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Geometry of Supersymmetric Backgrounds
Consider a compacti�cation of string theory to four-dimensional Minkowski
spacetime. If the background is supersymmetric, then in the absence of
�uxes the 6d internal manifold must satisfy

(Candelas, Horowitz, Strominger, Witten '85)

∇ε = 0

↓
Calabi-Yau 3-fold

This is an example of a compact manifold with special holonomy, i.e. a
manifold in which there exist spinor �elds parallel with respect to the
Levi�Civita connection. For a CY3-fold we have a torsion-free SU(3)
structure.



Geometry of Supersymmetric Backgrounds
Consider a compacti�cation of string theory to four-dimensional Minkowski
spacetime. If the background is supersymmetric, then in the absence of
�uxes the 6d internal manifold must satisfy

[∇+ (Flux) ] · ε = 0

If �uxes are turned on, the compatible connection is not torsion-free, so it is
not a special holonomy manifold. So what is the geometry of the internal
manifold?

Some of the strategies that have been used:

• G-structures � classify solutions based on torsion classes of the
structure de�ned by Killing spinor

• Generalised Complex Geometry � �geometrise� NSNS sector
(review: Graña '05 [hep-th/0509003])

• Exceptional Generalised Geometry � �geometrise� NSNS and RR
(Hull '07; Pacheco, Waldram '08; Graña, Orsi '11)



Field Ansatz for Eleven-Dimensional Supergravity

Focus on eleven-dimensional supergravity reduced to four dimensions �
results also hold for IIA and IIB and for internal spaces with d ≤ 7.

We keep only the components of the eleven-dimensional �elds which are
scalars in the external space.

Therefore we take the metric to be

ds2
11 = e2∆ηµνdyµdyν + gmndxmdxn,

and keep the components of the 4-�ux F

Fm1...m4 = Fm1...m4 , F̃m1...m7 = (∗11F)m1...m7
.

These �eld strengths are globally de�ned closed forms, which means that
we have �gerbe�-like gauge �elds, the 3-form Amnp and the 6-form Ãmnpqrs.

The fermionic content is given by two components of the gravitino ΨM , the
internal gravitino ψm and the trace of the external component ρ.



The Killing Spinor Equations

For supersymmetric vacua we set the fermions to zero and require the
existence of at least one spinor ε globally de�ned on M such that the
supersymmetric variations of all the �elds with respect to ε vanish.

This implies that

δρ =
[
/∇− 1

4
/F − 1

4
/̃F + (/∂∆)

]
ε = 0

δψm =
[
∇m + 1

288
Fn1...n4 (Γm

n1...n4 − 8δm
n1Γn2n3n4)

− 1
12

1
6!
F̃mn1...n6Γn1...n6

]
ε = 0

These are the Killing Spinor Equations and we call ε the Killing spinor.

More independent Killing spinors imply that more supersymmetry is
preserved.



E7(7) × R+ Generalised Geometry

Generalised Geometry was �rst introduced by Hitchin in 2002 as a form of
unifying symplectic and complex geometry. Physically, in analogy to the
relation between Riemannian geometry and general relativity, we can think
of generalised geometries as a new attempt at �geometrising� the bosonic
symmetries of supergravity.

We introduce an extended notion of tangent space, where generalised
vectors are patched together precisely according to the supergravity
symmetries. By studying structures on these generalised tangent spaces, we
can gain new insights into supergravity.

In previous work we showed that Ed(d)×R+ generalised geometry can be
used to fully reformulate eleven-dimensional supergravity restricted on a
d ≤ 7-dimensional compact manifold, making its larger local symmetries
manifest.

Since we are looking at reductions down to four dimensions, we will use
E7(7) × R+ generalised geometry



The Generalised Tangent Space
Let M be a 7-dimensional spin manifold.
The generalised tangent space E of M is given by

E ' TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕ (T ∗M ⊗ Λ7T ∗M)

Globally, E is actually de�ned as a series of extensions, twisted by gerbes
which encode the topology of the gauge �elds.

