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BPS Black Holes

BPS black holes provide a rich context for the study of quantum

gravity. While the Cardy formula gives an accurate microscopic

derivation of the entropy of large black holes, the existence of

bound states of black holes di↵uses the spectrum of single center

N = 2 black holes.



BPS Black Holes

This is in particular the case for “scaling black holes”, which are

solutions of supergravity which can be adiabatically connected to

the solution with a single black hole singularity by scaling the

distances between the centers. We will consider in this talk the

spectrum of scaling black holes with three centers.



Attractor mechanism

The vectormultiplet scalar fields of are position dependent and

required to satisfy the attractor equations in the near-horizon

AdS2 ⇥ S
2
.

For single center black hole:
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BPS bound states of N = 2 supergravity

γ1 γ3

γ2

r13

N BPS black holes with charges �i located at ~ri in R3

Static BPS bound states exist due to interplay between

gravitational attraction and electro-magnetic repulsion

=) Bound states are static and therefore part of the 1-particle

Hilbert space HBPS(�; t)



Denef equations

N = 2 BPS equations of motion require the distances

rij = |~ri � ~rj | 2 R+ to satisfy:

NX

j=1

j 6=i

�ij
rij

= ci ({�k}; t)

- �ij = h�i , �ji 2 Z: Dirac-Schwinger-Zwanziger innerproduct
- ci ({�j}; t) 2 R: stability parameters depending on Z (�i , t)

Denef (2000)

Phase space MN({�i}, {ci}):

- parametrizes ~ri 2 R3, i = 1, . . . ,N

- has dimension 2N � 2

De Boer, El-Showk, Messamah, Van den Bleeken (2008)



Denef equations: Two aspects

Wall-crossing:

Solutions might decay or recombine upon varying ci 2 R:
Denef (2000); Denef, Moore (2007),. . .

For example N = 2: lim
c1!0

r12 = lim
c1!0

�12
c1

= ±1

Scaling solutions:

Centers could get arbitrarily close, de-

pending on {�i}
Bena, Wang, Warner (2006); Denef, Moore (2007),. . .

For example N = 3: If �12 + �23 � �31,
and cyclic perm. )
lim
�!0

rij(�) = ��ij +O(�2
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Invariants

We have various types of BPS indices occurring:

• refined BPS index ⌦(�, y ; t)

• BPS index ⌦(�; t) = ⌦(�; 1, t)

• refined single-centered invariant ⌦S(�, y)

• single-centered invariant ⌦S(�) = ⌦S(�, 1)

• total invariant

⌦T (�, y) = ⌦S(�, y)+
X

Pn
j=1

mj�j=�

H({�j ,mj}, y)
nY

i=1

⌦S(�i , y
mi )

with H({�j ,mj}, y) determined by the “minimal modification

hypothesis”.



Invariants

We also need a numerical counterpart to ⌦T (�, y), however
limy!1⌦T (�, y) diverges generically

We use instead the prescription
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for f (1) 6= 0.



Decomposition formula

In terms of these invariants, the ⌦(�, y , t) can be expressed as

⌦̄(�, y ; t) =
X

P
i Ni�i=�,

�i 6=�j ,i 6=j

gC ({Ni�i}; {ci (t)}, y)
Y

j

⌦̄T (�j , y)Nj

Nj !

JM, Pioline, Sen (2010)

gC ({�i}, {ci}, y) is the (twisted) Dirac index of the space

MN({�i}, {ci})



Coulomb branch: Localization

Evaluate integral by localization with respect to J3
Duistermaat, Heckman (1982); Berline, Vergne (1985);. . .

+
Sum over isolated fixed points 2 MN({�i}, {ci}) of J3

The solutions which contribute are of the form:

γ1 γ3γ2

z-axis
J3

JM, Pioline, Sen (2011)



Coulomb branch formula

Fixed point formula:

gC ({�i}, y ; {ci}, y) =
(�1)

P
i<j �ij+N�1

(y � y�1)N�1

X

p2{f.p. of J3}

s(p) y
2J3(p)

• angular momentum:

J3(p) =
1

2

X

i<j

�ij sign(zj � zi )

• sign:

s(p) = sign
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Coulomb branch formula: Example

Example: �i , i = 1, . . . , 3, such that �12, �13, �23 > 0,

c3 < c2 < 0 < c1

• Fixed points have orderings:

{1, 2, 3;+}, {2, 1, 3;�}, {3, 1, 2;�}, {3, 2, 1;+} ,

with ± = s(p)

• Enumerate:

gC ({�i}, y ; {ci}) = (�1)
�12+�23+�13 (y � y

�1
)
�2

⇣
y
�12+�13+�23 � y

�12��23��13 � y
�13+�23��12 + y

��12��13��23

⌘



Minimal modification hypothesis

With loops/generic superpotential:

- scaling solutions are possible

- explicit algorithm, recursive in the number of centers

- sum over regular fixed points 6= SU(2) character

Problem: What is the contribution of the scaling fixed point?

