Zhe 3 d Black String and its dual

Wabrhof a BHO, BPS \& decantem Sapormation IST, Lisla, Segtala 232021 Stéplone Aetorunay

Based on 1911.12359 mith \&uisctydo \& Weỉong

The 3 d Black Sthing and its dual Stephane Detoumay

Based on 1911.12359 mith
\&uisctybor \& Weisong

I. 3 d Black sting
"Exact Blade Sting Solutions in Thee dimemion" [Hove, Hosonity] Rep-At/9108001
I. 3 d Black sting
"Exact Black String Solutions in Thee dimemion" [Hove, Hosonity] Rep-ctl/9108001

The aultas introduced changed black stings as target space of a gauged WZW model:

$$
\left\{\begin{array}{l}
d s^{2}=-\left(1-\frac{\mu}{\rho}\right) d t^{2}+1 \\
H_{n \in x}=\frac{Q}{\rho^{2}} \\
\Phi=\ln \rho+\frac{1}{2} \ln \frac{k}{2}
\end{array}\right.
$$

Rather simple sect F_{T} producing a BG qualitatively similar to Reismer-Nordstam in $(2+1)$ dimensions.

4.

- Outer cand innos haujons $n_{t}=M, \Omega_{-}=\frac{Q^{2}}{M}$

- Outer and innas haujono $\Omega_{t}=M, \Omega_{-}=\frac{Q^{2}}{M}$
- Cemeature singabaity at $n=0$

- Outer and innos houjovos $n_{t}=M, n_{-}=\frac{Q^{2}}{M}$
- Cunature singalaitey at $R=0$
- $R \rightarrow \infty$ as $R \rightarrow \infty$, "anymettically flat"

- Outer and innos houjovos $n_{t}=M, n_{-}=\frac{Q^{2}}{M}$
- Cunature singalaitey at $R=0$
- $R \rightarrow \infty$ as $\rho \rightarrow \infty$, "angmettically flat"
- Haceling $T O T_{H}=\frac{1}{\pi M} \sqrt{\frac{M^{2}-Q^{2}}{2 \pi}}$
and
Beksontern theuling entiony $S_{B H}=\frac{1}{4 C l} \sqrt{M^{2}-Q^{2}}$

- Outer and innos houjovos $n_{t}=M, n_{-}=\frac{Q^{2}}{M}$
- Cuneature singalaitey at $R=0$
- $R \rightarrow \infty$ as $\rho \rightarrow \infty$, "angmiftically plat"
- Hacaling $T 0 T_{H}=\frac{1}{\pi M} \sqrt{M^{2}-Q^{2}}$
and
Beksontern theuling entiony $S_{B H}=\frac{1}{4 C l} \sqrt{M^{2}-Q^{2}}$

$$
=\log \rho ?
$$

- BTZ stealing the show 'g2 CBañadest, 5. Zitallain,
 zamalli]
- AdS/CFT 197 [Maldacena]
- $\quad N_{B S} \ll N_{B T Z}$
citations to HH

$$
=202
$$

sitations Ho BT2

$$
=2842
$$

- BTZ stealing the show 'g2 CBañadest, 5. Zitallain,
 zamalli]

- ACS/CFT 197 [Maldocena]
 citations to BTL

$$
=2842
$$

II. $\mathrm{AdS}_{3} /$ CFTR $\left[\right.$ Bañados, Hemoaux, Teitellai, Zomelli] ${ }^{6}$
II. 1 BT2 Black foler \& 3α grainty
II. $\mathrm{AdS}_{3} / \mathrm{CFT}$ Th
II. 1 BT 2 Black holes \& $30 l$ grainy

$$
d s^{2}=-\frac{\left(n^{2}-n^{2}\right)\left(n^{2}-n^{2}\right)}{n^{2}} d t^{2}+\frac{l^{2} n^{2} d n^{2}}{\left(n^{2}-n^{2}\right)\left(n^{2}-n^{2}\right)}
$$

used later

$$
\begin{gathered}
=l^{2}\left[\frac{d u^{2}}{4\left(n^{2}-4 T_{u}^{2} T_{u}^{2}\right)}+n d u d v+T_{u}^{2} d u^{2}+T_{c}^{2} d v^{2}\right] \\
\mu, v=\phi \pm \frac{t}{l}
\end{gathered}
$$

