMS < 0.1; Weierstrass → rank: random
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Number Theory: A Modern Hope?

Arithmetic Geometry (Surprisingly Good)

[Hirst-YHH-Peterken 2004.05218]: adjacency+permutation triple of dessin

d’enfants (Grothendieck’s Esquisse for Gal(Q/Q)) ; predicting transcendental

degree (0.92, 0.9)

YHH-KH Lee-Oliver arithmetic of curves

2010.01213: Complex Multiplication, Sato-Tate (0.99 ∼ 1.0, 0.99 ∼ 1.0)

2011.08958: Number Fields: rank and Galois group (0.97, 0.9)

2012.04084: BSD from Euler coeffs, integer points, torsion (0.99, 0.9);

Tate-Shafarevich X (0.6, 0.8) [Hardest quantity of BSD]
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Elliptic Curves: case study

E an elliptic curve, local zeta-function & L-function:

Z(E/Fp;T ) = exp

(∑∞
k=1

#E(Fpk)Tk

k

)
=

Lp(E,T )
(1−T )(1−pT ) ;

Lp(E, T ) = 1− apT + pT 2; ap = p+ 1−#E (Fp) .

Fix N and define vector vL(E) = (ap1 , . . . , apN ) ∈ ZN ;

∼ 105 balanced data from www.lmfdb.org; 50-50 cross validation.

Labeled data: vL(E) −→ rank, torsion, . . . ([Birch-Swinnerton-Dyer: ])

L(E, s) :=
∏
p

L−1(E, T := p−s);
L(r)(E, 1)

r!

???
=
|X|ΩReg

∏
p cp

(#E(Q)tors)2
,

r=rank; X=Shafarevich group; Reg=regulator; cp=Tawagama; tors=Torsion

Try generic ML algorithms on the data, record naive precision and Matthew’s

correlation coefficient/F1-Score
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elliptic curves: results

report (naive precision, Matthew’s Correlation = χ2)

Rank 0 or 1 N = 300, conductor ∈ [1, 104], Logistic regression: (0.991, 0.982)

(Goldfield-Katz-Sarnak Conjecture: r=0 and 1 at 50% each)

Torsion Order = 1 or 2 N = 500, conductor ∈ [1, 3× 104], naive Bayes: (0.9997,

0.9995) (Mordell-Weil, Faltings: max torsion = 16, but in LMFDB mostly 1

or 2)

∃ Z-points (not just Q), N = 500, conductor range [1, 3× 104], naive Bayes:

(0.999, 0.998) (Siegel Thm: finite # integer points.)

Tate-Shafarevich group nothings gets better than 0.6; hardest part of BSD
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Clearly useful for maths and physics

looking for new conjectures e.g.,

’19 YHH-Kim: separating hyperplane - simple/non-simple groups; open

’19 Brodie-Constantin-Lukas: exact formulae for cohomo surf.; proved.

’20 YHH-Lee-Oliver: L-coefs and integer pt./torsion on ell; Known.

’20 Craven-Jejjala-Par: Jones poly best-fit function; open

. . .

speed up computations and accuracies e.g.,

computing/estimating (top.inv., charges, etc) MUCH FASTER

’19 Ashmore-YHH-Ovrut: speed up Donaldson alg@CY metric 10-100

’20 Douglas et al., Anderson et al. accuracy improvement on Donaldson

10-100 times

. . .
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The other Extreme (?) View-Point

On the other hand, what is analyticity?

prime generator =
⌊
n! mod (n+1)

n

⌋
(n− 1) + 2 (not efficient)

bundle-cohomology:

Bott for Projective space:

hq(Pn, (∧pTPn)⊗O(k)) =


(
k+n+p+1

p

)(
k+n
n−p

)
q = 0 k > −p − 1,

1 q = n − p k = −n − 1,(−k−p−1
−k−n−1

)(−k−n−2
p

)
q = n k < −n − p − 1,

0 otherwise

e.g. (2, 4)-CY3 hypersurface:

hq(X,OX(−k,m)) =

 (k + 1)
(
m
3

)
− (k − 1)

(
m+3

3

)
q = 0 k <

(1+2m)(6+m+m2)
3(2+3m(1−m))

(k − 1)
(
m+3

3

)
− (k + 1)

(
m
3

)
q = 1 k >

(1+2m)(6+m+m2)
3(2+3m(1−m))

0 otherwise

. . .

better suited for a computer programme any way
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An Inherent Hierarchy?