On an open subset U(i) ⊂M we can write

V(i) ∈ Γ(TUi ⊕ Λ2T ∗Ui ⊕ Λ5T ∗Ui ⊕ (T ∗Ui ⊗ Λ7T ∗Ui))

Then the patching on the overlap U(i) ∩ U(j) is given by

V(i) = v(i) + ω(i) + σ(i) + τ(i)

= v(j) + ω(j) + iv(j)dΛ(ij) + σ(j) + iv(j)dΛ̃(ij) + ω(j) ∧ dΛ(ij) + . . .

where Λ(ij) and Λ̃(ij) are locally 2- and 5-forms which satisfy certain
consistency conditions on higher order overlaps. This matches precisely the
gauge transformations of supergravity.

Crucially, the symmetry transformations GL(7,R) n �Gauge� ⊂ E7(7) × R+.

P. Pacheco, D. Waldram '08

A.C., C. Strickland-Constable, D. Waldram '11



The Generalised Tangent Space

In fact, the �ber Ex at x ∈M forms the 561 representation space of
E7(7) × R+.

Frames for E form an E7(7) × R+ principal bundle, the generalised frame

bundle F̃ . Generalised tensors will then be associated to di�erent
representations of E7(7) × R+.

Several familiar notions from Riemannian geometry can be de�ned for the
E7(7) × R+ generalised tangent bundle.



Dorfman Bracket

The di�erential structure of E is given by the Dorfman bracket, a
generalisation of the Lie derivative which combines the action of
in�nitesimal di�eomorphisms and gauge transformations

LV V
′ = Lvv′ +

(
Lvω′ − iv′dω

)
+
(
Lvσ′ − iv′dσ − ω′ ∧ dω

)
+
(
Lvτ ′ − jσ′ ∧ dω − jω′ ∧ dσ

)
.

(1)

The Dorfman bracket is not antisymmetric, but it does satisfy the Leibniz
property, i.e. E is a Leibniz algebroid.

In E7(7) × R+ language:

LVW
M = V N∂NW

M −WN (∂ ×ad V )MN

where

∂M =

{
∂m for M = m

0 else
∈ E∗

I. Dorfman '87; T. Courant '90

P. Pacheco, D. Waldram '08; A.C., C. Strickland-Constable, D. Waldram '11
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Generalised Connections

A generalised connection is a �rst-order linear di�erential operator which
acts on generalised vectors as

DMW
N = ∂MW

N + ΩM
N
PW

P

where ΩV = VMΩM
N
P ∈ ad F̃ .

For d = 7 the space of generalised connections is therefore 56× (133 + 1)
dimensional.

The generalised torsion of a generalised connection is de�ned as usual by

T (V,W ) = LDVW − LVW

now with the Dorfman derivative instead of the Lie derivative.

We �nd that the generalised torsion constraints some components of the
connection

T ∈W ⊂ E∗ ⊗ ad F̃

with W in the 912−1 + 56−1 representation of E7(7) × R+.

M. Gualtieri '04
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Generalised Metric and Spinors

We now introduce extra structure, in analogy with Riemannian geometry.
Consider the maximal compact subgroups SU (8)/Z2 ⊂ E7(7).

An SU (8)/Z2 structure on E is de�ned by a generalised metric G which at
each point parametrises the coset

G ∈
E7(7) × R+

SU (8)/Z2

This precisely corresponds to the degrees of freedom of the bosonic
supergravity �elds, which are thus uni�ed in a single object

{g,A, Ã,∆} ∈ G

Spin(7) spinors can be identi�ed as transforming under the double cover
SU(8). The fermion �elds ψm and ρ are thus thought of as SU(8) objects.

M. Gualtieri '04

C. Hull '07



Generalised Levi�Civita

With a generalised metric, we can restrict to covariant derivatives that
preserve the metric

DG = 0

These are then SU (8) connections, the generalised analogue of spin
connections.

Like the Levi�Civita connection of Riemannian geometry, it is always
possible to �nd a generalised D which is both metric-compatible and

torsion-free.