II. $\mathrm{AdS}_{3} / \mathrm{CFTR}$
II. 1 BT2 Black holer \& 3α graity

$$
d s^{2}=-\frac{\left(n^{2}-n^{2}\right)\left(r^{2}-n^{2}\right) d t^{2}+\frac{l^{2} n^{2} d n^{2}}{n^{2}}\left(n^{2}-n^{2}\right)\left(r^{2}-n^{2}\right)}{}
$$

ured later

$$
\begin{gathered}
=l^{2}\left[\frac{d u^{2}}{4\left(n^{2}-4 T_{u}^{2} T_{u}^{2}\right)}+n d u d v+T_{u}^{2} d u^{2}+T_{c}^{2} d v^{2}\right] \\
\mu, v=\phi \pm \frac{t}{l}
\end{gathered}
$$

Axyuptotically AdS_{3}

Belong tes a phare space endawed sith a ad cappmol sogunetiey geascatad log

$$
\left(x^{ \pm}=\frac{\hbar}{l} \pm \phi\right) \quad l_{n}^{ \pm}=e^{i a x \pm}\left(f_{ \pm}-i a 1 / 2\right)
$$

Conerpanding Alouges $Q_{l^{ \pm}} \equiv L_{\text {a }}^{ \pm}$ratizy ce Vinarac algelva wilt

$$
C=\frac{3 l}{2 G}
$$

[Brove-Henomux] ' 86

Guggerts that quantum geaulty in $A d S_{3}$ would be a CFTz

Obreciation that the Baksmontein - Houthing antegug of $B T L$ is [Stroninger]'g7

Coudy Jomuba

$$
\begin{aligned}
S_{B H}=\frac{A_{a Q}}{4 G}=\frac{2 \pi \Omega_{H}}{4 G} & =2 \pi \sqrt{\frac{C E_{C}}{C}}+2 \pi \sqrt{\frac{C E_{R}}{6}} \\
& \left\{\begin{array}{l}
E_{C}=L_{\infty}^{+}=\frac{1}{2}(l M+J) \\
E_{R}=L_{0}=\frac{1}{2} \\
(l) \pi-J)
\end{array}\right.
\end{aligned}
$$

Guggents that quantum graily in AdS_{3} rould be a CFTz

Obiecuation that the Baksantain - Houshing anthoug of $B T 2$ is [Straningen]'97

Condy Jomula

$$
\begin{aligned}
S_{B H}=\frac{A_{\text {ea }}}{4 G}=\frac{2 \pi \Omega_{H}}{4 G}= & 2 \pi \sqrt{\frac{C E_{C}}{C}}+2 \pi \sqrt{\frac{C E_{R}}{6}} \\
& \left\{\begin{array}{l}
E_{C}=L_{\square}^{+}=\frac{1}{2}(l M+J) \\
\epsilon_{R}=L_{0}^{-}=\frac{1}{2} \\
(l M-J)
\end{array}\right.
\end{aligned}
$$

-andy segime is $E_{C, R} \gg$, with $<$ fieed.
The abac sovalt reoms Rowevin ter be cabie gon $c \gg\left(l_{A \alpha S}>l_{p}=G\right)$ lat $E_{C, R \sim C}$ Zhis seggests that the CFT hao ter be quile mpecial see [Hantron, Kellox, Stsica]
 Within sting theory, se can take a bottomup appear to identify the dual $C F T_{2}$.

Type IIB a T4 with

$$
\begin{aligned}
& k=Q_{1}=\# g D_{1} / F_{1} \\
& k=Q_{5}=\# g D_{5} / N S 5
\end{aligned}
$$

II. 2 Stringy AdS_{3} /LFT $[$ Mageor; Daid Matal. 8 Within sting theory, see can take a bottomup appoach to identify the dual $C F T_{2}$.

TypeIIB a TY witte

Zoking the decoupling linite of thei sogstem:
IIBST ouAdS $\times S^{3} \times T^{4} \stackrel{\text { dual }}{\longleftrightarrow} \operatorname{Suman}^{N}(X) C F T$
w/
RR/NSNS Glueser
inte $C=6 Q_{1} Q_{5}$

$$
\operatorname{sen}^{N}(x) \equiv x^{N} / S_{N}\left\{\begin{array}{l}
N=Q_{1} Q_{5} / Q_{1} \\
C x=6 / 6 Q_{5}
\end{array}\right.
$$

II. 2 Stringy AdS_{3} /CFI $[$ Magoor; Daid/ Mantal, 8 . Whai shin P Recy se un tare a lotten Within string theong, we can take a fottomup appoach to identify the dual CFT2.