For 3-center, determine H such that

gC ({�i}, y ; {ci}, y) + H({�i}, y)

is an SU(2) character, with “minimal amount” angular momentum.



Minimal modification hypothesis

Consider a 3-center scaling black hole. Let a = �12, b = �23 and

c = �31.

H({�j}, y) =
(

� 2

(y�y�1)2
, if a+ b + c 2 2Z,

y+y�1

(y�y�1)2
, if a+ b + c 2 2Z+ 1,

Numerical version:

H({�j}) =
⇢

0, if a+ b + c 2 2Z,
1

4
, if a+ b + c 2 2Z+ 1,

⌦T (�) = ⌦S(�) +

⇢
0, if a+ b + c 2 2Z,

1
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j=1
⌦S(�j), if a+ b + c 2 2Z+ 1.



Black Hole Bound States

We have

gC
�
{�j}; {c⇤j }

�
=

(�1)
a+b+c

4

⇥
F
⇤
(123) (a+ b � c)

2
+ perm

+
1

4
A �a,c �b,c a

2

�

with

F
⇤
(123) =

1

4
(1 + sgn(a� c) sgn(b � c) + sgn(b � c) sgn(c � a� b)

+ sgn(c � a� b) sgn(a� c) ).

A above is introduced to deal with exceptions where arguments of

sgn’s vanish. We will see that modularity provides a definite

answer.



Black Hole Bound States

To enumerate scaling configurations, we also introduce the

quantity fC which determines whether a scaling configuration

exists for these charges or not,

fC
�
{�j}; {c⇤j }

�
=

(�1)
a+b+c

4
[1 + sgn(a+ b � c) sgn(a� b + c) + perm

+A1 �a,0 �b,c + perm]

The A`, ` = 1, 2, 3 is introduced to deal with exceptions where

arguments of sgn’s vanish. We will see that modularity provides a

again a definite answer.



D4-D2-D0 Black Holes

Let us review a few aspects of D4-D2-D0 black holes, with

D4-brane charge P , D2-brane charge Q and D0-brane charge Q0,

abbreviated to � = (P ,Q,Q0).

Let Dabc , a, b, c = 1, . . . , b2(X ) be the triple intersection numbers

of the Calabi-Yau X , then

• Dab = DabcP
c
gives us quadratic form on the lattice ⇤, and Q

takes values in ⇤
⇤
, with quadratic form D

ab
= (D

�1
)
ab

• ⇤ has signature (1, b2 � 1).



The Kähler modulus is t = B + i J

The large volume attractor point is

t
�
� = D

ab
Qb + i�Pa,

with su�ciently large � � 1.

Attractor invariants (or MSW invariants)

⌦(�, t�� )

These invariants are unchanged under the “spectral flow”

symmetry, such that these only depend on the class of Q 2 ⇤⇤ in

⇤
⇤/⇤. This class is denoted by µ.



Partition function

Partition function is for fixed P , and admits a theta series

decomposition due to a symmetry of the attractor invariants:

Z�
P(⌧,C , t) =

X

Q,Q0

⌦̄(�, t�� ) e
�⌧2M(�,t)+2⇡iC0Q0+2⇡iC .Q

=

X

µ2⇤⇤/⇤

hP,µ(⌧)⇥µ(⌧, ⌧̄ ,C ,B)

with ⌧ = C
0
+ i⌧2, and

hP,µ(⌧) =
X

Q0

⌦̄(�, t�� ) q
�Q0+(µ+P/2)2/2

and

⇥µ(⌧, ⌧̄ ,C ,B) =
X

Q2⇤⇤
µ

(�1)
P.Q

q
Q̂2

+
/2
q̄
�Q̂2

�/2
e
2⇡iC .(Q�B/2) ,

Gaiotto, Strominger, Yin (2006); De Boer et al (2006); Denef, Moore (2007)



Partition function

S-duality action on the Type IIB hypermultiplet geometry requires

that hP,µ transforms as a mock modular form ) hP,µ can be

completed with non-holomorphic terms to bhP,µ, such that the

latter transforms as a vector-valued modular form. The depth of

the mock modular form corresponds the maximal length of a

partition of P .

