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Motivation

> String theory provides a description of the microscopic states
making up supersymmetric black holes.

> In some favorable setting, can give an exact count.

» The counting exhibits fascinating connections to number theory.
Lots of progress in recent years. [see (many) talks at this workshop]
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Motivation

> String theory provides a description of the microscopic states
making up supersymmetric black holes.

> In some favorable setting, can give an exact count.

» The counting exhibits fascinating connections to number theory.
Lots of progress in recent years. [see (many) talks at this workshop]

» Susy black holes can also be studied as solutions to the equations
of motion of the low-energy effective supergravity description.

» Semi-classically, black hole entropy is given by the
Bekenstein-Hawking area-law Sgy = Ay /(4GN) + . ..
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Motivation

> String theory provides a description of the microscopic states
making up supersymmetric black holes.

v

In some favorable setting, can give an exact count.

» The counting exhibits fascinating connections to number theory.
Lots of progress in recent years. [see (many) talks at this workshop]

v

Susy black holes can also be studied as solutions to the equations
of motion of the low-energy effective supergravity description.

» Semi-classically, black hole entropy is given by the
Bekenstein-Hawking area-law Sgy = Ay /(4GN) + . ..

» Can we compute corrections to this formula, obtain integer
degeneracies, and compare to the string theory counting?

1 Uncovering the mock nature of single-centered BPS black holes | KU LEUVEN



Motivation

» A priori, this is a strange/non-obvious question.

> Sugra is a low-energy description of the UV complete theory
— no reason to expect an exact match.
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Motivation

» A priori, this is a strange/non-obvious question.

> Sugra is a low-energy description of the UV complete theory
— no reason to expect an exact match.

» Prompts us to study and understand quantum corrections in
supergravity. Interesting in its own right.

» There are some cases — like with maximal supersymmetry —
where the comparison can be made successfully, even including
exponentially suppressed contributions.
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Motivation

» A priori, this is a strange/non-obvious question.

> Sugra is a low-energy description of the UV complete theory
— no reason to expect an exact match.

» Prompts us to study and understand quantum corrections in
supergravity. Interesting in its own right.

» There are some cases — like with maximal supersymmetry —
where the comparison can be made successfully, even including
exponentially suppressed contributions.

P Besides checking numbers, it is interesting to try and uncover the
number-theoretic structures predicted by string theory from the
supergravity description.

2 Uncovering the mock nature of single-centered BPS black holes | KU LEUVEN



Outline

@ Microscopic state counting in two examples

@® Macroscopic description

© Exact supergravity results in one example

@ Partial supergravity results in the other example

@ Conclusion and outlook
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Qutline

@ Microscopic state counting in two examples
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Dyons in type Il string theory @ 7

» Counting function for 1/8-BPS dyons:

[Maldacena,Moore,Strominger‘99; Shih,Strominger,Yin‘05]

Fl/S(T7 Z) = % .

> I g is a weak Jacobi form of weight —2 and index 1.
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Dyons in type Il string theory @ 7

» Counting function for 1/8-BPS dyons:

[Maldacena,Moore,Strominger‘99; Shih,Strominger,Yin‘05]

Fl/g(T, Z) = % .

> I g is a weak Jacobi form of weight —2 and index 1.

» The degeneracies are given in terms of its Fourier coefficients,

dijs(A) = (=12 Cys(d),  A=dn—¢2.

5 Uncovering the mock nature of single-centered BPS black holes KU LEUVEN



Dyons in type Il string theory @ 7°

» Counting function for 1/8-BPS dyons:

[Maldacena,Moore,Strominger‘99; Shih,Strominger,Yin‘05]

Fys(r,2) = ’i}léz;j) :

> I g is a weak Jacobi form of weight —2 and index 1.

» The degeneracies are given in terms of its Fourier coefficients,
dijs(A) = (=12 Cys(d),  A=dn—¢2.

> An exact convergent expansion for C: [Rademacher , Zuckerman38]

Cy8(A) =27 -lio % (%)7/4 I7/2<7r\£z> '
k=1
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Dyons in type Il string theory @ K3 x 7%
» Counting fct for 1/4-BPS dyons:  [pijkgraat,Verlinde,Verlinde96]

Fyy(1,0,2) = (®10(7, 0, z))_l.

