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Motivation

I String theory provides a description of the microscopic states
making up supersymmetric black holes.

I In some favorable setting, can give an exact count.

I The counting exhibits fascinating connections to number theory.
Lots of progress in recent years. [see (many) talks at this workshop]

I Susy black holes can also be studied as solutions to the equations
of motion of the low-energy effective supergravity description.

I Semi-classically, black hole entropy is given by the
Bekenstein-Hawking area-law SBH = AH/(4GN ) + . . .

I Can we compute corrections to this formula, obtain integer
degeneracies, and compare to the string theory counting?
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Motivation

I A priori, this is a strange/non-obvious question.

I Sugra is a low-energy description of the UV complete theory
→ no reason to expect an exact match.

I Prompts us to study and understand quantum corrections in
supergravity. Interesting in its own right.

I There are some cases – like with maximal supersymmetry –
where the comparison can be made successfully, even including
exponentially suppressed contributions.

I Besides checking numbers, it is interesting to try and uncover the
number-theoretic structures predicted by string theory from the
supergravity description.
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Outline

1 Microscopic state counting in two examples

2 Macroscopic description

3 Exact supergravity results in one example

4 Partial supergravity results in the other example

5 Conclusion and outlook
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Dyons in type II string theory @ T 6

I Counting function for 1/8-BPS dyons:
[Maldacena,Moore,Strominger‘99; Shih,Strominger,Yin‘05]

F1/8(τ, z) = ϑ2
1(τ, z)
η6(τ) .

I F1/8 is a weak Jacobi form of weight −2 and index 1.

I The degeneracies are given in terms of its Fourier coefficients,

d1/8(∆) = (−1)∆+1C1/8(∆) , ∆ = 4n− `2 .

I An exact convergent expansion for C: [Rademacher,Zuckerman‘38]

C1/8(∆) = 2π
+∞∑
k=1

Kl(k,∆)
k

( 1
∆
)7/4

I7/2
(π√∆

k

)
.
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Dyons in type II string theory @ K3× T 2

I Counting fct for 1/4-BPS dyons: [Dijkgraaf,Verlinde,Verlinde‘96]

F1/4(τ, σ, z) =
(
Φ10(τ, σ, z)

)−1
.

I F1/4 is a meromorphic Siegel modular form of weight −10, with
double poles at z = 0 and its Sp(2,Z) images.

I The degeneracies are given by an inverse Fourier transform,

d1/4(n,m, `) = (−1)`+1
∮
C

dτ dσ dz e−2πi(nτ+mσ+`z) F1/4(τ, σ, z)

I The contour depends on the moduli. At fixed charges, d1/4
“jumps” when C crosses a pole. [Cheng,Verlinde‘07]

I Manifestation of wall-crossing where a 1/4-BPS bound state of
two 1/2-BPS states (dis-)appears when crossing codim-1 walls.
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Single-centered dyons in type II string theory @ K3× T 2

I Single-centered black holes exist everywhere in the moduli space,
provided ∆ = 4mn− `2 > 0. [Sen‘09]

I Near the BH, massless moduli are attracted to values that are
fully determined by the charges. [Ferrara,Kallosh,Strominger‘95]

I This implies the existence of a special attractor contour,

C∗ = lim
ε→0+

{Im(τ) = 2m/ε, Im(σ) = 2n/ε, Im(z) = −`/ε} .

I The single-centered degeneracies d∗1/4 depend only on charges.

I They are Fourier coefficients of certain mock Jacobi forms ψF
m.

[Dabholkar,Murthy,Zagier‘12]

d∗1/4(n,m, `) = (−1)`+1 cF
m(n, `) for ∆ = 4mn− `2 > 0 .
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An exact formula for cF
m with ∆ > 0

I ψF
m admits a standard ϑ-decomposition into vector-valued mixed

mock modular forms {h`} with shadow the unary theta series of
weight 1/2 times η−24. [Dabholkar,Murthy,Zagier‘12]

I There exists a generalization of the Rademacher expansion for
mixed mock modular forms. [Bringmann,Manschot‘10]

I Gives an analytic expression for cF
m(n, `) with ∆ > 0 in terms of

the polar coefficients cF
m(n, `) with ∆ < 0, [Ferrari,VR‘17]

cF
m(n, `) ∼

+∞∑
k=1

[ ∑
˜̀∈Z/2mZ

∆̃<0

cF
m(ñ, ˜̀) Kl(k, ∆̃,∆)

k

( |∆̃|
∆
)23/4

I23/2
(π√|∆̃|∆

mk

)

+ Kl(k,m,∆)√
k

(4m
∆
)6
I12
(2π
√

∆√
mk

)
+ I(k,m,∆)

]
.
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An exact formula for cF
m with ∆ < 0

I Track all possible decays for bound states across walls of
marginal stability in the moduli space. [Sen‘11]

I Degeneracies of decay products
are Fourier coeffs of η−24.

I In the region R, walls lie at the
bottom of the strip and form
Farey arcs (in red).

