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Some ideas for “Complexity” in QFT (CFT)?

States Operators

Geometric Approaches (“Nielsen”)

| T i = U(t) | Ri

Quantum circuit

Path Integral Complexity

Complexity~ “Geodesic length”

PI Geometry ~ TN

Complexity ~ “Liouville action”
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good candidate for a universal notion of complexity in in-
teracting quantum field theories. Nevertheless, its phys-
ical as well as the operational meaning remain mysteri-
ous. On the same footing, the relation to more estab-
lished notions of complexity is an open problem. On
the other hand, despite the relatively unambiguous def-
inition, computing Krylov complexity requires numerics
and understanding its universal features becomes very
complicated. These conceptual and technical drawbacks
are our main motivations to explore and develop it fur-
ther in this work.

To make progress, it will be fruitful to focus on certain
classes of chaotic models such as those appearing in the
context of the AdS/CFT correspondence [5], where, due
to conformal symmetry, many-body quantum states are
e�ciently described geometrically. Indeed, black holes in
holography are often seen as collection of qubits (the so-
called “central dogma”) described by Hamiltonians that
show signatures of maximal quantum chaos. The SYK
model [6, 16] described by two-dimensional Anti-de Sitter
(AdS2) gravity is the canonical modern example. More-
over, the quantum information “revolution” that started
with holographic entanglement entropy [35] and contin-
ues with holographic complexity [36–40] brought new in-
tuitions that allow us to connect seemingly unrelated
concepts from quantum information and computation to
geometry (see e.g. reviews [41, 42]). For instance, micro-
scopic measures of operator growth and complexity are
believed to encode subtle information about near horizon
geometries of black holes [22, 32, 43–50].

In this light, we develop a geometric approach to
Krylov complexity. Our work will explore the underlying
symmetries controlling the system dynamics, although
certain observations will be more general. We will be led
to the field of generalized coherent states and their as-
sociated information geometry. This geometrization will
clarify the definition of the operator complexity from a
physical standpoint. More concretely, we will find a pre-
cise interpretation of the Krylov complexity as a volume
in the information geometry. We will also find the rela-
tion between the symmetry algebra governing the opera-
tor growth and isometries of this geometry. At the same
time, we will see how this approach simplifies the techni-
cal analysis opening new avenues towards the computa-
tion of defining aspects of operator growth, such as Lanc-
zos coe�cients or Lyapunov exponents in various chaotic
and integrable setups. We also notice that the present
approach provides a new geometric take on an old field,
namely the Lanczos approach to non-equilibrium dynam-
ics, connecting it with the field of generalized coherent
states.

This article is organised as follows. In sec II we review
the Lanczos algorithm and its recent applications to max-
immally chaotic systems. In sec III we describe our main
idea that, for symmetry scenarios, the Liouvillian opera-
tor can be written in terms of algebra generators as a sum

of “ladder” operators. This naturally connects with gen-
eralized coherents states and their associated geometry.
In sec IV we illustrate these ideas in four canonical exam-
ples, SL(2,R) (or SU(1,1)), SU(2), Heisenberg-Weyl and
2d CFTs. As highlights, the Lanczos coe�ents for SYK,
first derived in [23] using involved techniques, will acquire
a simple and more transparent meaning, and we will de-
termine the geometric roles played by Krylov complexity
and the operator wavefunction. In sec V we arrive at
the Lanczos coe�cients in yet another way, by enforcing
the closure of the ladder operator algebra. In sec VI we
formulate operator dynamics in terms of a purely clas-
sical motion, allowing connections with classical chaos
and geometric approaches to complexity. In sec VII, us-
ing the two-mode representation of coherent states from
quantum optics, we introduce several quantum informa-
tion tools to probe operator growth: operator entangle-
ment/Renyi entropies, negativity, capacity, fidelity and
relative entropy. Finally, in sec VIII we discuss general-
izations of Krylov complexity in CFTs and relations to
known tools used in discussions of complexity and chaos.
Four appendices provide more technical details comple-
menting the discussion in the main part.

II. OPERATOR GROWTH AND KRYLOV
COMPLEXITY

We begin with a brief review of the Lanczos approach
[24] to operator dynamics in many-body systems, leading
to the definition of Krylov complexity. We also review
previous results for the SYK model that will be repro-
duced in the following part of the article using our novel
approach.