» I is a meromorphic Siegel modular form of weight —10, with
double poles at z = 0 and its Sp(2,Z) images.
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Dyons in type Il string theory @ K3 x 7%

» Counting fct for 1/4-BPS dyons:  [pijkgraat,Verlinde,Verlinde96]
-1
F1/4(7_a g, Z) = (‘1)10(7—70-3 Z)) .

» I is a meromorphic Siegel modular form of weight —10, with
double poles at z = 0 and its Sp(2,Z) images.

» The degeneracies are given by an inverse Fourier transform,

dyja(n,m,l) = (—1)“’1 ]i dr do dz e 2mi(nmmotlz) Fyjy(7,0,2)
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Dyons in type Il string theory @ K3 x 7%

» Counting fct for 1/4-BPS dyons:  [pijkgraat,Verlinde,Verlinde96]
-1
F1/4(7_a g, Z) = (q)10(7—70-7 Z)) .

» I is a meromorphic Siegel modular form of weight —10, with
double poles at z = 0 and its Sp(2,Z) images.

» The degeneracies are given by an inverse Fourier transform,
dyja(n,m,l) = (1)t ]{ dr do dz e 2mi(nTHmo+Ez) Fyjy(7,0,2)
C

> The contour depends on the moduli. At fixed charges, d; /4
“jumps” when C crosses a pole. [Cheng,Verlinde‘07]

» Manifestation of wall-crossing where a 1/4-BPS bound state of
two 1/2-BPS states (dis-)appears when crossing codim-1 walls.

6 Uncovering the mock nature of single-centered BPS black holes | KU LEUVEN



Single-centered dyons in type Il string theory @ K3 x 7?2

> Single-centered black holes exist everywhere in the moduli space,

provided A = 4mn — 2 > 0. [Sen‘09]

> Near the BH, massless moduli are attracted to values that are
fully determined by the charges. [Ferrara,Kallosh,Strominger‘95]
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Single-centered dyons in type Il string theory @ K3 x 7?2
> Single-centered black holes exist everywhere in the moduli space,
provided A = 4mn — £2 > 0. [Sen‘09]

> Near the BH, massless moduli are attracted to values that are
fully determined by the charges. [Ferrara,Kallosh,Strominger‘95]

> This implies the existence of a special attractor contour,

Ci« = lim {Im(7) = 2m/e, Im(0o) = 2n/e, Im(z) = —{/e}.

e—0t

P The single-centered degeneracies d"l‘/4 depend only on charges.
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Single-centered dyons in type Il string theory @ K3 x 7?2

> Single-centered black holes exist everywhere in the moduli space,
provided A = 4mn — £2 > 0. [Sen‘09]

> Near the BH, massless moduli are attracted to values that are
fully determined by the charges. [Ferrara,Kallosh,Strominger‘95]

> This implies the existence of a special attractor contour,

Ci« = lim {Im(7) = 2m/e, Im(0o) = 2n/e, Im(z) = —{/e}.

e—0+
P The single-centered degeneracies d"l‘/4 depend only on charges.

» They are Fourier coefficients of certain mock Jacobi forms vk .
[Dabholkar,Murthy,Zagier‘12]

dyjy(n,m,€) = (- (n,0) for A =dmn—0*>0.
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An exact formula for ¢!, with A >0

» )F admits a standard ¥-decomposition into vector-valued mixed

mock modular forms {h,} with shadow the unary theta series of
weight 1/2 times 77’24. [Dabholkar,Murthy,Zagier‘12]
» There exists a generalization of the Rademacher expansion for

mixed mock modular forms. [Bringmann,Manschot 10]
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An exact formula for ¢!, with A >0

¥ admits a standard 1-decomposition into vector-valued mixed
mock modular forms {h,} with shadow the unary theta series of

weight 1/2 times 77’24. [Dabholkar,Murthy,Zagier‘12]

» There exists a generalization of the Rademacher expansion for

mixed mock modular forms. [Bringmann,Manschot 10]

Gives an analytic expression for cl, (n, £) with A > 0 in terms of
the polar coefficients b, (n, £) with A < 0, [Ferrari,VR‘17]