In decreasing precision/increasing difficulty:y
numerical

string theory → algebraic geometry over C ∼ arithmetic geometry

algebra

string theory → combinatorics

analytic number theory

Categorical Theory

suggested by & in prog. w/ B. Zilber, Merton Prof. of Logic, Oxford

major part of Model Theory: Morley-Shelah Categoricity Thm

Hart-Hrushovski-Laskowski Thm: 13 classes (levels) of iso-classes I(T, k) of a

theory T in first order logic over some cardinality k.
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Please submit

Special Collection in AACA, Birkhäuser, Dechant, YHH, Kaspryzyk, Lukas, ed:

https://www.springer.com/journal/6/updates/18581430

Special Volume in JSC, Springer, Hauenstein, YHH, Kotsireas, Mehta, Tang, ed.

https://www.journals.elsevier.com/journal-of-symbolic-computation/

call-for-papers/algebraic-geometry-and-machine-learning

ML in theoretical physics & pure maths, Book, WS, YHH, ed.

Int. J. Data Science in the Mathematical Sciences, WS, YHH et al., ed.
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Meta-mathematics/physics?

[YHH-Jejjala-Nelson ] “hep-th” 1807.00735

Word2Vec: [Mikolov et al., ’13] NN which maps words in sentences to a

vector space by context (much better than word-frequency, quickly adopted

by Google); maximize (partition function) over all words with sliding window

(W1,2 weights of 2 layers, Cα window size, D # windows )

Z(W1,W2) :=
1

|D|

|D|∑
α=1

log

Cα∏
c=1

exp([~xc]
T ·W1 ·W2)

V∑
j=1

exp([~xc]T ·W1 ·W2)

We downloaded all ∼ 106 titles of hep-th, hep-ph, gr-qc, math-ph, hep-lat

from ArXiv since the beginning (1989) till end of 2017 Word Cloud

(rmk: Ginzparg has been doing a version of linguistic ML on ArXiv)

(rmk: abs and full texts in future)
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Subfields on ArXiv has own linguistic particulars

Linear Syntactical Identities

bosonic + string-theory = open-string

holography + quantum + string + ads = extremal-black-hole

string-theory + calabi-yau = m-theory + g2

space + black-hole = geometry + gravity . . .

binary classification (Word2Vec + SVM) of formal (hep-th, math-ph, gr-qc)

vs phenomenological (hep-ph, hep-lat) : 87.1% accuracy (5-fold classification

65.1% accuracy). ArXiv classifications

Cf. Tshitoyan et al., “Unsupervised word embeddings capture latent

knowledge from materials science literature”, Nature July, 2019: 3.3. million

materials-science abstracts; uncovers structure of periodic table, predicts discoveries of new

thermoelectric materials years in advance, and suggests as-yet unknown materials
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Merci!

Syntax Semantics

Alpha Go → Alpha Zero

ML Patterns → Auto Thm Pf&Chk

Renner et al., PRL/Nature News, 2019:

ML (SciNet, autoencoder)

Lample-Charton, 2019: ML Symolic

manipulations in mathematics

Tegmark et al., 2019 AI Feynman, symb

regressor

Raayoni et al. 2020 Ramanujan-Machine

Barbaresco-Nielson 2021 Infor Geom/ML

Sophia (Hanson Robotics, HK)

1st non-human citizen (2017, Saudi)

1st non-human with UN title (2017)

1st String Data Conference (2017)
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16 Reflexive Polygons Back to Reflexives

classify convex lattice

polytopes with single in-

terior point and all faces

are distance 1 therefrom

(up to SL(n;Z))

Kreuzer-Skarke: 4319 reflexive polyhedra, 473,800,776 reflexive 4-polytopes,

Skarke: next number is at least 185,269,499,015.
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Computing Hodge Numbers O(eed)

Recall Hodge decomposition Hp,q(X) ' Hq(X,∧pT ?X) ;

H1,1(X) = H1(X,T ?X), H2,1(X) ' H1,2 = H2(X,T ?X) ' H1(X,TX)

Euler Sequence for subvariety X ⊂ A is short exact:

0→ TX → TM |X → NX → 0

Induces long exact sequence in cohomology:

0 → ��
���

�: 0

H0(X,TX) → H0(X,TA|X) → H0(X,NX) →

→ H1(X,TX)
d→ H1(X,TA|X) → H1(X,NX) →

→ H2(X,TX) → . . .