Alexandrov, Banerjee, JM, Pioline (2016/7), Alexandrov, Pioline (2018),. . .



Transformation law

S : bhP,µ(�1/⌧,�1/⌧̄) = � 1p
|⇤⇤/⇤|

(�i⌧)�b2/2�1"(S)⇤e�i⇡P2/2

⇥
X

�2⇤⇤/⇤

e
�2⇡i�.µbhP,�(⌧, ⌧̄) ,

T : bhP,µ(⌧ + 1, ⌧̄ + 1) = "(T )
⇤
e
i⇡(µ+P/2)2bhP,µ(⌧, ⌧̄),

We also introduce

bZ�
P(⌧, ⌧̄ ,C , t) =

X

µ2⇤⇤/⇤

bhP,µ(⌧, ⌧̄)⇥µ(⌧, ⌧̄ ,C ,B),

which transforms as a modular form.



Charge Lattices for Bound States

We are interested in n-center bound states with non-vanishing

D4-brane charge Pj , j = 1, . . . , n with associated lattices ⇤j .

This gives rise to an (n b2)-dimensional lattice ⇤ = ⇤1 � · · ·� ⇤n,
with quadratic form ~D = diag(D1, . . . ,Dn)

The total electric charge Q =
P

j Qj is distributed over the n

constituents. We therefore want to decompose ⇤ in terms of a

lattice ⇤ associated to the total charge, and a lattice ⇤ associated

to the charge distribution. Let ⇤ ⇢ ⇤ be defined by

⇤ = {~k = (k , k , . . . , k) 2 ⇤ | k 2 Zb2},

and ⇤ ⇢ ⇤

⇤ =

8
<

:
~k 2 ⇤

������

nX

j=1

Djkj = 0

9
=

; .



Charge Lattices for Bound States

The glue group is the coset ⇤/(⇤� ⇤). Its number of elements is

Ng =

s
det(D) det(D)Qn

j=1
det(Dj)

.

The order of the quotient group (⇤⇤/⇤)/h(G ) is

Nq =
det(D)

Ng
.

The quadratic form on ⇤⇤
is

Q2
= �Q

2
+

X

j

(Qj)
2

j

⇤ has signature (n � 1) (1, b2 � 1)



Partition function for scaling black holes

Partition function for total invariants:

h
T
P,µ(⌧) =

X

Q0

⌦̄T (�, t
�
� ) q

�Q0+(µ+P/2)2/2

The relation between attractor and total invariants leads to the

decomposition

hP,µ(⌧) = h
T
P,µ(⌧)+

X

n>1

X
Pn

j=1
Pj=P

gC ({�j}, {c�j })
| Aut({�j})|

q
Q2/2�

P
j (Qj )

2

j /2
nY

j=1

h
T
Pj ,µj

(⌧)



Then, the partition functions for scaling solutions reads:

h
3T
{Pj},µ(⌧) =

X

µj2⇤⇤j /⇤j , j=1,2,3,

µ1+µ2+µ3=µ

h
T
P1,µ1

(⌧) hTP2,µ2
(⌧) hTP3,µ3

(⌧) µ(⌧) ,

with

 µ(⌧) =
X

Q2⇤⇤
µ

gC ({�j}, {c�j }) q�Q2/2,

with ⇤⇤
µ = µ+ P/2 + ⇤ with µ 2 ⇤⇤



Partition function for scaling solutions

The number of terms in the sum for h
3T
{Pj},µ is Nq.

We can assume that h
T
Pj ,µj

transform as earlier stated, by requiring

that the Pj are irreducible.

Thus we need to understand the transformations of  µ, to

determine those of h
3T
{Pj},µ

We also introduce

�µ(⌧) =
X

Q2⇤⇤
µ

fC ({�j}, {c�j }) q�Q2/2

i.e. the generating function of scaling configurations.



Convergence

For three centers, ⇤ has signature (2, 2b2 � 2). There is a general

approach for the convergence and modular completion of functions

such as �µ and  µ

Consider

⇥µ[K](⌧ ; L) =
X

x2L+µ

K(x) q
�B(x)/2

Let V = {V1, . . . ,VN} be a collection of positive vectors. The

kernel reads

K(x ,V) = 1

4

0

@w(V) +
NX

j=1

sgn(B(x ,Vj))sgn(B(x ,Vj+1))

1

A ,

with

w(V) = �
NX

j=1

sgn(B(v ,Vj))sgn(B(v ,Vj+1)),

Alexandrov, Banerjee, JM, Pioline (2016); Funke, Kudla (2017),



Convergence

Conditions for convergence:

B(Vj ,Vj) > 0,

B(Vj ,Vj)B(Vj+1,Vj+1)� B(Vj ,Vj+1)
2 > 0,

B(Vj ,Vj)B(Vj�1,Vj+1)� B(Vj ,Vj�1)B(Vj ,Vj+1) < 0.