+o0 _~ Kl(k, A, A) /|A]23/4 VIAIA
e ) ~ > [ > e R p : (%) (S nlm| )
k=1 Ze@/zmz
A<o
Kl(k,m, A) (4m)6 (277\/A
— 12

(& W> +I(k,m, A)] .
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An exact formula for ¢!, with A <0

» Track all possible decays for bound states across walls of
marginal stability in the moduli space. [Sen‘11]
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An exact formula for ¢!, with A <0

» Track all possible decays for bound states across walls of

marginal stability in the moduli space. [Sen‘11]

L A A
> Degeneracies of decay products ﬂ
are Fourier coeffs of =24, R
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An exact formula for ¢!, with A <0

» Track all possible decays for bound states across walls of
marginal stability in the moduli space. [Sen‘11]

> Degeneracies of decay products
are Fourier coeffs of =24, R

P In the region R, walls lie at the == | | [ [~
bottom of the strip and form
Farey arcs (in red).
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An exact formula for ¢!, with A <0

» Track all possible decays for bound states across walls of
marginal stability in the moduli space. [Sen‘11]

T
> Degeneracies of decay products r 4
are Fourier coeffs of =24, R

P In the region R, walls lie at the == | | [ [~
bottom of the strip and form
Farey arcs (in red). VY

» Sum over all decay channels: [Chowdhury,Kidambi,Murthy,VR,Wrase*19]

e (n,0) = Z (=15 *L e, d(m,) d(ny) for A <O.
YEW (n,£,m)

> W is a set of SL(2,Z) matrices encoding the relevant walls.
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The set W
» Since d(p) =0 for p < —1, the set W of walls giving a non-zero
contribution to the polar coefficients cf, with A < 0 is finite.

> It is “small”, in the sense that all entries of v € W are less than
or equal to m + 1 in magnitude.
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The set W

» Since d(p) =0 for p < —1, the set W of walls giving a non-zero
contribution to the polar coefficients cf, with A < 0 is finite.

> It is “small”, in the sense that all entries of v € W are less than
or equal to m + 1 in magnitude.

> |t has an elegant characterization in terms of the continued
fraction expansion of £/(2m). [Cardoso, Nampuri,Rossel16 ‘20]

> While there is an efficient algorithmic way to construct the set for
any values of the charges, we currently lack a proper
group-theoretic definition of 1 as a subset of SL(2,7Z).

10 Uncovering the mock nature of single-centered BPS black holes | KU LEUVEN



The set W

» Since d(p) =0 for p < —1, the set W of walls giving a non-zero
contribution to the polar coefficients cf, with A < 0 is finite.

> It is “small”, in the sense that all entries of v € W are less than
or equal to m + 1 in magnitude.

> |t has an elegant characterization in terms of the continued
fraction expansion of £/(2m). [Cardoso, Nampuri,Rossel16 ‘20]

> While there is an efficient algorithmic way to construct the set for
any values of the charges, we currently lack a proper
group-theoretic definition of 1 as a subset of SL(2,7Z).

> Still, the previous result for cf, with A < 0 implies that the
single-centered degeneracies cf, with A > 0 are completely
determined from the Fourier coefficients of 124,
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Qutline

@® Macroscopic description
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The view from supergravity

> At strong coupling, the systems gravitate and form black holes.

» 1/8-BPS BHs in ' =8 and 1/4-BPS BHs in N = 4.
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The view from supergravity

> At strong coupling, the systems gravitate and form black holes.
» 1/8-BPS BHs in ' =8 and 1/4-BPS BHs in N = 4.

» These black holes are solutions to the equations of motion of the
appropriate supergravity theories in 4d.

» How much of the number-theoretic structure can we recover from
the supergravity description?
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The view from supergravity

> At strong coupling, the systems gravitate and form black holes.

» 1/8-BPS BHs in ' =8 and 1/4-BPS BHs in N = 4.

v

These black holes are solutions to the equations of motion of the
appropriate supergravity theories in 4d.

» How much of the number-theoretic structure can we recover from
the supergravity description?

» Not a priori obvious: supergravity is a low-energy effective
description of the UV complete string theory.

