Geometry of Krylov Complexity

Paweł Caputa

Outline

- Introduction and Motivation
- Operator Growth and Krylov Complexity
- Symmetry
- Geometry of Krylov Complexity
- Conclusions/Open Questions

Based on:

"Geometry of Krylov Complexity" with J.M. Magan (U.Penn.) and D. Patramanis (UW) arXiv:2109.03824 [hep-th]

Intro/Motivation

- How CFT states encode holographic geometry?
- Important hint: Entanglement (RT and HRT)!
- QI for AdS/CFT: Renyi, EoP/RE, Pseudo Entropy, Capacity....
[Talks: Tatsuma, Robert, Roberto Tokiro...]
- "Entanglement (entropy) is not (always) enough"?
- We need more fine-grained probes: "Complexity"?
- Holographic developments: CV, CA, Complexity/Momentum....
- QC for AdS/CFT:....?

Some ideas for "Complexity" in QFT (CFT)?

States

Geometric Approaches ("Nielsen")
Quantum circuit

$$
\left|\Psi_{T}\right\rangle=U(t)\left|\Psi_{R}\right\rangle
$$

Complexity~ "Geodesic length"

Path Integral Complexity
PI Geometry ~ TN
Complexity ~ "Liouville action"

Growth of TFD...

Operators
This Talk!

"Operator Size" in SYK

$$
n_{j} \equiv c_{j}^{\dagger} c_{j}=\frac{1}{2}\left(1+i \psi_{j}^{L} \psi_{j}^{R}\right)
$$

~Momentum of a particle in AdS2
OTOC

This talk: focus on a definition of "operator complexity" called Krylov complexity that can be universally defined in many-body systems (from QM to QFT).

I will discuss its geometric aspects in systems governed by symmetries (~CFT)
and interesting generalizations to the AdS/CFT contexts.

References:
[Parker, Cao, Avdoshkin, Scaffidi, Altman '19]
[Barbon, Rabinovici, Shir, Sinha '19]
[Dymarsky, Gorsky '19]
[Rabinovici, Sanchez-Garrido, Shir, Sonner '20]
[Magan, Simon'20]
[Dymarsky, Smolkin '21]
[Kar, Lamprou, Rozali, Sully '21]

Operator Growth

Heisenberg evolution

$$
\partial_{t} \mathcal{O}(t)=i[H, \mathcal{O}(t)] \quad \mathcal{O}(t)=e^{i H t} \mathcal{O}(0) e^{-i H t}
$$

Formally, we can write the operator as

$$
\mathcal{O}(t)=\sum_{n=0}^{\infty} \frac{(i t)^{n}}{n!} \tilde{\mathcal{O}}_{n} \quad \tilde{\mathcal{O}}_{0}=\mathcal{O}, \quad \tilde{\mathcal{O}}_{1}=[H, \mathcal{O}], \quad \tilde{\mathcal{O}}_{2}=[H,[H, \mathcal{O}]], \ldots
$$

"Simple" operator evolves/spreads in the space of "Complex" operators.

Common Lore: The more "chaotic" H the faster the operator grows.

How to quantify this?

Liouvillian (super)operator

$$
\mathcal{L}=[H, \cdot], \quad \mathcal{O}(t) \equiv e^{i \mathcal{L} t} \mathcal{O}, \quad \tilde{\mathcal{O}}_{n} \equiv \mathcal{L}^{n} \mathcal{O}
$$

Given $\quad\left\{\mathcal{O}, \mathcal{L} \mathcal{O}, \mathcal{L}^{2} \mathcal{O}, \ldots\right\} \quad$ we need a basis $\left.\left.\left.\mid \mathcal{O}\right), \mid \mathcal{O}_{1}\right), \mid \mathcal{O}_{2}\right), \ldots$

First, we must pick an inner product (freedom):

$$
(A \mid B)=\left\langle e^{H \beta / 2} A^{\dagger} e^{-H \beta / 2} B\right\rangle_{\beta} \quad\langle A\rangle_{\beta}=\frac{1}{Z} \operatorname{Tr}\left(e^{-\beta H} A\right), \quad Z=\operatorname{Tr}\left(e^{-\beta H}\right)
$$