I Sum over all decay channels: [Chowdhury,Kidambi,Murthy,VR,Wrase‘19]

cF
m(n, `) =

∑
γ∈W (n,`,m)

(−1)`γ+1 |`γ | d(mγ) d(nγ) for ∆ < 0 .

I W is a set of SL(2,Z) matrices encoding the relevant walls.
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The set W

I Since d(p) = 0 for p < −1, the set W of walls giving a non-zero
contribution to the polar coefficients cF

m with ∆ < 0 is finite.
I It is “small”, in the sense that all entries of γ ∈W are less than

or equal to m+ 1 in magnitude.

I It has an elegant characterization in terms of the continued
fraction expansion of `/(2m). [Cardoso,Nampuri,Rosselló‘20]

I While there is an efficient algorithmic way to construct the set for
any values of the charges, we currently lack a proper
group-theoretic definition of W as a subset of SL(2,Z).

I Still, the previous result for cF
m with ∆ < 0 implies that the

single-centered degeneracies cF
m with ∆ > 0 are completely

determined from the Fourier coefficients of η−24.
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The view from supergravity

I At strong coupling, the systems gravitate and form black holes.

I 1/8-BPS BHs in N = 8 and 1/4-BPS BHs in N = 4.

I These black holes are solutions to the equations of motion of the
appropriate supergravity theories in 4d.

I How much of the number-theoretic structure can we recover from
the supergravity description?

I Not a priori obvious: supergravity is a low-energy effective
description of the UV complete string theory.

I Some encouraging results can be obtained using the framework of
the Quantum Entropy Function.
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The Quantum Entropy Function

I The quantum entropy of 1/2-BPS BHs in 4d N = 2 sugra is
defined as the expectation value of a Wilson line: [Sen‘08]

eSBH(p,q) =
〈

exp
[
−i qI

∮
dτ AIτ

]〉finite

AdS2
.

I Computed in the AdS2 factor of the near-horizon (attractor)
geometry, regularized to remove IR divergences.

I The leading saddle gives the Bekenstein-Hawking entropy.
I An exact evaluation gives acces to the quantum corrections.
I This is achieved using supersymmetric localization.
I Use a supercharge Q to constrain the field configurations that

contribute to the QEF – the localization manifold MQ.
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Supergravity localization

I When the metric fluctuates, the definition of Q is unclear.
I An equivariant supercharge δeq can be constructed from the

nilpotent BRST operator associated with local supersymmetry.
[de Wit,Murthy,VR‘18]

I The manifold MQ is most conveniently analyzed in a formalism
where the susy transformations close off-shell
→ 4d N = 2 conformal supergravity.

I In the gravitational sector, find all bosonic configurations solving

δeqψµ = Dµ(̊ε+ ε) + (T · γ)γµ(̊ε+ ε) + γµ(η̊ + η) .

I Imposing AdS2 × S2 boundary conditions, the only solution is to
set the bosonic fields to their attractor values and ε = η = 0.

[Gupta,Murthy‘12]
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The localized QEF

I In the matter sector, fields are allowed to climb away from their
attractor configuration (off-shell). [Gupta,Murthy‘12]

I Their fluctuations φI parametrize the localization manifold MQ.

I The localized QEF is a finite-dimensional integral:

eSBH(p,q) =
∫
MQ

dφI e−πqIφI+S(φ+ip) Z1-loop(φ)Zmeasure(φ)

I Z1-loop comes from Gaussian integration around MQ.
I Contribution logZ•1-loop(φ) = a• logK(φ) from each multiplet,

[Murthy,VR‘15; Gupta,Ito,Jeon‘15; Jeon,Murthy‘18]

a2 = 2 , a3/2 = −11
12 , a1 = − 1

12 , a0 = 1
12 .
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The action and measure

I The N = 2 sugra action contains “F-terms” (chiral superspace
integrals) and “D-terms” (full superspace integrals).

I A large class of D-terms can be constructed using the N = 2
kinetic multiplet. [de Wit,Katmadas,van Zalk‘10]

I On MQ, we find that they vanish, [Murthy,VR‘13]

SD-terms = 0 .

I Most likely because D-terms are Q-exact. General proof?

I The F-terms and the remaining measure factor are expressed in
terms of the prepotential F of the N = 2 theory.
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Maximal supergravity

I Cast the N = 8 graviton multiplet in an N = 2 language:

n2 = 1 , n3/2 = 6 , n1 = 15 , n0 = 10 .

I One-loop determinant is K(φ)−4 with K(Y ) = i(Ȳ IFI − Y I F̄I).

I This is equivalent to a truncated N = 2 theory with n1 = 7.
Large cancellation of modes at each order in perturbation theory.

[Murthy,VR‘15]

I In the truncated theory,

S = 4π ImF (φ+ ip) , with F (Y ) = −Y
1

Y 0 Y
aCabY

b .

I Cab is the intersection matrix of the 6 two-cycles on T 4 ⊂ T 6.
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Entropy of 1/8-BPS black holes

I The measure is expressed in terms of the second derivatives of F ,
[Cardoso,de Wit,Mahapatra‘08; Dabholkar,Gomes,Murthy‘11]

Zmeasure =
√∣∣det

[
ImFIJ(φ+ ip)

]∣∣ .