> Some encouraging results can be obtained using the framework of
the Quantum Entropy Function.
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The Quantum Entropy Function

» The quantum entropy of 1/2-BPS BHs in 4d N = 2 sugra is
defined as the expectation value of a Wilson line: [Sen‘08]

finite

Sen(p.a) — i 1
eSeH = <exp[ 1q1]{d7’AT]>AdS2 .

» Computed in the AdSy factor of the near-horizon (attractor)
geometry, regularized to remove IR divergences.
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The Quantum Entropy Function

» The quantum entropy of 1/2-BPS BHs in 4d N = 2 sugra is

defined as the expectation value of a Wilson line: [Sen‘08]
finite
Sen(p.a) — < —i ?{d Al >
e = (exp|—i T .
pl-ia -] AdS2

» Computed in the AdSy factor of the near-horizon (attractor)
geometry, regularized to remove IR divergences.

» The leading saddle gives the Bekenstein-Hawking entropy.

> An exact evaluation gives acces to the quantum corrections.
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The Quantum Entropy Function

» The quantum entropy of 1/2-BPS BHs in 4d N = 2 sugra is
defined as the expectation value of a Wilson line: [Sen‘08]

finite
eSBH(p7Q) — <exp[_1ql%\d’r A7I_j|> t

AdSs

» Computed in the AdSy factor of the near-horizon (attractor)
geometry, regularized to remove IR divergences.

The leading saddle gives the Bekenstein-Hawking entropy.
An exact evaluation gives acces to the quantum corrections.
This is achieved using supersymmetric localization.

Use a supercharge () to constrain the field configurations that
contribute to the QEF - the localization manifold Mg.
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Supergravity localization

» When the metric fluctuates, the definition of @) is unclear.

» An equivariant supercharge deq can be constructed from the
nilpotent BRST operator associated with local supersymmetry.
[de Wit,Murthy,VR18]
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Supergravity localization

» When the metric fluctuates, the definition of @) is unclear.

» An equivariant supercharge deq can be constructed from the
nilpotent BRST operator associated with local supersymmetry.
[de Wit,Murthy,VR‘18]

» The manifold Mg is most conveniently analyzed in a formalism
where the susy transformations close off-shell
— 4d N = 2 conformal supergravity.

> In the gravitational sector, find all bosonic configurations solving

Sequ = Dyu(é+€) + (T y)yu(é+€) + . +1n) .
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Supergravity localization

» When the metric fluctuates, the definition of @) is unclear.

» An equivariant supercharge deq can be constructed from the
nilpotent BRST operator associated with local supersymmetry.
[de Wit,Murthy,VR‘18]

» The manifold Mg is most conveniently analyzed in a formalism
where the susy transformations close off-shell
— 4d N = 2 conformal supergravity.

> In the gravitational sector, find all bosonic configurations solving

Sequ = Dyu(é+€) + (T y)yu(é+€) + . +1n) .

» Imposing AdS, x S? boundary conditions, the only solution is to
set the bosonic fields to their attractor values and e =n = 0.
[Gupta,Murthy ‘12]
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The localized QEF

» In the matter sector, fields are allowed to climb away from their
attractor configuration (off-shell). [Gupta,Murthy‘12]

» Their fluctuations ¢! parametrize the localization manifold Mg.
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The localized QEF

» In the matter sector, fields are allowed to climb away from their

attractor configuration (off-shell). [Gupta,Murthy‘12]
» Their fluctuations ¢! parametrize the localization manifold M.
» The localized QEF is a finite-dimensional integral:

SSBH(qu) _ y d¢] e—7rq1¢1+5(¢+ip) Zl-loop(¢) Zmeasure(d))
Q
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The localized QEF

» In the matter sector, fields are allowed to climb away from their
attractor configuration (off-shell). [Gupta,Murthy‘12]

» Their fluctuations ¢! parametrize the localization manifold M.
» The localized QEF is a finite-dimensional integral:
_ I i
eSer(P.a) — dqu e~ Tar$" +S8(o+ip) Z1100p(0) Zmeasure (®)
Mq
» Zi10op comes from Gaussian integration around M.