Then the orthonormal basis is constructed using Lanczos algorithm (G-S)

$$
\text { 1) } \left.\left.\left.\quad\left|\mathcal{O}_{0}\right|:=\mid \tilde{\mathcal{O}}_{0}\right)=\mid \mathcal{O}\right), \quad\left|\mathcal{O}_{1}\right|:=b_{1}^{-1} \mathcal{L} \mid \tilde{\mathcal{O}}_{0}\right), \quad b_{1}=\left(\tilde{\mathcal{O}}_{0} \mathcal{L} \mid \mathcal{L} \tilde{\mathcal{O}}_{0}\right)^{1 / 2}
$$

2) $\left.\left.\left.\quad \mid A_{n}\right)=\mathcal{L} \mid \mathcal{O}_{n-1}\right)-b_{n-1} \mid \mathcal{O}_{n-2}\right)$

$$
b_{0}=0
$$

3) $\left.\left.\quad \mid \mathcal{O}_{n}\right)=b_{n}^{-1} \mid A_{n}\right), \quad b_{n}=\left(A_{n} \mid A_{n}\right)^{1 / 2}$

$$
\left(\mathcal{O}_{n} \mid \mathcal{O}_{m}\right)=\delta_{n, m}
$$

Lanczos algorithm gives us $\mid \mathcal{O}_{n}$) and b_{n}

Schrodinger equation

Now we expand the operator in the Krylov basis

$$
\left.\left.\mid \mathcal{O}(t))=e^{i \mathcal{L} t} \mid \mathcal{O}\right) \equiv \sum_{n} i^{n} \varphi_{n}(t) \mid \mathcal{O}_{n}\right)
$$

And derive equation for $\varphi_{n}(t)$

$$
\left.\left.\left.\left.\partial_{t} \mid \mathcal{O}(t)\right)=\sum_{n} i^{n} \partial_{t} \varphi_{n}(t) \mid \mathcal{O}_{n}\right)=i \mathcal{L} \mid \mathcal{O}(t)\right)=\sum_{n} i^{n} \varphi_{n}(t) \mathcal{L} \mid \mathcal{O}_{n}\right)
$$

From Lanczos algorithm

$$
\left.\left.\left.\mathcal{L} \mid \mathcal{O}_{n}\right)=b_{n} \mid \mathcal{O}_{n-1}\right)+b_{n+1} \mid \mathcal{O}_{n+1}\right)
$$

Comparing the coefficients and shifting the summation we derive

$$
\partial_{t} \varphi_{n}(t)=b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t) \quad \varphi_{n}(0)=\delta_{n 0}
$$

Once we know Lanczos coefficients b_{n} we can find the "amplitudes"!

Comment: Auto-correlators

Lanczos coefficients are also "encoded" in the auto-correlator

$$
C(t)=(\mathcal{O} \mid \mathcal{O}(t))=\left(\mathcal{O}\left|e^{i \mathcal{L} t}\right| \mathcal{O}\right)=\varphi_{0}(t)
$$

Moments of $\mathrm{C}(\mathrm{t})$ can give us in some recursive algorithm

$$
\mu_{2 n}:=\left(\mathcal{O}\left|\mathcal{L}^{2 n}\right| \mathcal{O}\right)=\left.\frac{d^{2 n}}{d t^{2 n}} C(t)\right|_{t=0} \quad b_{1}^{2} \ldots b_{n}^{2}=\operatorname{det}\left(\mu_{i+j}\right)_{0 \leq i, j \leq n}
$$

Usually $\mathrm{C}(\mathrm{t})$ are difficult to obtain but in some cases they are known explicitly (2d CFT on a line, integrable models, SYK, RM...). They are also related to Green's functions or spectral functions.

In 2d CFT they can be interpreted in terms of geodesic between two sides of TFD at 0 and t.

$$
C(t) \sim \cosh ^{-2 h}\left(\frac{\pi t}{\beta}\right)
$$

"Krylov Complexity" (K-Complexity)

The physics of the growth can be understood as a motion of a particle on a chain

$$
\sum_{n}\left|\varphi_{n}(t)\right|^{2}=1
$$

The further in the chain the particle is, the more complex state in the Krylov basis is employed