Need to compute Rk(d), cohomology and Hi(X,TA|X) (Cf. Hübsch)

Back to ML
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String/Algebraic Geometry: 2017-

CICY configuration → Hodge Numbers: YHH (1706.02714)

Bull-YHH-Jejjala-Mishra (1806.03121, 1903.03113), Krippendorf-Syvaeri

[2003.13679] Erbin-Finotello (2007.13379; ‘21) : (0.99, 0.9) YHH-Lukas

[2009.02544] CICY4: (0.98, 0.9)

Elliptic fibrations (from CICYs): YHH-SJ Lee (1904.08530) (0.99, 0.9)

Distinguishing Heterotic SMs from the sum-line-bundle database

(Anderson-Constantin-Gray-Lukas-Palti) and extrapolating beyond

Deen-YHH-Lee-Lukas (2003.13339): (0.98, 0.99)

Calabi-Yau metric: improves Donaldson alg. for numerical CY metric by

10-100 times Ashmore–YHH–Ovrut ’19, q.v. Anderson, Gray, Krippendorf,

Raghuram, Ruehle; Douglas–Lakshminarasimhan–Qi, ’20,

Jejjala-Pena-Kaloni-Mishra, ‘21
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q.v., Bundle Cohomology (Ruehle, Brodie-Constantin-Lukas,

Larfors-Schneider, Otsuka-Takemoto, Klaewer-Schlechter)

q.v., Kreuzer-Skarke Dataset (Halverson, Long, Nelson; McCallister-Stillman)

q.v., Calabi-Yau volumes in AdS/CFT (Krefl-Seong)

q.v., MSSM from orbifold models (Parr-Vaudrevange-Wimmer)

q.v. Particle Masses Gal-Jejjala-Pena-Mishra . . .

q.v. Knot invariants: Jejjala-Kar-Parrikar, Craven-Jejjala-Kar

Gukov-Halverson-Ruehle-Sułkowski, using NLP

YHH-Jejjala-Nelson NLP on ArXiv sections

q.v. DEEP CONNECTIONS K. Hashimoto: AdS/CFT = Boltzmann

Machine; Halverson-Maiti-Stoner: QFT = NN; de Mello-Koch: NN = RG;

Vanchurin 2008: Universe = NN. Back to ML Maths YHH, 2011.14442 Review
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Various Databases

Kreuzer-Skarke: http://hep.itp.tuwien.ac.at/~kreuzer/CY/

new PALP: Braun-Walliser: ArXiv 1106.4529

Triang: Altmann-YHH-Jejjala-Nelson: http://www.rossealtman.com/

CICYs: resurrected Anderson-Gray-YHH-Lukas, http://www-thphys.

physics.ox.ac.uk/projects/CalabiYau/cicylist/index.html

q.v. other databases of interesting to the math/physics community:

Graded Rings/Varieties: Brown, Kasprzyk, et al. http://www.grdb.co.uk/

Finite Groups/Rings: GAP https://www.gap-system.org/

Modular Forms: Sutherland, Cremona et al. https://www.lmfdb.org/

Knots & Invariants: KnotAtlas http://katlas.org/ Return

. . .
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Universal Approximation Theorems

Large Depth Thm: (Cybenko-Hornik) For every continuous function f : Rd → RD , every
compact subset K ⊂ Rd, and every ε > 0, there exists a continuous function fε : Rd → RD such
that fε = W2(σ(W1)), where σ is a fixed continuous function, W1,2 affine transformations and
composition appropriately defined, so that sup

x∈K
|f(x)− fε(x)| < ε.

Large Width Thm: (Kidger-Lyons) Consider a feed-forward NN with n input neurons, m output
neuron and an arbitrary number of hidden layers each with n+m+ 2 neurons, such that every
hidden neuron has activation function ϕ and every output neuron has activation function the
identity. Then, given any vector-valued function f from a compact subset K ⊂ Rm, and any
ε > 0, one can find an F , a NN of the above type, so that |F (x)− f(x)| < ε for all x ∈ K.

ReLU Thm: (Hanin) For any Lebesgue-integral function f : Rn → R and any ε > 0, there exists a
fully connected ReLU NN F with width of all layers less than n+ 4 such that∫
Rn |f(x)− F (x)|dx < ε.

Back to Landscape
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