> Contribution log Zf_loop(¢) = ae log K(¢) from each multiplet,
[Murthy,VR‘15; Gupta,Ito,Jeon‘15; Jeon,Murthy‘18]

9 11 1 1
ao = a = — — a1 = ——— an = —.
2 ) 3/2 12’ 1 12° 0 12
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The action and measure

» The N = 2 sugra action contains “F-terms” (chiral superspace
integrals) and “D-terms” (full superspace integrals).

» A large class of D-terms can be constructed using the N' = 2
kinetic muItipIet. [de Wit,Katmadas,van Zalk‘10]
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The action and measure

» The N = 2 sugra action contains “F-terms” (chiral superspace
integrals) and “D-terms” (full superspace integrals).

» A large class of D-terms can be constructed using the N' = 2
kinetic muItipIet. [de Wit,Katmadas,van Zalk‘10]

> On Mg, we find that they vanish, [Murthy,VR‘13]
SD—terms =0.

> Most likely because D-terms are ()-exact. General proof?
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The action and measure

» The N = 2 sugra action contains “F-terms” (chiral superspace
integrals) and “D-terms” (full superspace integrals).

» A large class of D-terms can be constructed using the N' = 2
kinetic muItipIet. [de Wit,Katmadas,van Zalk‘10]

> On Mg, we find that they vanish, [Murthy,VR‘13]
SD—terms =0.
> Most likely because D-terms are ()-exact. General proof?

> The F-terms and the remaining measure factor are expressed in
terms of the prepotential F' of the AN/ = 2 theory.
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Qutline

© Exact supergravity results in one example
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Maximal supergravity
» Cast the A/ = 8 graviton multiplet in an N = 2 language:
n2:1, n3/2:6, 7’1,1:15, ’I’L[):]_O

» One-loop determinant is K (¢)™* with K(Y) =i(Y'F; — Y!Fy).
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Maximal supergravity

» Cast the A/ = 8 graviton multiplet in an N = 2 language:
n2:1, n3/2:6, n1:15, ’I’L[):]_O

» One-loop determinant is K (¢)™* with K(Y) =i(Y'F; — Y!Fy).
» This is equivalent to a truncated N' = 2 theory with n; = 7.

Large cancellation of modes at each order in perturbation theory.
[Murthy,VR¢15]
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Maximal supergravity

» Cast the A/ = 8 graviton multiplet in an N = 2 language:
ng =1, n3/2:6, ny =15, mng=10.

» One-loop determinant is K (¢)~* with K(Y) =i(Y!F; — Y'Fy).
» This is equivalent to a truncated N' = 2 theory with n; = 7.

Large cancellation of modes at each order in perturbation theory.
[Murthy,VR¢15]

» In the truncated theory,

Yl
S=dnImF(¢ +ip), with F(Y)=—15 YeC,,Y".

» C, is the intersection matrix of the 6 two-cycles on 7% c 7.
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Entropy of 1/8-BPS black holes

> The measure is expressed in terms of the second derivatives of F,
[Cardoso,de Wit,Mahapatra‘08; Dabholkar,Gomes,Murthy‘11]

Zmeasure = \/|det[|mFIJ(¢ + ip)] | .
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Entropy of 1/8-BPS black holes

> The measure is expressed in terms of the second derivatives of F,
[Cardoso,de Wit,Mahapatra‘08; Dabholkar,Gomes,Murthy‘11]

Zmeasure = \/|det[|mFIJ(¢ + ip)] | .

» Using all the above in the localized QEF,

7/4
eSn(Pa) — /9 (%) / 17/2(7”/K)‘

> Precisely matches the k =1 term of d; /3 obtained from the
Rademacher expansion of the microscopic counting function.
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Entropy of 1/8-BPS black holes

> The measure is expressed in terms of the second derivatives of F,
[Cardoso,de Wit,Mahapatra‘08; Dabholkar,Gomes,Murthy‘11]

Zmeasure = \/|det[|mFIJ(¢ + ip)] | .

» Using all the above in the localized QEF,
7/4
eSBH(p’q) — \/57_[_ (%) / 17/2(71_@) ‘

> Precisely matches the k =1 term of d; /3 obtained from the
Rademacher expansion of the microscopic counting function.