Tope IIB a TY wilt

Zoking the decoupling linite of thei sogstem:
IIBST O $A l S_{3} \times S^{3} \times T^{4} \stackrel{\text { dual }}{\longleftrightarrow} \operatorname{Sugan}^{N}(X) C F T$
ω
RR/NSNS Gheres
wild $C=6 Q_{1} Q_{5}$

$$
\operatorname{sen}^{N}(x) \equiv x^{N} / S_{N}\left\{\begin{array}{l}
N=Q_{1} Q_{5} / Q_{1} \\
C_{x}=6 / 6 Q_{5}
\end{array}\right.
$$

Zhis is the conmayant of
IIB ST a ANS5 $\times S^{5} \stackrel{\text { dual }}{\longleftrightarrow}$ SUCN $N \mathbb{N}$ as Sin clecied frema stach of D3 Prexeds lut is recaller in the gormer case

Idenfigying the precise CFT dual is stell an open question
see [ebridaidt, Ealuadied, Ggatuman; Ig -branuabaty, Geicen, Scutoriar - Arguis, Gietan, Skema; ... J

Idenfiging the precise CFT dual is stell an open question
see [Elachondt, Eyaluadiel, Gyatumar: Ig ebromubaty, Giecen, 3 cutartar ∞ Anguis, Gieton, shema; ... J

The NSS-Fi setup is viry interooting because sting theang a AHS_{3} wr aby USNS Glues is exaclley solealle: it is doxicited \log a SR (2, AB) WZWI at lowel

$$
\begin{aligned}
& k=Q_{5} . \\
& \left(k=Q_{5}=\frac{l_{A_{s}}^{2}}{l_{5}^{2}}=\frac{l^{l}}{\alpha^{2}}\right)
\end{aligned}
$$

Ser, givite $x \Rightarrow$ solung clancies staing thencug, to all aders in α^{\prime}
(1ae count tha $S^{3} \times T^{4}$ gactön, hat elany are still there)
II. 3 Strings on AdS_{3} CMadacima, Sun tia] 10. The SE $[2, R /$ WZW model deciles sting thong or $\left.\mathrm{AdS}_{3} \sim S R K_{1}, Q\right)$ group maniple seepportal log an NS NS B-giod.

The proof of the consintoncig of the weasel and the determination of the specter was achieved log $[M D+S]$, ats bielding ar work from the end of the 8 os cruonds.

$$
\begin{aligned}
& \operatorname{Sl}(2, \mathbb{R}) W Z W \text { model } \\
& S_{W Z W}=k \int d^{2} x T_{2}\left(g^{-1} \partial g g^{-1} \partial g\right)+k \Gamma_{w z}
\end{aligned}
$$

Bari field: $\quad g(z, \bar{z}) \in \sec (x, R) \equiv G$

Sl ($2, \mathbb{R}$) WZW model

$$
S_{w 2 w}=k \int d^{2} x T_{1}\left(g^{-1} \partial g g^{-1} \bar{\partial}\right)+k \Gamma_{w z}
$$

Baric field: $\quad g(z, \bar{z}) \in \operatorname{sen}(x, R) \equiv G$
\rightarrow WS condinaters
Scrumaties: Lest/Rigut asfice sogmantuy $(\mathrm{g} \rightarrow \Omega(\mathrm{g}) \mathrm{g}-\bar{g}))$ gomented ly (anti-) sclocooybic curnents (2 ie alggha colbod)

$$
\begin{aligned}
J(z) & =k g^{-1} \partial g & \bar{J}(\bar{J}) & =k \bar{\partial} g g^{-1} \\
& \equiv J^{a} T_{a} & & \equiv \bar{J}^{a} T_{a}
\end{aligned}
$$

Modes $J_{\sim}^{a}, \bar{J}_{\sim}^{a} \rightarrow$ asfine curcoat abgena \hat{g} Léro mades J_{0}^{3} and \bar{J}_{0}^{3} genenate shifts in ϵ and ϕ, no $E=J_{0}^{3}+J_{0}^{3}$ and $J=J_{0}^{3}-J_{0}^{3}$

Sl $(2, \mathbb{R}) W Z W$ model

$$
S_{w z w}=k \int d^{2} x T_{r}\left(g^{-1} \partial g g^{-1} \bar{\partial} g\right)+k \Gamma_{w z}
$$

Baxic field: $\quad g(z, \bar{z}) \in \operatorname{se}(2, R) \equiv G$
\rightarrow WS condinates
Symmaties: Regt/Rigit affine soganatty $(\mathrm{g} \rightarrow \Omega(y) \mathrm{g} \Omega(\bar{j}))$ gronated ly

$$
\begin{array}{rlrl}
J(z) & =k g^{-1} \partial g \\
& \equiv J^{a} T_{a} & \bar{J}(\bar{g}) & =k \bar{\partial} g g^{-1} \\
& \equiv \bar{J}^{a} T_{a}
\end{array}
$$