In fact, there exists entire families of �generalised Levi�Civita� connections
� they are not uniquely determined, unlike ordinary geometry.

A.C., C. Strickland-Constable, D. Waldram '11



Generalised Curvatures

However, the generalised analogues of Ricci curvatures are uniquely

determined. They can be computed from any generalised Livi�Civita and
give the same result.

A simple way of obtaining the generalised Ricci scalar in SU (8) is via an
analogue of the Lichnerowicz relation

DαβD̄βγε
γ − 1

2
D̄βγD

[αβεγ] = R εα.

Remarkably, this allows us to rewrite the entire bosonic sector of the
supergravity as just generalised Einstein gravity

SB =

∫
| detG|

dimE
9−d R

Even though the connection used to compute R is ambiguous, the scalar
itself is not � good thing, otherwise could not do physics!

A.C., C. Strickland-Constable, D. Waldram '11, '12



Killing Spinor Equations Revisited

To complete the rewrite of the bosonic sector of supergravity, we need the
SUSY variations. Like the Riccis, these are independent of the choice of
generalised Levi�Civita. In particular, given any metric-compatible D such
that T (D) = 0, the supersymmetry transformations of the fermions are just

δψαβγ = D[αβεγ]

δρ̄α = −D̄αβεβ
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Killing Spinor Equations Revisited

To complete the rewrite of the bosonic sector of supergravity, we need the
SUSY variations. Like the Riccis, these are independent of the choice of
generalised Levi�Civita. In particular, given any metric-compatible D such
that T (D) = 0, the supersymmetry transformations of the fermions are just

δψαβγ = D[αβεγ]

δρ̄α = −D̄αβεβ

So the Killing Spinor Equations are now simply

D̄αβε
β = 0, D[αβεγ] = 0

Already looks very close to the special holonomy equations.
Clearly if we have a torsion-free connection with

Dε = 0⇒ D̄αβε
β = 0, D[αβεγ] = 0

so the background is supersymmetric.
Does the converse hold? Given a supersymmetric background can we �nd a
generalised connection D such that Dε = 0 and is torsion-free T (D) = 0?



The Generalised Intrinsic Torsion of SU(7)-structures

The obstruction to �nding a torsion-free connection which is compatible
with a given G-structure is measured by the intrinsic torsion of the
structure. The vanishing of the intrinsic torsion is generically a �rst-order
di�erential condition on the objects de�ning the structure.

If M admits a reduced generalised G-structure which is torsion-free we say
that it is a generalised special holonomy space.

In Euclidean signature, it is easy to show the generalised Ricci tensor
vanishes as well � physically, the background solves the equations of
motion.

A nowhere vanishing spinor ε ∈ 8 de�nes an SU (7) ⊂ SU (8) structure in
the generalised tangent bundle.

So we must look in the space of SU(7)-compatible connections and see if it
is possible to �nd one which is torsion-free in backgrounds which are
supersymmetric.
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The Generalised Intrinsic Torsion of SU(7)-structures

We can explicitly compute the generalised intrinsic torsion space of this
SU (7) structure. We have the SU (8) representations

E = 56→ 28 + 2̄8 (generalised vector space)

W = 56 + 912→ 28 + 2̄8 + 36 + 3̄6 + 420 + ¯420 (torsion space)

KSEs = 8 + 8̄ + 56 + 5̄6

(to avoid clutter we will omit the complex conjugates from now on)



The Generalised Intrinsic Torsion of SU(7)-structures

The next step is to calculate their SU (7) decompositions:

E = 7 + 21

KSEs = 1 + 7 + 21 + 35

W = 1 + 7 + 7 + 21 + 21

+ 28 + 35 + 140 + 224

We have that generalised connections compatible with the SU (7) structure
�ll out the space

KSU (7) = E∗ ⊗ su7 = (7 + 21)× 48

= 7 + 21 + 28 + 140 + 224

+ 189 + 735

Now we must �nd the restricted space WSU (7) = T (KSU (7)).