This motivates a natural definition of complexity as average position on the chain:

$$
K_{\mathcal{O}}=\sum_{n} n\left|\varphi_{n}(t)\right|^{2}
$$

One can also think about the "Complexity Operator"

$$
\left.\hat{K}_{\mathcal{O}}=\sum_{n} n \mid \mathcal{O}_{n}\right)\left(\mathcal{O}_{n} \mid \quad K_{\mathcal{O}}=\left(\mathcal{O}(t)\left|\hat{K}_{\mathcal{O}}\right| \mathcal{O}(t)\right)\right.
$$

Universal Operator Growth Hypothesis

"Maximal growth Lanczos coefficients"

$$
b_{n} \leq \alpha n+\gamma+O(1)
$$

Saturated for "maximally chaotic" systems (OTOC)

Saturation is related to the exponential growth to Krylov Complexity

$$
K_{\mathcal{O}} \sim e^{\lambda t} \quad \lambda=2 \alpha
$$

Example: SYK model (low T, $\eta \sim 2 / q$)

$$
\begin{array}{rlr}
b_{n}=\frac{\pi}{\beta} \sqrt{n(\eta+n-1)} & K_{\mathcal{O}}=\eta \sinh ^{2}(\alpha t) \sim \frac{\eta}{4} e^{2 \alpha t} \\
\varphi_{n}(t)=\sqrt{\frac{\Gamma(\eta+n)}{n!\Gamma(\eta)} \frac{\tanh ^{n}(\alpha t)}{\cosh ^{\eta}(\alpha t)}} & \lambda=2 \alpha=\frac{2 \pi}{\beta}
\end{array}
$$

Questions:

Operational meaning of "Krylov Complexity" and Lanczos b_{n} ?

What determines the exponential growth (chaotic vs integrable)?

Symmetry? SYK and SL(2,R)?

Classification and generalizations? What can we say analytically?

Is it related to other approaches (geom. Nielsen, circuit)? $\left.\mid \mathcal{O}(t))=e^{i \mathcal{L} t} \mid \mathcal{O}\right)$

Features of QFT complexity? Holographic discussions?

Krylov Complexity and Symmetry?

Liouvillian in the Krylov basis

$$
\left.\left.\left.\mathcal{L} \mid \mathcal{O}_{n}\right)=b_{n} \mid \mathcal{O}_{n-1}\right)+b_{n+1} \mid \mathcal{O}_{n+1}\right) \quad L_{n m}:=\left(\mathcal{O}_{n}|\mathcal{L}| \mathcal{O}_{m}\right)=\left(\begin{array}{ccccc}
0 & b_{1} & 0 & 0 & \cdots \\
b_{1} & 0 & b_{2} & 0 & \cdots \\
0 & b_{2} & 0 & b_{3} & \cdots \\
0 & 0 & b_{3} & 0 & \ddots \\
\vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right)
$$

It may be natural to think about it in terms of "Ladder Operators"

$$
\mathcal{L}=\alpha\left(L_{+}+L_{-}\right)
$$

Such that

$$
\left.\left.\left.\left.\alpha L_{+} \mid \mathcal{O}_{n}\right)=b_{n+1} \mid \mathcal{O}_{n+1}\right), \quad \alpha L_{-} \mid \mathcal{O}_{n}\right)=b_{n} \mid \mathcal{O}_{n-1}\right)
$$

If these ladder operators belong to some Lie algebra then this would give a lot of predictive power! We could easily read of b_{n} !

$$
\left[L_{0}, L_{ \pm 1}\right]=\mp L_{ \pm 1}, \quad\left[L_{1}, L_{-1}\right]=2 L_{0}
$$

"Ladder Operators":

$$
\mathcal{L}=\alpha\left(L_{-1}+L_{1}\right)
$$

Representation:

$$
\begin{aligned}
& L_{0}|h, n\rangle=(h+n)|h, n\rangle, \\
& L_{-1}|h, n\rangle=\sqrt{(n+1)(2 h+n)}|h, n+1\rangle, \quad|h, n\rangle=\sqrt{\frac{\Gamma(2 h)}{n!\Gamma(2 h+n)}} L_{-1}^{n}|h\rangle \\
& L_{1}|h, n\rangle=\sqrt{n(2 h+n-1)}|h, n-1\rangle, \\
& \sim b_{n} \quad \text { SYK: } \\
& \left\lvert\, b_{n}=\frac{\pi}{\beta} \sqrt{n(\eta+n-1)} \quad \eta=2 h\right.
\end{aligned}
$$