Modes $J_{\sim}^{a}, \bar{J}_{a}^{a} \rightarrow$ asfine curont algeha \hat{g} Léro mades J_{0}^{3} and \bar{J}_{0}^{3} generate stigfs in ϵ card ϕ, so $E=J_{0}^{3}+\bar{J}_{0}^{3}$ and $J=J_{0}^{3}-J_{0}^{3}$ Bugavona constrection

$$
\left\{\begin{array} { l }
{ \overline { T } = \frac { 1 } { k } J ^ { a } J ^ { a } } \\
{ \overline { T } = \frac { 1 } { k } \overline { J } ^ { a } \overline { J } ^ { a } }
\end{array} \left\{\begin{array}{l}
L_{m} \sim \sum_{m}: J_{m}^{a} J_{m \rightarrow m}^{a}: \\
C_{m} \sim \sum_{m}: J_{m}^{a} \bar{J}_{m \rightarrow m}^{a}:
\end{array}\right.\right.
$$

longamal imeainace

Brectial flaer syynndty

$$
\left\{\begin{array}{l}
J_{n}^{3} \rightarrow \widetilde{J}_{n}^{3}=J_{m}^{3}+\frac{h}{2} w \delta_{m, 0} \\
J_{n}^{ \pm} \rightarrow \mathcal{F}_{n}^{ \pm}=J_{m \mp w r}^{ \pm} \quad w \in \mathbb{Z}
\end{array} \quad . \quad\right.
$$

is ar automoylion of \hat{g}.

Brectial flaer syynndty

$$
\left\{\begin{array}{l}
J_{m}^{3} \rightarrow \widetilde{J}_{a}^{3}=J_{m}^{3}+\frac{h}{2} w \delta_{m, 0} \\
J_{n}^{ \pm} \rightarrow \mathcal{F}_{n}^{ \pm}=J_{m \mp w}^{ \pm} \quad w \in \mathbb{Z}
\end{array} \quad . \quad\right.
$$

is ar automoylier of \hat{y}.
At the clasical lesel, it graveates sting-like sclutions Gear geoteries:

shoct steings (bound states)

long stings (seatteing states)

At the quantim lecel it gonerates nour, inequivalent, repertantations of the caffire algeha cottained ly acting wilt $\tilde{J_{m} a}$ and $\widetilde{\mathcal{J}_{a}}$ a Il $(2, R)$ repersutations $|\psi\rangle$ of the zero modes:

At the quontim lecel, it gonerates nour, inequivalent, repertantations of the caffire algeha cotained ly acting wilt $\tilde{J_{m} a}$ and $\widetilde{J_{a}^{a}}$ a Sl $(2, R)$ represputotions $|\psi\rangle$ of the zero modes:

At the quantim lecel, it gonerates nowr, inequivalent, repertantations of the caffire algeha cotainad ly acting wilR ₹₹a and $\widetilde{J_{\pi}^{a}}$ on Il $(2, R)$ repersutations $|\psi\rangle$ of the zero modes:

The conespording affine repsotentation are
$\hat{D}_{j}^{ \pm, u r}$
shout strings dimete enagy Mpectum
$\hat{e}_{j=\frac{1}{2} \text { *is }}^{\alpha, \omega}$
long stings continucous exengy rpecterm

At the quontim lecel, it gonerates nour, inequivalent, repertantations of the caffire algeha cotained ly acting wilt $\tilde{J_{m} a}$ and $\widetilde{J_{a}^{a}}$ a Il $(2, R)$ repersutations $|\psi\rangle$ of the zero modes:

The conespording affine repsotentation are

$$
\hat{D}_{j}^{ \pm, w}
$$

shout strings dimete enagy spectum

$$
\hat{e}_{j=\frac{1}{2} * s}^{\alpha, w}
$$

long stingo continucous exengy rpecterm

The theay is nowr unitany (mos-ghont thoom for phyriceal stotes $\tilde{L}_{0}=1$) and consistant (e.g. Mos repper bound on massiof sting states)

Zhis rewalt is inpeatont in that it constecins the native cand spectum of the CFT sual tes AdSy string Aloory.
'18'19

Ohe proposal [Elahoudt, boladid, bothumon] for the dual ter seepsorting thong $\triangle n A S_{3} N^{3} \times T T^{4}$ at leak k :

$$
\operatorname{Sogan}^{N}(C N=4 \text { Riaimber } c=6[(-1)] \oplus T 4)
$$

III. Away From $A d S_{3}$

to

III. Manginal deformations of WZW models

The SR (R, (V)WZW denciles sting prepogatem on
AdS_{3} through an exact voraldshost dexcuiftion.
III. Manginal deformations of $W 2 W$ models

The SR (R, (V)WZW denciles sting prepogatem on
AdS_{3} through an exact voraldshost dexcuiftion.
Howr to dexsile mace gravial bsekgrands?
III. Manginal deformations of WZW models

The SR (R, (R)WZW derciles sting prepogatien on AdS_{3} through an exact valdshoot dexcuiftion.