WSU (7) = 7 + 21 + 28 + 140 + 224
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The Generalised Intrinsic Torsion of SU(7)-structures

Gather all SU (7) decompositions:

E = 7 + 21

KSEs = 1 + 7 + 21 + 35

W = 1 + 7 + 7 + 21 + 21

+ 28 + 35 + 140 + 224

KSU (7) = 7 + 21 + 28 + 140 + 224

+ 189 + 735

WSU (7) = 7 + 21 + 28 + 140 + 224

and �nally we can compute the space of intrinsic torsion of

SU(7)-structures

Wint =
W

WSU (7)

= 1 + 7 + 21 + 35

= KSEs
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SU(7) Generalised Special Holonomy Manifolds

Thus setting the Killing Spinor Equations to zero is equivalent to
demanding the vanishing of the generalised intrinsic torsion.

δρ = 0, δψ = 0

m
∃D : Dε = 0, T (D) = 0

in which case we have the generalised analogue of special holonomy.

Manifolds with a generalised torsion-free SU(7)-structure are

N = 1 supersymmetric backgrounds of M theory and vice-versa.

(can think of these manifolds as �exceptional generalised Calabi-Yau�)

A.C., C. Strickland-Constable, D. Waldram '14

cf. M. Graña, F. Orsi '11
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Other dimensions, more SUSY

d H̃d GN
7 SU (8) SU (8−N )
6 USp(8) USp(8− 2N )
5 USp(4)×USp(4) USp(4− 2N+)×USp(4− 2N−)
4 USp(4) USp(4− 2N )

Table: Generalised structure subgroups GN ⊂ H̃d preserving N supersymmetry in
(11− d)-dimensional Minkowski backgrounds. Note that for d = 5 we have
six-dimensional supergravity with (N+,N−) supersymmetry.

The result is more general

The internal spaces of N supersymmetric Minkowski backgrounds

are precisely the spaces of generalised GN special holonomy.

The proof has some subtleties for N > 2, requires the use of the fact that
Killing spinors form a superalgebra � neat formulation in terms of
generalised geometry, uses the Kosman-Dorfman bracket of spinors.

A.C., C. Strickland-Constable '16

cf. M. Graña, F. Orsi '12



AdS backgrounds

d G Gcom R-symmetry Wint

7 SU (7) U(1) Z2 12

6 USp(6) USp(2) U(1) (3,1)
5 USp(2)×USp(4) USp(2) � no singlets
4 USp(2) USp(2) USp(2) (1,1)

Table: Generalised structure subgroups G ⊂ H̃d , commutant groups Gcom of G in
H̃d , AdS R-symmetry groups and non-vanishing generalised intrinsic torsion as
representations of Gcom ×G for minimal supersymmetry in AdS backgrounds.

Can similarly show that generic AdS backgrounds correspond to spaces
which have generalised �weak special holonomy� � they are not torsion-free,
they have a constant singlet torsion component, which gives the
cosmological constant.

For AdS4 ×M7 we have

δψ = D[αβεγ] = 0,

δρ = Dαβε
β = Λε̄α

(2)

A.C., C. Strickland-Constable '15

M. Graña, P. Ntokos '16

A. Ashmore, M. Petrini, D. Waldrama '16



Conclusion

E7(7) × R+ generalised geometry allows us to �geometrise� the full bosonic
sector of four-dimensional backgrounds of eleven-dimensional supergravity.

This enabled us to re-interpret N = 1 �ux backgrounds as manifolds with
SU (7) generalised special holonomy for Minkowski/singlet SU(7) torsion
for AdS → �integrability� condition that works for all possible �uxes.

Also works in other dimensions, and with higher N .

Would be interesting to know if similar results also hold for other types of
generalised geometry, which are used to describe other supergravities. Easy
to show it holds for O(d, d) generalised geometry. Is it a general feature?

Can this result be used to �nd new solutions?

Describe the moduli space of generic backgrounds?

Applications to higher-derivative corrections?

Thank you very much.
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