Convergence

The functions �µ and  µ are of the right form to apply these

general results.

To apply this general formalism to �µ, we determine the vector Ca

such that (Ca,Q) = a for all Q 2 ⇤ and similarly for Cb and Cc ,

Ca = (�P2,P1, 0),

Cb = (0,�P3,P2),

Cc = (P3, 0,�P1),

We then have for �µ, C1 = Ca + Cb � Cc , C2 = Ca � Cb + Cc and

C3 = �Ca + Cb + Cc , and convergence follows. The proof for  µ

is similar



Generalized error functions

Let E2 be the 2-dimensional generalization of the error function

defined by:

E2(↵; u1, u2) =

Z

R2

e
�⇡(u1�u0

1
)
2�⇡(u2�u0

2
)
2

sgn(u
0
2) sgn(u

0
1+↵ u

0
2) du

0
1 du

0
2

If we rescale the arguments, it satisfies

lim
�!1

E2(↵;� u1,� u2) =

⇢
sgn(u1) sgn(u1 + ↵u2), (u1, u2) 6= (0, 0)

2

⇡ arctan(↵), (u1, u2) = (0, 0)

E2 satisfies the Vignéras equation ensuring modular properties,

when used in the kernel of a theta series.



Modular completion

Thus the modular completions, b�µ and b µ, of �µ and  µ is

obtained by replacing

sgn(C1.x) sgn(C2.x) +A �(C1.x) �(C2.x)

by E2(↵; u1, u2), with

↵ =
(C1.C2)q

C 2

1
C 2

2
� (C1.C2)

2

u1 =
p
2⌧2

(C1?2.x)

|C1?2|

u2 =
p
2⌧2

(C2.x)

|C2|



We can fix the constants A, A` introduced earlier, by requiring that

the added non-holomorphic terms are subleading, i.e. vanish in the

⌧2 ! 1 limit.

• For b µ, we find that A = 1 generically, in agreement with the

physically preferred value.

• For b�µ, we find that A` can be irrational. While peculiar, this

is maybe not so worrisome since �µ is not a proper physical

partition function.



Completion of �µ

Split holomorphic and non-holomorphic part:

b�µ(⌧, ⌧̄) = �µ(⌧) + R
�

µ (⌧, ⌧̄)

with

R�

µ(⌧, ⌧̄) =

X

`=1,2,3

i

Z i1

�⌧̄
dw

b⇥µ+⇢(⌧,�w ; L?` , {C`�1C`+1})⌥µ+⇢(w ; C2

` ,K · C`)p
�i(w + ⌧)

.



Modular completion

As a result, we find that the completion

bh3T{Pj},µ

transforms identically bhP,µ.

Therefore, in the decomposition

bZ�
P = bZT

P + bZ3T
P + . . .

each term has the same modular properties.



Case study

Let us consider a concrete example: let X be the K3 fibration with

intersection numbers with h
1,1

= 2 and h
2,1

= 86, and intersection

numbers

d111 = d112 = 0, d122 = 4, d222 = 2,

Choose charges:

P1 = P2 = (0, 1), P3 = (1, 1)



q-series for �µ

Let µ = (0, 0), then

�µ = 2q6 + 4q20 + 6q24 + 4q30 + 4q44 + 4q50 + 8q52 + 2q54 + 12q56 + 4q60

+ 4q64 + 4q68 + 4q70 + 12q80 + 2q88 + 8q90 + 8q92 + 8q94 + 14q96 + 16q100

+
(A1 + A2 + A3 + 1)

2
+ (A1 + A2 + A3 + 3)(q8 + q32 + q72) + . . .

with

A1 =
2

⇡
arctan(�5/

p
11),

A2 = A3 =
2

⇡
arctan(�1/

p
8),



q-series for  µ

Let µ = (0, 0):

 µ = 16q
30
�
1 + 2q

22
+ 4q

34
+ q

40
+ 2q

60
+ 8q

62
+ 2q

64
+ 4q

70
�
+. . .



More centers?

While technically involved, we expect that these results can be

generalized to scaling black holes with more centers. This would

lead to higher depth mock modular forms.



Thank you!