How to dexxiete mare geaval backgrands?
It han lean abrewad that wZW mooblels admit integeable manginal defomations, thus allaving to reach nowr evact stining bechopannd:

$$
S_{\lambda, w 2 w}=S_{w z w}+\lambda_{w 2 w} \int d^{l} z z \underbrace{\infty}\{, \xi]
$$

$$
\text { (}, 2,1 \text { (} 0,1) \text { Q }, x)_{i} \text { qienata }
$$ manginal

Cexaudhum 'scheraty;
Rascon, Jan; bjica, Suiition; Zote, Reoggarinap, ...]

Black sting fram $J_{1} \bar{J}_{1}$ Manginal defornation
 Oxlander, Suiodel, SD,...] ~'OS

* Stact witc W2W with gray elomante

$$
\begin{array}{r}
g=e^{2 T_{m} \mu T_{1}^{1}} e^{g\left(n, T_{m}, T_{0}\right) T^{3}} e^{2 T \operatorname{Tor} N T^{1}} \\
\in \operatorname{SP}(2, R)
\end{array}
$$

This conoppado to sting propagotion a the BT2 motric cer saw eabien:

$$
\left\{\begin{array}{l}
\frac{d s^{2}}{l^{2}}=\frac{d^{2}}{4 r^{2}-T_{a}^{2} T_{c}^{2} T}+r \operatorname{den} d r+T_{a}^{2} d u^{2}+T_{c}^{2} d^{2} \\
B=\cdots \\
e^{2 I}=a t .
\end{array}\right.
$$

Black sting fram $J_{1} \bar{J}_{1}$ Manginal defornation

Oxlander, Suiodel, SD,...] ~'OS

* Itact witt W2W with gray ebmente

$$
\begin{array}{r}
g=e^{2 T_{m} \mu T^{1}} e^{f\left(n, T_{m}, T_{0}\right) T^{3}} e^{2 T_{0} N T^{1}} \\
\in \operatorname{SP}(2, R)
\end{array}
$$

Tis conoppado tos sting propagation as the BT2 motric cer saw eabien:

* Tuar on avenginal ofseator $\theta=J^{1} \bar{J}^{1}$

The dejomed astien naterfoos

$$
\frac{\partial S_{\lambda, 102 \omega}}{\partial \lambda} \sim \int d^{2} z J^{I} J^{1}
$$

* The backgrounds after deformation are
ctifter a change of radical coordinate

$$
l=\left[\frac{(M+P)^{2}-J^{2}}{4 M}\right] n+\frac{M^{2}+\varphi^{2}-\sigma^{2}}{2 M}
$$

The anodic becomes, for $\lambda=\frac{1}{2}$,

$$
\begin{aligned}
& \frac{d J^{2}}{e^{2}}=\frac{d p^{2}}{4\left[p^{2}-\left(M^{2}+q^{2}\right) \rho+Q^{2}\right]}-\left(1-\frac{M}{R}\right) U^{2} \\
&+\left(1-\frac{Q^{2}-J^{2}}{M P}\right) d p^{2}+\frac{2 J}{\rho} d t d t
\end{aligned}
$$

Ja $I=0$, this exactly the $H H$ flaw sting:
(pick aft)

$$
\begin{aligned}
d s^{2}=-\left(1-\frac{M}{l}\right) d t^{2}+ & \left(1-\frac{Q^{2}}{M l}\right) d x^{2}+ \\
& \left(1-\frac{M}{l}\right)^{-1}\left(1-\frac{Q^{2}}{M l}\right)^{-1} k \frac{d l^{2}}{Q P^{2}}
\end{aligned}
$$

* TRe defomed backopound can le eftained grom the exdefamed oxe ly a
$T s T$ trangomation
Tdecalitey alog μ

$$
\text { shift olog } N \rightarrow N-\frac{2 \lambda}{R} \mu
$$

T duality abong μ arce more
(uy to thage of couds and Anial cuncouto ~ CSocta curants)

IV. TT deformations [3iminaer, Zamolodelibor; Cavaghio, Negro, Syzersangy, Cateo]
Inelecent def = of 2d QFTs thiggered ly

$$
\left.T T \equiv-\pi^{2} \text { def (} T_{m \omega}\right)
$$

TRe cosoopanding segamed action lhansatogis

$$
\begin{aligned}
& \frac{\partial S_{\text {aft }}}{\partial \mu}=\int d^{2} x\left(T_{x x} T_{\bar{x} \bar{x}}-T_{x \bar{x}} T_{\bar{x} x}\right) \\
& \sim \int J_{(\bar{x})} \wedge J_{(\bar{x})} \\
&\left\{\begin{array}{l}
J_{(x)} \\
J_{(\bar{x})}
\end{array}=T_{x x} d x+T_{\bar{x} x} d x+T_{x x} d \bar{x}\right.
\end{aligned} .
$$

Many plysically introostung quomititios can be eompuitex exactly and explicitly intemas of the data Grem the emidefaner thery.