Operator Growth

The Lanczos approach starts with a quantum Hamilto-
nian H and a time-dependent Heisenberg operator O(t)
in a given model. The operator can have more labels,
such as position, spin, etc., but for the present purposes,
only the time-dependence will be explicitly denoted. The
evolution of the operator is governed by the Heisenberg
equation

@tO(t) = i[H,O(t)], (1)

where [A,B] = AB�BA, is the commutator. This equa-
tion is formally solved by

O(t) = eiHt O(0) e�iHt, (2)

and in what follows, we will denote O(0) = O. The
previous expression can be expanded in a formal power
series in t as

O(t) =
1X

n=0

(it)n

n!
Õn, (3)

Operator Size?

“Operator Size” in SYK

OTOC

Figure 2: (a) The mapping of a Majorana string �I in Eq. (2.5) to a state in the doubled
system. Each fermion operator  Li creates a fermion (red dot) while the fermions that are
absent in �I stays in the vacuum state with fermion number 0 (black dot). (b) Illustration
of the relation between average size of operator O and OTOC.

unique, but this choice is convenient for our purpose. The basis operators �I are mapped to
states in the doubled system of 2N Majorana fermions:
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Therefore each basis operator �I is mapped to a particular fermion configuration in the dou-
bled system, with fermions i1, i2, ..., ik, as is illustrated in Fig. 2(a). Essentially, the identity
operator maps to the vacuum and nontrivial operators are mapped to excitations in the
doubled theory.

2.2 Four-Point Functions Probe Operator Size
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Thus, we see that for a generic operator O, the expectation value of nj returns the percentage
of basis operators in O containing flavor j. Furthermore, we note that this expectation value
is closely related to a one-sided four-point function (see Fig. 2), since
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Here we have assumed O to be fermionic. In the first two steps, we simply plugged in
the definitions of nj and |Oi. In the third step, we anti-commuted i 

R

j
through O

L, as right
fermionic operators anti-commute with left fermionic operators. Then, we used the definition
of |0i (2.8) to replace �i 

R

j
|0i with  L

j
|0i. Afterwards, we had an expectation value of only

left operators for a maximally entangled state, so we traced out the right Hilbert space
entirely, leaving us with an infinite temperature four-point function of the left-only system.

6

~Momentum of a particle in AdS2

Near (behind?)

horizon of BH….

….

….

This Talk!

?

Growth of TFD…



This talk: focus on a definition of “operator complexity” called Krylov complexity
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where Õn are nested commutators of O with the Hamil-
tonian

Õ0 = O, Õ1 = [H,O], Õ2 = [H, [H,O]], ... (4)

Knowing the result of these commutators is equivalent
to solving the operator dynamics. Unfortunately, this is
rarely the case in generic physical systems.

Despite this technical obstruction, we would like to
have a notion of growth or complexity of the Heisenberg
operator as a function of time. Intuitively, if the Hamil-
tonian governing the dynamics is su�ciently “chaotic”,
even if we start from a “simple” operator O, the result
of these commutators will be given by increasingly com-
plex operators. In other words, the more “chaotic” the
Hamiltonian H, the faster the operator O will mix with
other operators of the theory. The main objective is then
to quantify such a mixing in a precise manner.

Lanczos Algorithm and Krylov Basis

In order to sharpen the previous intuitions it will be
useful to switch to a better suited formalism and define
the Liouvillian super-operator L (see e.g. [24]) as

L = [H, ·], O(t) ⌘ eiLtO, (5)

and by super-operator we just mean a linear map in the
space of operators of the theory. In this language, the
operators Õn in (3) are results of the repeated action of
the Liouvillian L on O such that Õn ⌘ LnO.

This view suggests interpreting (3) as an “operator’s
wavefunction”, and the Liouvillian L as a Hamiltonian in
the Schrodinger formulation. However, we cannot qual-
ify the coe�cients of tn associated with operators Õn as
“amplitudes”. One transparent reason is that the sum
of their modulus squared is not conserved in time. The
precise reason though is that to use the operator algebra
as a Hilbert space (in which we expand vectors unam-
biguously in an orthonormal basis), we need to introduce
an inner product. The choice of such an inner product
is one of the ambiguities (features) of this approach. In
this work, we will follow the most canonical one used in
the physics literature.