» Higher-k terms can also be recovered from localization in an
orbifold of the near-horizon geometry.  [Dabholkar,Gomes,Murthy14]
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Qutline

@ Partial supergravity results in the other example
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Half-maximal supergravity

» Cast the NV = 4 graviton multiplet and N, = 22 N = 4 vector
multiplets in an N = 2 language:

n2=1, n3/2:2, n1:23, n0:22.

» Resulting one-loop determinant is unity. Cancellations between
the gravitini and the hypers, and between the graviton and the
vectors, at all order in perturbation theory.
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Half-maximal supergravity

» Cast the NV = 4 graviton multiplet and N, = 22 N = 4 vector
multiplets in an N = 2 language:

n2=1, n3/2:2, n1:23, n0:22.

» Resulting one-loop determinant is unity. Cancellations between
the gravitini and the hypers, and between the graviton and the
vectors, at all order in perturbation theory.

» This is equivalent to a truncated N' = 2 theory with n; = 23.
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Half-maximal supergravity

» Cast the NV = 4 graviton multiplet and N, = 22 N = 4 vector
multiplets in an N = 2 language:

n2=1, n3/2:2, n1:23, n0:22.

» Resulting one-loop determinant is unity. Cancellations between
the gravitini and the hypers, and between the graviton and the
vectors, at all order in perturbation theory.

» This is equivalent to a truncated N' = 2 theory with n; = 23.
> The prepotential F' is modified beyond the (Y!/Y9)YCY term:

® Higher-derivative corrections,

® Non-holomorphic corrections.
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Corrected prepotential

» The corrections are encoded in a real homogeneous function 2,
[Cardoso,de Wit,Mahapatra‘08]
Y

1
F=-05 YeC,YP +2iQ(Y,Y, T, T).

» For N = 4 compactifications and with S = —iY1/Y?,

= 2516 [Xlog (S)+Tlogn24(§)+%(r+i)1og(5+g)1z}.
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Corrected prepotential

» The corrections are encoded in a real homogeneous function 2,
[Cardoso,de Wit,Mahapatra‘08]

Y

1
F=-05 YeC,YP +2iQ(Y,Y, T, T).

» For N = 4 compactifications and with S = —iY1/Y?,

1 - ~ 1 - -
0= 56 [Tlogn (S)+Tlogn24(5)+§(T+T) log(S’—i—S)m} .
» The non-holomorphic term is required so that {2g transforms
under S-duality as a modular form of weight 2.
Similar to the Eisenstein series G5(z) = G2(z) — 7/(2y).
[Cardoso,de Wit,Mohaupt ‘99]

> Signals the departure from a Wilsonian effective action.
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Previous approximations

» Due to 2, the measure is also corrected,

ZLmeasure = \/|det[|m(F1J - FIJ)H :

» Quite an intricate factor in the integrand!
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Previous approximations

» Due to 2, the measure is also corrected,

ZLmeasure = \/|det[|m(F1J - FIJ)H :

» Quite an intricate factor in the integrand!

> Previously, dealt with by neglecting non-holomorphic corrections
and approximating [Murthy,VR‘15]

Zmeasure = (¢°) KM(¢),  with KMY(Y) = i(YIFPol—y ! Fholy,
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Previous approximations

» Due to 2, the measure is also corrected,

ZLmeasure = \/|det[|m(FIJ - FIJ)” :

» Quite an intricate factor in the integrand!

> Previously, dealt with by neglecting non-holomorphic corrections
and approximating [Murthy,VR‘15]

Zmeasure = (¢°) KM(¢),  with KMY(Y) = i(YIFPol—y ! Fholy,

> Agrees with a saddle-point evaluation of the d;, from DVV.
[David,Sen‘06], see also talk by M. Rosselld

> Related to the measure factor in the refined OSV conjecture.
[Denef ,Moore‘07]
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A partial supergravity result

> With the above approximations, we find [Murthy, VR 15]

R ILUIC ORI
Ze@/QmZ
A<0

with a,(n,€) = (0 —2n)d(m +n — £) d(n).
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A partial supergravity result