TT degomations

TT degomations
Finike solume spedtum

$$
\left\{\begin{array}{l}
E(\mu)=\frac{R}{2 \mu} \sqrt{1+\frac{4 \mu E}{R}+\frac{4 \mu^{2} J^{2}}{R^{2}}}-1 \\
J(\mu)=J
\end{array}\right.
$$

Ju terms of $E_{U R}=\frac{E \pm J}{2}$:

$$
\epsilon_{U R}=\epsilon_{U R}(\mu)+\frac{2 \mu}{R} \epsilon_{l}(\mu) \epsilon_{R}(\mu)
$$

TT degomations
Finite solume spedtum

$$
\left\{\begin{array}{l}
E(\mu)=\frac{R}{2 \mu} \sqrt{1+\frac{4 \mu E}{R}+\frac{4 \mu^{2} J^{2}}{R^{2}}}-1 \\
J(\mu)=5
\end{array}\right.
$$

Ju terms of $E_{U R}=\frac{E \pm J}{2}$:

$$
\epsilon_{U R}=\epsilon_{U R}(\mu)+\frac{2 \mu}{R} \epsilon_{l}(\mu) \epsilon_{R}(\mu)
$$

Ctryaptotic grould of sitatos CDAN, Jiong. ARomong,
(deganed cFIV)
Ejien, Jutanar?

$$
J_{T T}=2 \pi\left[\sqrt{\frac{C}{6} R E_{C}(a)\left(1+\frac{2 \mu}{R} \epsilon_{R}(a)\right)}\right.
$$

$$
\left.+\sqrt{\frac{C}{6} R E_{R}(\mu)\left(1+\frac{2 \mu}{R} \epsilon_{L}\left(\mu_{1}\right)\right)}\right]
$$

of undeyanad CFT
I. Dual to the 3\& Black String

Proposal:
I. Dual to the 3 \& Black String

Propotal: Sting thoory ov a Tot thang's of
see related repopls $C G$ inea, J Folote Vutana
$\mathrm{AdS}_{3} \times M$ w/ NSNS gheeses

$$
\underset{\text { to }}{\stackrel{\text { dhal }}{\leftrightarrows}}
$$

Single trace TT deformation of a $F_{F} T_{2}$
I. Dual to the 34 Black String

Proposal: Sting thong or a ToT Chang! of
see related reapply

$\mathrm{AdS}_{3} \times M$ w/ NSNS Sheers

$$
\underset{\text { to }}{\stackrel{\text { deal }}{\leftrightarrows}}
$$

Single trace TT deformation of a $F F T$

Assume the sieginal CFT2 is of the form

$$
\operatorname{Sgan}^{k}\left(x_{6 k}\right)
$$

with $\left\{\begin{array}{l}C_{x}=6 k, X=\operatorname{sea} d F T \\ \mu=\Phi_{1}=\# F 1 \\ k=Q_{5}=\# N S 5\end{array}\right.$
I. Dual to the 34 Black String

Propostal: Sting thoong ou a TsT thang! of see related rapads CGivea, 3 Agocker Vedtane
$\mathrm{AdS}_{3} \times M \mathrm{w}$ NSNS gheeres

$$
\stackrel{\text { tos }}{\stackrel{\text { dhal }}{\leftrightarrows}}
$$

Single trace TT deformation of a CFTR

Arsume the sieginal CFTh is of the form

$$
\operatorname{Sgan}^{k}\left(x_{6 k}\right)
$$

with $\left\{\begin{array}{l}C_{x}=6 k, X=\operatorname{sea} d F T \\ \mu=\Phi_{1}=\# F 1 \\ k=Q_{5}=\# N S 5\end{array}\right.$
The single - trace verisin of TT deformation is

$$
\begin{aligned}
& \frac{\partial S}{\partial \mu}=\sum_{i=1}^{N} \int J_{(1)}^{i} \wedge J_{(i)}^{i}
\end{aligned}
$$

Eidences:

1) Tharmodegaraies

Eidences:

1) TRermodelyamics

The total entropy of the single thace doy $=$ of $\operatorname{syr}^{+}(x)$ is gien ly

$$
\frac{S_{T}\left(\epsilon_{L} \epsilon_{R}\right)}{2 \pi}=\sqrt{\frac{C}{6} R \epsilon_{C}\left(1+\frac{2 \mu}{R \pi} \epsilon_{R}\right)}+\sqrt{\frac{C}{6} R \epsilon_{C}\left(1+\frac{2 \mu}{R \gamma} \epsilon_{C}\right)}
$$