More concretely, associating |O) with the Hilbert space
vector corresponding to operator O, the following family
of inner products was described in [24]

(A|B)g
�
=

Z
�

0
g(�) he�HA†e��HBi� d�. (6)

In this formula, the bracket hi� denotes the thermal ex-
pectation value

hAi� =
1

Z
Tr

�
e��HA

�
, Z = Tr

�
e��H

�
. (7)

Also, for this definition to be a proper inner-product,
g(�) has to satisfy the following conditions

g(�) � 0, g(� � �) = g(�),
1

�

Z
�

0
d�g(�) = 1. (8)

In this work, following [23], we will mainly focus on the
Wightman inner product

(A|B) = heH�/2A†e�H�/2Bi� , (9)

which corresponds to g(�) = �(�� �/2). This is a phys-
ical choice that amounts to taking the expectation value
of the operators in the thermofield double state, with
operators A and B inserted in the two di↵erent copies.
In any case, once the dynamics is solved for one specific
choice of inner product, the behaviour associated with
other choices can be found (see e.g. App A in [22]).
Once we have chosen an inner product, the arbitrary

choice of basis in which to expand our evolving opera-
tor does not a↵ect the physics of the problem. However,
some choices are more convenient than others. Here we
will follow the Lanczos approach to non-equilibrium dy-
namics, which uses the canonical basis generated by the
|Õn). More precisely, starting from |Õn) and using the
Gram–Schmidt orthogonalization procedure we arrive at
an orthonormal basis, known as the Krylov basis |On).
In a certain precise sense, this is the “optimal” choice
since the operators |Õn) are the only ones appearing in
(3).
The Krylov basis is defined recursively using the fol-

lowing algorithm (also known as Lanczos algorithm). We
start by noticing that the first two operators in |Õn)
are always orthogonal with respect to the previous inner
products (6). Therefore we can directly include them in
our basis

|O0) := |Õ0) = |O), |O1) := b�1
1 L|Õ0), (10)

where b1 = (Õ0L|LÕ0)1/2 normalizes the vector. The
next states are constructed iteratively by first computing

|An) = L|On�1)� bn�1|On�2), (11)

and then normalizing

|On) = b�1
n

|An), bn = (An|An)
1/2. (12)

This way, we arrive at an orthonormal basis (On|Om) =
�n,m that has been generated by the set {LnO}. We can
now use it to expand any element of this set and the
evolving operator |O(t)). Notice that in addition to the
Krylov basis states |On), this algorithm yields the so-
called Lanczos coe�cients bn. Finding these coe�cients
for the system under consideration amounts to solving for
the dynamics and it is one of the technical challenges in
this approach, see [24]. Let us also point that the above
algorithm can be generalized to include diagonal terms
in the Liouvillian (see e.g. Appendix A).

Heisenberg evolution

Formally, we can write the operator as

“Simple” operator evolves/spreads in the space of “Complex” operators.

Common Lore: The more “chaotic” H the faster the operator grows. 

How to quantify this?



Krylov Basis

Liouvillian (super)operator

3

where Õn are nested commutators of O with the Hamil-
tonian

Õ0 = O, Õ1 = [H,O], Õ2 = [H, [H,O]], ... (4)

Knowing the result of these commutators is equivalent
to solving the operator dynamics. Unfortunately, this is
rarely the case in generic physical systems.

Despite this technical obstruction, we would like to
have a notion of growth or complexity of the Heisenberg
operator as a function of time. Intuitively, if the Hamil-
tonian governing the dynamics is su�ciently “chaotic”,
even if we start from a “simple” operator O, the result
of these commutators will be given by increasingly com-
plex operators. In other words, the more “chaotic” the
Hamiltonian H, the faster the operator O will mix with
other operators of the theory. The main objective is then
to quantify such a mixing in a precise manner.

Lanczos Algorithm and Krylov Basis

In order to sharpen the previous intuitions it will be
useful to switch to a better suited formalism and define
the Liouvillian super-operator L (see e.g. [24]) as

L = [H, ·], O(t) ⌘ eiLtO, (5)

and by super-operator we just mean a linear map in the
space of operators of the theory. In this language, the
operators Õn in (3) are results of the repeated action of
the Liouvillian L on O such that Õn ⌘ LnO.

This view suggests interpreting (3) as an “operator’s
wavefunction”, and the Liouvillian L as a Hamiltonian in
the Schrodinger formulation. However, we cannot qual-
ify the coe�cients of tn associated with operators Õn as
“amplitudes”. One transparent reason is that the sum
of their modulus squared is not conserved in time. The
precise reason though is that to use the operator algebra
as a Hilbert space (in which we expand vectors unam-
biguously in an orthonormal basis), we need to introduce
an inner product. The choice of such an inner product
is one of the ambiguities (features) of this approach. In
this work, we will follow the most canonical one used in
the physics literature.