> With the above approximations, we find [Murthy, VR 15]

o o Bz, /A
€ ~ Z am(n,£) ( A) —723/2< m )
LEL]2mZ
A<o
with a,(n,€) = (0 —2n)d(m +n — £) d(n).
» Compare with the previous formula for ¢k, (n, £) with A < 0.
We see that «,,, equals a single term in the sum over W,

corresponding to v = G (1)> i.e. the first S-wall from 0 to 1.
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A partial supergravity result

> With the above approximations, we find [Murthy, VR 15]

Son s ANz my/|AlA
eB”~~Z am(nag)(A) —723/2( m )
LEL]2mZ
A<o
with a,(n,€) = (0 —2n)d(m +n — £) d(n).
» Compare with the previous formula for ¢k, (n, £) with A < 0.
We see that «,,, equals a single term in the sum over W,

corresponding to v = G (1)) i.e. the first S-wall from 0 to 1.

> We recovered the leading part of the k =1 term in the
Rademacher contribution to the microscopic degeneracies.
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Completing the partial result

» Compared to the general structure of d; 4 in the first part of the
talk, we are missing
® the other terms in the sum over W,
® the contributions from the shadow of ¢F .
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Completing the partial result

» Compared to the general structure of dy 4 in the first part of the
talk, we are missing

® the other terms in the sum over W,
® the contributions from the shadow of ¢F .

> For the latter, a hint for progress is in the fact that
mock-modularity can be traded for non-holomorphicity.

> The completion of a mock-modular form h with shadow g,

-~ > g(=2)
(1) = h(r) + P dz,

>

is modular but non-holomorphic, 8%/8? x g.
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Completing the partial result

» Compared to the general structure of dy 4 in the first part of the
talk, we are missing

® the other terms in the sum over W,
® the contributions from the shadow of ¢F .

> For the latter, a hint for progress is in the fact that
mock-modularity can be traded for non-holomorphicity.

> The completion of a mock-modular form h with shadow g,

-~ > g(=2)
(1) = h(r) + P dz,

>

is modular but non-holomorphic, 8%/8? x g.

» To recover the shadow contributions, reinstate the
non-holomorphic terms log(S + S) in the prepotential.
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Completing the partial result
» The non-holomorphic term does not involve the full n function.
» Produces a single additional term in K = i(Y!F; — Y/Fy).

» Has the right structure to generate the 115 Bessel function when
using the approximate measure. [work in progress]
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Completing the partial result

» The non-holomorphic term does not involve the full n function.
» Produces a single additional term in K = i(Y!F; — Y/Fy).

» Has the right structure to generate the 115 Bessel function when
using the approximate measure. [work in progress]

> We should also remove the approximation on the measure.

» Will modify the Rademacher-type contribution, possibly
generating the full sum over W in the polar coefficients?

> Generates the Z term? The structure there is less clear. . .
Understand the terms with double derivatives of the n function.
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Qutline

@ Conclusion and outlook
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Conclusion

> Localization of the QEF displays the intricate number-theoretic
structures at play in quantum black holes.
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Conclusion

> Localization of the QEF displays the intricate number-theoretic
structures at play in quantum black holes.

» In maximal supergravity, recover the full Rademacher expansion
of the weak Jacobi form.

» For N/ = 4 compactification, the recent exact microscopic results
provide a guide for the supergravity computation.
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Conclusion

> Localization of the QEF displays the intricate number-theoretic
structures at play in quantum black holes.

» In maximal supergravity, recover the full Rademacher expansion
of the weak Jacobi form.

» For N/ = 4 compactification, the recent exact microscopic results
provide a guide for the supergravity computation.

» Understand the origin of the “mock pieces” in d; 4 from sugra
— non-holomorphic corrections to F' should play a role.

» The exact result will involve proper treatment of the measure.
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Conclusion

> Localization of the QEF displays the intricate number-theoretic
structures at play in quantum black holes.

» In maximal supergravity, recover the full Rademacher expansion
of the weak Jacobi form.

» For N/ = 4 compactification, the recent exact microscopic results
provide a guide for the supergravity computation.

» Understand the origin of the “mock pieces” in d; 4 from sugra
— non-holomorphic corrections to F' should play a role.

» The exact result will involve proper treatment of the measure.

» Once established, turn to N' = 2 compactifications. Beautiful
results available, more to explore! [Cardoso,Nampuri ,Polini‘19]
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Thank you for your attention.
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