I Using all the above in the localized QEF,

eSBH(p,q) =
√

2π
( 1

∆
)7/4

I7/2
(
π
√

∆
)
.

I Precisely matches the k = 1 term of d1/8 obtained from the
Rademacher expansion of the microscopic counting function.

I Higher-k terms can also be recovered from localization in an
orbifold of the near-horizon geometry. [Dabholkar,Gomes,Murthy‘14]
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Half-maximal supergravity

I Cast the N = 4 graviton multiplet and Nv = 22 N = 4 vector
multiplets in an N = 2 language:

n2 = 1 , n3/2 = 2 , n1 = 23 , n0 = 22 .

I Resulting one-loop determinant is unity. Cancellations between
the gravitini and the hypers, and between the graviton and the
vectors, at all order in perturbation theory.

I This is equivalent to a truncated N = 2 theory with n1 = 23.
I The prepotential F is modified beyond the (Y 1/Y 0)Y CY term:

• Higher-derivative corrections,
• Non-holomorphic corrections.
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Corrected prepotential

I The corrections are encoded in a real homogeneous function Ω,
[Cardoso,de Wit,Mahapatra‘08]

F = −Y
1

Y 0 Y
aCabY

b + 2i Ω(Y, Ȳ ,Υ, Ῡ) .

I For N = 4 compactifications and with S = −iY 1/Y 0,

Ω = 1
256π

[
Υ log η24(S)+Ῡ log η24(S̄)+ 1

2(Υ+Ῡ) log(S+ S̄)12
]
.

I The non-holomorphic term is required so that ΩS transforms
under S-duality as a modular form of weight 2.
Similar to the Eisenstein series G∗2(z) = G2(z)− π/(2y).

[Cardoso,de Wit,Mohaupt‘99]

I Signals the departure from a Wilsonian effective action.
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Previous approximations

I Due to Ω, the measure is also corrected,

Zmeasure =
√∣∣det

[
Im(FIJ − FIJ̄)

]∣∣ .
I Quite an intricate factor in the integrand!

I Previously, dealt with by neglecting non-holomorphic corrections
and approximating [Murthy,VR‘15]

Zmeasure ≈ (φ0)Khol(φ) , with Khol(Y ) = i(Ȳ IF hol
I −Y I F̄ hol

I ) .

I Agrees with a saddle-point evaluation of the d1/4 from DVV.
[David,Sen‘06], see also talk by M. Rosselló

I Related to the measure factor in the refined OSV conjecture.
[Denef,Moore‘07]
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I −Y I F̄ hol

I ) .

I Agrees with a saddle-point evaluation of the d1/4 from DVV.
[David,Sen‘06], see also talk by M. Rosselló
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A partial supergravity result

I With the above approximations, we find [Murthy,VR‘15]

eSBH ≈
∑

˜̀∈Z/2mZ
∆̃<0

αm(ñ, ˜̀) ( |∆̃|∆
)23/4

I23/2
(π√|∆̃|∆

m

)

with αm(n, `) = (`− 2n) d(m+ n− `) d(n).

I Compare with the previous formula for cF
m(n, `) with ∆ < 0.

We see that αm equals a single term in the sum over W ,
corresponding to γ =

(
1 0
1 1

)
, i.e. the first S-wall from 0 to 1.

I We recovered the leading part of the k = 1 term in the
Rademacher contribution to the microscopic degeneracies.
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Completing the partial result

I Compared to the general structure of d1/4 in the first part of the
talk, we are missing
• the other terms in the sum over W ,
• the contributions from the shadow of ψF

m.

I For the latter, a hint for progress is in the fact that
mock-modularity can be traded for non-holomorphicity.

I The completion of a mock-modular form h with shadow g,

ĥ(τ) = h(τ) +
∫ ∞
−τ̄

g(−z̄)
(z + τ)w dz ,

is modular but non-holomorphic, ∂ĥ/∂τ̄ ∝ ḡ.
I To recover the shadow contributions, reinstate the

non-holomorphic terms log(S + S̄) in the prepotential.
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Completing the partial result

I The non-holomorphic term does not involve the full η function.

I Produces a single additional term in K = i(Ȳ IFI − Y I F̄I).

I Has the right structure to generate the I12 Bessel function when
using the approximate measure. [work in progress]

I We should also remove the approximation on the measure.

I Will modify the Rademacher-type contribution, possibly
generating the full sum over W in the polar coefficients?

I Generates the I term? The structure there is less clear. . .
Understand the terms with double derivatives of the η function.
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Conclusion

I Localization of the QEF displays the intricate number-theoretic
structures at play in quantum black holes.

I In maximal supergravity, recover the full Rademacher expansion
of the weak Jacobi form.

I For N = 4 compactification, the recent exact microscopic results
provide a guide for the supergravity computation.

I Understand the origin of the “mock pieces” in d1/4 from sugra
→ non-holomorphic corrections to F should play a role.

I The exact result will involve proper treatment of the measure.

I Once established, turn to N = 2 compactifications. Beautiful
results available, more to explore! [Cardoso,Nampuri,Polini‘19]
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Thank you for your attention.
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