Eidences:

1) TRermodelyamics

The total eatroping of the single thace doy $=$ of $\operatorname{Syp}^{+}(x)$ is gien ly

$$
\frac{S_{T}\left(\epsilon_{L}, \epsilon_{R}\right)}{2 \pi}=\sqrt{\frac{C}{6} R \epsilon_{C}\left(1+\frac{2 \mu}{R \eta} \epsilon_{R}\right)}+\sqrt{\frac{C}{6} R \epsilon_{C}\left(1+\frac{2 \mu}{R \eta} \epsilon_{C}\right)}
$$

det's conpone to the Beknontonin-Houking satengy of the Black stiving.

Eidences:

1) TRermodegramics

The total entropy of the single thace doy $=$ of
$\operatorname{spr}^{r}(x)$ is gita ly

$$
\frac{S_{T}\left(\epsilon_{c}, \epsilon_{R}\right)}{2 \pi}=\sqrt{\frac{C}{6} R \epsilon_{C}\left(1+\frac{2 \mu}{R \pi} \epsilon_{R}\right)}+\sqrt{\frac{C}{6} R \epsilon_{C}\left(1+\frac{2 \mu}{R \pi} \epsilon_{C}\right)}
$$

Let's compone to the Beksondtomin-Howhing sattengy of the Block staing.
Its comoverd chacgen com be computed:

$$
\begin{aligned}
& \frac{S_{B H}}{2 \pi}=\sqrt{Q_{c}\left(Q_{R} Q_{\mu}+2 \lambda Q_{R}\right)}+\sqrt{Q_{R}\left(Q_{k} Q_{n}+2 \lambda Q_{R}\right)} \\
& \text { Mift } R E_{C}=Q_{C}, R E_{R}=Q_{R} \\
& C=6 Q_{R} Q_{m}, \lambda=\frac{\mu k}{R^{2}}
\end{aligned}
$$

Eidences:

1) TRermodegramics

The total entropy of the single thace doy $=$ of
$\operatorname{spr}^{\mu}(x)$ is giuta ly

$$
\frac{S_{T}\left(\epsilon_{c}, \epsilon_{R}\right)}{2 \pi}=\sqrt{\frac{C}{6} R \epsilon_{C}\left(1+\frac{2 \mu}{R \pi} \epsilon_{R}\right)}+\sqrt{\frac{C}{6} R \epsilon_{C}\left(1+\frac{2 \mu}{R \pi} \epsilon_{C}\right)}
$$

det's conpone to the Beknondonin-Howhing satengy of the Black rtaing
Its comoverd chacgen com be computed:

$$
\begin{aligned}
& \frac{S_{B H}}{2 \pi}=\sqrt{Q_{C}\left(Q_{R} Q_{\mu}+2 \lambda Q_{R}\right)}+\sqrt{Q_{R}\left(Q_{k} Q_{m}+2 \lambda Q_{R}\right)} \\
& \rightarrow S_{T T}=S_{B H!}! \\
& \text { wits } R E_{C}=R \quad \text { RER }=Q R \\
& C=6 Q_{R} P_{m}, \lambda=\frac{\mu k}{R^{2}}
\end{aligned}
$$

2) Shing peotum

It is porible to cetermine the steing spodum an the TST teanganad badground (G, B, Φ) in terms of that o the undegomed one ($\tilde{G}, \bar{B}, \tilde{\Phi})$
2) Shing yestum

It is ponible to cetermine the steing spodum an the TsT tranganed badgosund (G, B, Φ) in terms of that on the undegomed one ($\tilde{G}, \bar{B}, \tilde{\Phi})$
Feature: the eov arod Vinasaor cearticints of the of TT defonad theory com le obtaioad
CAlday,
Ancityunar. Seran thore of the cuardegored Alongy Indar] by a are-locel chonge of coords
2) Shing yestum

It is ponible to cetermine the steing spodum an the TsT thengzaned badgeand ($G, B, \Phi)$ in terms of that on the undegomed one ($\tilde{G}, \bar{B}, \tilde{\Phi})$
Feature: the Eon oard Virasaor ceasticints of the of TT deforad theory com le obtainad উrowir by a arm-bech chonge of coonds Ou ToT: $\left\{\begin{array}{l}\text { T- duality colong } \mu \\ \text { shift is } \rightarrow \text { b- } \frac{2 \lambda}{R} \mu \\ T-\text { suality olong } \mu\end{array}\right.$
 ZRow: $(\hat{G}, \hat{B}, \hat{\Phi})=(\widetilde{E}, \widetilde{B}, \hat{\Phi})$ het ap reanlocal Bus jou ì and is