Operator Growth and Coherent States

$$
\left.\mid \mathcal{O}(t))=e^{i \mathcal{L} t} \mid \mathcal{O}\right) \quad \mathcal{L}=\alpha\left(L_{-1}+L_{1}\right)
$$

Recall coherent states for $\operatorname{SL}(2, R)(S U(1,1))$
[Perelomov'72]

$$
|z, h\rangle \equiv D(\xi)|h\rangle, \quad D(\xi)=e^{\xi L_{-1}-\bar{\xi} L_{1}}
$$

$$
\begin{aligned}
\xi & =\frac{1}{2} \rho e^{i \phi} \\
z & =\tanh \left(\frac{\rho}{2}\right) e^{i \phi}, \quad|z|<1
\end{aligned}
$$

More explicitly:
Compare SYK:
$|z, h\rangle=\sum_{n=0}^{\infty} e^{i n \phi} \sqrt{\frac{\Gamma(2 h+n)}{n!\Gamma(2 h)}} \frac{\tanh ^{n}(\rho / 2)}{\cosh ^{2 h}(\rho / 2)}|k, h\rangle$
$\varphi_{n}(t)=\sqrt{\frac{\Gamma(\eta+n)}{n!\Gamma(\eta)}} \frac{\tanh ^{n}(\alpha t)}{\cosh ^{\eta}(\alpha t)}$
"Trajectory in Phase Space": $\rho=2 \alpha t, \quad \phi=\pi / 2$

$$
\mid \mathcal{O}(t))=|z=i \tanh (\alpha t), h=\eta / 2\rangle
$$

Geometry of Krylov Complexity

With coherent states we can associate a natural "information metric"

$$
\begin{equation*}
d s_{F S}^{2}=\langle d z \mid d z\rangle-\langle d z \mid z\rangle\langle z \mid d z\rangle \tag{Fubini-Study}
\end{equation*}
$$

E.g. for $\operatorname{SL}(2, R)$ this becomes a hyperbolic disc metric

$$
d s_{F S}^{2}=\frac{2 h d z d \bar{z}}{(1-z \bar{z})^{2}}=\frac{h}{2}\left(d \rho^{2}+\sinh ^{2}(\rho) d \phi^{2}\right) \quad R=-\frac{4}{h}
$$

Operator growth is a geodesic in this manifold (phase space):

$$
\rho=2 \alpha t, \quad \phi=\pi / 2
$$

Observe a universal relation between the Volume and Krylov complexity

$$
V_{t}=\int_{0}^{2 \alpha t} d \rho \int_{0}^{2 \pi} d \phi \sqrt{g}=2 \pi h \sinh ^{2}(\alpha t)=\pi K_{\mathcal{O}}
$$

This relation holds in all examples that we studied

Cartoon:

Comments:

1. Geodesic length ~ at most linear

$$
\cosh (L / l)=\cosh \left(\rho_{f}\right) \cosh \left(\rho_{i}\right)-\cos (\Delta \phi) \sinh \left(\rho_{f}\right) \sinh \left(\rho_{i}\right)
$$

2. Observation: explicit computation (in all our examples)

$$
\begin{equation*}
\mathcal{F}_{1}=|\langle z \mid \delta z\rangle|=K_{\mathcal{O}} d \phi \tag{PC,J.M.Magan'19}
\end{equation*}
$$

F1 distance between

$$
(\rho=2 \alpha t, \phi=\pi / 2) \quad(\rho=2 \alpha t, \phi=\pi / 2+\delta \phi)
$$

~"Classical Chaos"
Berry?