Wa-local BC, on $\hat{\mu}$ and $\hat{心}$:

$$
\begin{aligned}
& \hat{\mu}(\hat{\sigma}+2 \pi)=\hat{\mu}(a)+2 \pi \gamma(a) \\
& \hat{v}(a+2 \pi)=v(a)+2 \pi \gamma(c) \\
& \gamma(\mu)=\underbrace{\omega}_{\text {minding }}+\frac{\lambda}{R \pi} \underbrace{\oint \bar{J}^{1} d J}_{J_{-}^{1}=E_{R}}, \gamma_{(0)}=\cdots
\end{aligned}
$$

There thivitad BCo com le inaplommed ly

$$
\hat{\mu}=\tilde{\mu}+\gamma((x) \gamma, \quad \hat{v}=\tilde{w}-\gamma(x) / \bar{z}
$$

$$
\begin{aligned}
& \text { caadglela } \\
& \text { cofectory }
\end{aligned} \rightarrow \text { candinatero of }
$$

befoct thay the remile)
This insluces a Spectial grace of Cle emerato

$$
\left\{\begin{array}{l}
\hat{J_{1}}=\tilde{J_{1}}+\gamma_{(a)} \\
\hat{J_{1}}=\widetilde{\tilde{F}_{1}}+\#(a)
\end{array}\right.
$$

$l=A K$ cadiun and of $P 2$ Viravar moden:

$$
\left\{\begin{array}{l}
\hat{C_{0}}(\lambda)=\tilde{C_{0}}+l E_{c}(\lambda) \omega r-\frac{2 \lambda}{k} P^{2} \in(\lambda \lambda] \epsilon_{R}(\lambda) \\
\hat{C}_{0}(\lambda)=\ldots
\end{array}\right.
$$

Impaning the Vinonve consticints lejpe and apter depomation $\hat{\omega}(x)=1=\hat{C}_{0}(0)$ sne can ectracdt

$$
\epsilon_{C \mathbb{R}}(0)=\epsilon_{C \mathbb{R}}+\frac{2 \lambda R}{\omega R} \epsilon_{L}(x) \epsilon_{R}(\lambda)
$$

cempare to $E_{U R}=E_{U R}(\mu)+\frac{2 \mu}{R} \epsilon_{L}(a) E_{R}(a)$
$l=R_{w}, \quad \lambda=\frac{\mu h}{R^{2}} \quad$ TT spectum!
Thes

Trupsing the Viconore courticints bejpe and aftar depomation $\hat{S}^{\infty}(x)=1=\hat{C}_{0}(0)$ sre Can extract

$$
E_{L \mathbb{R}}(0)=\epsilon_{C \mathbb{R}}+\frac{2 \lambda R}{\mu R} \epsilon_{L}(y) \epsilon_{R}(\lambda)
$$

cempare tos $\epsilon_{C R}=\epsilon_{L R}(\mu)+\frac{2 \mu}{R} \epsilon_{L}(a) \epsilon_{R}(a)$

$$
l=R_{w}, \quad \lambda=\frac{\mu h}{R^{2}} \quad \text { TF spedtum! }
$$

Thes

$$
\begin{aligned}
& \downarrow_{1} T_{s} \tau \\
& \uparrow \text { 个个! } \\
& \text { Spectran a TT } \\
& (E(\lambda), J(\lambda) \text { Srestium of thal }
\end{aligned}
$$

Trupsing the Viconore courticints bejpe and aftar depomation $\hat{S}^{\infty}(x)=1=\hat{C}_{0}(0)$ sre Can extract

$$
E_{L \mathbb{R}}(0)=\epsilon_{C \mathbb{R}}+\frac{2 \lambda R}{\mu R} \epsilon_{L}(y) \epsilon_{R}(\lambda)
$$

cempore tos $\epsilon_{C R}=\epsilon_{C R}(\mu)+\frac{2 \mu}{R} \epsilon_{L}(a) \epsilon_{R}(a)$

$$
l=R_{w}, \lambda=\frac{\mu h}{R^{2}} \quad T \overline{\text { spedrem! }}
$$

Thes

We have arheued that tie calation betweran $(E(\lambda), J(\lambda)$ and (E, J) is preciscly the ove reloting a CFT and its TT cleformation leav if we den t know the cletaing of the M.R.J.)

Thank you!

Mose:

- Otba chowralles (EE, QNM)?
- Graitatesseal Phave yace? (TrTy Berm-kowane)
- Estamal BS
- Study seformation of eaphicit SPO? (Elatadt, Galavil)