Phase Space Information Geometry

Example: SU(2)

$$
\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k} \quad J_{ \pm}=J_{1} \pm i J_{2} \quad\left[J_{0}, J_{ \pm}\right]= \pm J_{ \pm}, \quad\left[J_{+}, J_{-}\right]=2 J_{0}
$$

Liouvillian:

$$
\mathcal{L}=\alpha\left(J_{+}+J_{-}\right)
$$

Representation:

$$
\begin{aligned}
J_{0}|j,-j+n\rangle & =(-j+n)|j,-j+n\rangle, \\
J_{+}|j,-j+n\rangle & =\sqrt{(n+1)(2 j-n)}|j,-j+n+1\rangle \\
J_{-}|j,-j+n\rangle & =\sqrt{n(2 j-n+1)}|j,-j+n-1\rangle .
\end{aligned}
$$

Example: SU(2)

Spin coherent states:

$$
|z, j\rangle=(1+z \bar{z})^{-j} \sum_{n=0}^{2 j} z^{n} \sqrt{\frac{\Gamma(2 j+1)}{n!\Gamma(2 j-n+1)}}|j,-j+n\rangle \quad z=\tan \left(\frac{\theta}{2}\right) e^{i \phi}
$$

Trajectory: $\theta=2 \alpha t$ and $\phi=\pi / 2$

$$
\varphi_{n}(t)=\frac{\tan ^{n}(\alpha t)}{\cos ^{-2 j}(\alpha t)} \sqrt{\frac{\Gamma(2 j+1)}{n!\Gamma(2 j-n+1)}}
$$

Krylov complexity:

$$
K_{\mathcal{O}}=\sum_{n=0}^{2 j} n\left|\varphi_{n}(t)\right|^{2}=2 j \sin ^{2}(\alpha t)
$$

Information Geometry

$$
d s^{2}=\frac{2 j d z d \bar{z}}{\left(1+|z|^{2}\right)^{2}}=\frac{j}{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \quad V_{t}=\int_{0}^{2 \alpha t} d \theta \int_{0}^{2 \pi} d \phi \sqrt{g}=2 \pi j \sin ^{2}(\alpha t)=\pi K_{\mathcal{O}}
$$

More generally lessons from the symmetry approach

$$
\begin{array}{ll}
\left.\left.\left.\mathcal{L} \mid \mathcal{O}_{n}\right)=b_{n} \mid \mathcal{O}_{n-1}\right)+b_{n+1} \mid \mathcal{O}_{n+1}\right) & \mathcal{L}=\tilde{L}_{+}+\tilde{L}_{-} \\
\left.\left.\left.\mathcal{B} \mid \mathcal{O}_{n}\right)=-b_{n} \mid \mathcal{O}_{n-1}\right)+b_{n+1} \mid \mathcal{O}_{n+1}\right) & \mathcal{B}=\tilde{L}_{+}-\tilde{L}_{-}
\end{array}
$$

Lets commute: From these definitions

$$
\left.\left.\tilde{K} \equiv[\mathcal{L}, B] \mid \mathcal{O}_{n}\right)=2\left(b_{n+1}^{2}-b_{n}^{2}\right) \mid \mathcal{O}_{n}\right)
$$

We can demand that the algebra closes at this first step. This gives

$$
2\left(b_{n+1}^{2}-b_{n}^{2}\right)=A n+B
$$

$$
b_{n}=\sqrt{\frac{1}{4} A n(n-1)+\frac{1}{2} B n+C}
$$

What if it doesn't? Number of steps to the closure? Classification?

For SL(2,R)

$$
\mathcal{L}=\alpha\left(L_{-1}+L_{1}\right), \quad \mathcal{B}=\alpha\left(L_{-1}-L_{1}\right), \quad \tilde{K}=4 \alpha^{2} L_{0},
$$

Geometrically, these are simply combinations of the isometry generators

$$
\begin{aligned}
L_{0} & =i \partial_{\phi}, \\
L_{-1}^{2}=\frac{h}{2}\left(d \rho^{2}+\sinh ^{2}(\rho) d \phi^{2}\right) & =-i e^{-i \phi}\left[\operatorname{coth}(\rho) \partial_{\phi}+i \partial_{\rho}\right], \\
L_{1} & =-i e^{i \phi}\left[\operatorname{coth}(\rho) \partial_{\phi}-i \partial_{\rho}\right] .
\end{aligned}
$$

In particular

$$
\tilde{K}=4 \alpha^{2}\left(\hat{K}_{\mathcal{O}}+h\right) \sim \partial_{\phi}
$$

Relation between complexity and Isometries (Momentum/Boost)

SL(2,R)xSL(2,R)

$$
\mathcal{L}=\alpha_{+}\left(L_{-1}+L_{1}\right)+\alpha_{-}\left(\bar{L}_{-1}+\bar{L}_{1}\right)
$$

$$
\begin{aligned}
K_{\mathcal{O}} & =\Delta\left[\sinh ^{2}\left(\frac{\pi t}{\beta_{+}}\right)+\sinh ^{2}\left(\frac{\pi t}{\beta_{-}}\right)\right] \\
& +s\left[\sinh ^{2}\left(\frac{\pi t}{\beta_{+}}\right)-\sinh ^{2}\left(\frac{\pi t}{\beta_{-}}\right)\right] .
\end{aligned}
$$

"Towards Virasoro": $\quad\left\{L_{-k}, L_{0}, L_{k}\right\}$

$$
\begin{array}{cc}
\left.\mathcal{L}_{k}=\alpha\left(L_{-k}+L_{k}\right), \quad \mid \mathcal{O}_{n}\right)=|h, n k\rangle & K_{\mathcal{O}}=2 h_{k} \sinh ^{2}\left(\alpha_{k} t\right) \\
b_{n}=k \alpha \sqrt{n\left(2 h_{k}+n-1\right)} . & h_{k}=\frac{c}{24}\left(k-\frac{1}{k}+\frac{24 h}{c k}\right), \quad \alpha_{k}=k \alpha
\end{array}
$$

Non-universal: Composite operators, more general initial states

$$
\left.\left.\mid \mathcal{O}_{1}(0) \mathcal{O}_{2}(t)\right), \quad \mid\left[\mathcal{O}_{1}(0), \mathcal{O}_{2}(t)\right]\right) \quad e^{-i H_{L} t}\left|\Psi_{T F D}\right\rangle
$$

Auto-correlator becomes a 4pt function -> OTOC, Spectral Form Factors

Quantum Optics for Operator Growth

In quantum optics it is useful (physical) to work with two-mode representation of

$$
\left.L_{-1}=a_{1}^{\dagger} a_{2}^{\dagger}, \quad L_{1}=a_{1} a_{2}, \quad L_{0}=\frac{1}{2}\left(a_{1}^{\dagger} a_{1}+a_{2}^{\dagger} a_{2}+1\right), \quad \mid \mathcal{O}_{n}\right)=|n+k, n\rangle=\frac{\left(a_{1}^{\dagger}\right)^{n+k}}{\sqrt{(n+k)!}} \frac{\left(a_{2}^{\dagger}\right)^{n}}{\sqrt{n!}}|0,0\rangle
$$

In this representation we can derive "density matrix of the operator" (?)

$$
\rho_{1}^{(k)}=\operatorname{Tr}_{2}(|z, k\rangle\langle z, k|)=\sum_{n=0}^{\infty} \lambda_{n}|n+k\rangle\langle n+k| \quad \lambda_{n}=\left|\varphi_{n}(t)\right|^{2}
$$

This allows to study and compare more conventional QI tools

$$
\begin{array}{ll}
S_{\mathcal{O}}=-\sum_{n}\left|\varphi_{n}\right|^{2} \log \left(\left|\varphi_{n}\right|^{2}\right), & S_{\mathcal{O}}^{(q)}=\frac{1}{1-q} \log \left(\sum_{n}\left|\varphi_{n}\right|^{2 q}\right) \\
E_{\mathcal{N}}(\rho)=2 \log \left(\sum_{n}\left|\varphi_{n}\right|\right) & \mathcal{C}_{\mathcal{O}}=\lim _{q \rightarrow 1} q^{2} \partial_{q}^{2}\left[(1-q) S_{\mathcal{O}}^{(q)}\right]
\end{array}
$$

K-Entropies and negativity show a linear growth with time
Capacity saturates to 1 at late times (all sensitive to the rate α)

Conclusions and Open Problems

- Krylov Complexity is a new (good) candidate for operator complexity in QFTs
- Symmetry: New angle on the Liouvillian and Lanczos coefficients
- Geometric interpretation with many "desired" features of "complexity"
- Growth of Lanczos Coefficients? Math Proof? Bieberbach?
- Generalized Coherent States and other Lie groups? (Integrable/Chaotic?)
- Higher and lower dimensional CFT? Virasoro, Matrix Models, LLM?
- Ql tools for the operator growth? Two-mode representation (ER=EPR)?
- Connection with Holography? First Law? Bulk Momentum? Near Horizon Geom?

Thank You! Stay Tuned!