More concretely, associating |O) with the Hilbert space
vector corresponding to operator O, the following family
of inner products was described in [24]
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In this formula, the bracket hi� denotes the thermal ex-
pectation value
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Also, for this definition to be a proper inner-product,
g(�) has to satisfy the following conditions

g(�) � 0, g(� � �) = g(�),
1

�

Z
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0
d�g(�) = 1. (8)

In this work, following [23], we will mainly focus on the
Wightman inner product

(A|B) = heH�/2A†e�H�/2Bi� , (9)

which corresponds to g(�) = �(�� �/2). This is a phys-
ical choice that amounts to taking the expectation value
of the operators in the thermofield double state, with
operators A and B inserted in the two di↵erent copies.
In any case, once the dynamics is solved for one specific
choice of inner product, the behaviour associated with
other choices can be found (see e.g. App A in [22]).
Once we have chosen an inner product, the arbitrary

choice of basis in which to expand our evolving opera-
tor does not a↵ect the physics of the problem. However,
some choices are more convenient than others. Here we
will follow the Lanczos approach to non-equilibrium dy-
namics, which uses the canonical basis generated by the
|Õn). More precisely, starting from |Õn) and using the
Gram–Schmidt orthogonalization procedure we arrive at
an orthonormal basis, known as the Krylov basis |On).
In a certain precise sense, this is the “optimal” choice
since the operators |Õn) are the only ones appearing in
(3).
The Krylov basis is defined recursively using the fol-

lowing algorithm (also known as Lanczos algorithm). We
start by noticing that the first two operators in |Õn)
are always orthogonal with respect to the previous inner
products (6). Therefore we can directly include them in
our basis

|O0) := |Õ0) = |O), |O1) := b�1
1 L|Õ0), (10)

where b1 = (Õ0L|LÕ0)1/2 normalizes the vector. The
next states are constructed iteratively by first computing

|An) = L|On�1)� bn�1|On�2), (11)

and then normalizing

|On) = b�1
n

|An), bn = (An|An)
1/2. (12)

This way, we arrive at an orthonormal basis (On|Om) =
�n,m that has been generated by the set {LnO}. We can
now use it to expand any element of this set and the
evolving operator |O(t)). Notice that in addition to the
Krylov basis states |On), this algorithm yields the so-
called Lanczos coe�cients bn. Finding these coe�cients
for the system under consideration amounts to solving for
the dynamics and it is one of the technical challenges in
this approach, see [24]. Let us also point that the above
algorithm can be generalized to include diagonal terms
in the Liouvillian (see e.g. Appendix A).
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have a notion of growth or complexity of the Heisenberg
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even if we start from a “simple” operator O, the result
of these commutators will be given by increasingly com-
plex operators. In other words, the more “chaotic” the
Hamiltonian H, the faster the operator O will mix with
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This view suggests interpreting (3) as an “operator’s
wavefunction”, and the Liouvillian L as a Hamiltonian in
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ify the coe�cients of tn associated with operators Õn as
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of their modulus squared is not conserved in time. The
precise reason though is that to use the operator algebra
as a Hilbert space (in which we expand vectors unam-
biguously in an orthonormal basis), we need to introduce
an inner product. The choice of such an inner product
is one of the ambiguities (features) of this approach. In
this work, we will follow the most canonical one used in
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(A|B) = heH�/2A†e�H�/2Bi� , (9)

which corresponds to g(�) = �(�� �/2). This is a phys-
ical choice that amounts to taking the expectation value
of the operators in the thermofield double state, with
operators A and B inserted in the two di↵erent copies.
In any case, once the dynamics is solved for one specific
choice of inner product, the behaviour associated with
other choices can be found (see e.g. App A in [22]).
Once we have chosen an inner product, the arbitrary

choice of basis in which to expand our evolving opera-
tor does not a↵ect the physics of the problem. However,
some choices are more convenient than others. Here we
will follow the Lanczos approach to non-equilibrium dy-
namics, which uses the canonical basis generated by the
|Õn). More precisely, starting from |Õn) and using the
Gram–Schmidt orthogonalization procedure we arrive at
an orthonormal basis, known as the Krylov basis |On).
In a certain precise sense, this is the “optimal” choice
since the operators |Õn) are the only ones appearing in
(3).
The Krylov basis is defined recursively using the fol-

lowing algorithm (also known as Lanczos algorithm). We
start by noticing that the first two operators in |Õn)
are always orthogonal with respect to the previous inner
products (6). Therefore we can directly include them in
our basis

|O0) := |Õ0) = |O), |O1) := b�1
1 L|Õ0), (10)

where b1 = (Õ0L|LÕ0)1/2 normalizes the vector. The
next states are constructed iteratively by first computing

|An) = L|On�1)� bn�1|On�2), (11)

and then normalizing

|On) = b�1
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|An), bn = (An|An)
1/2. (12)

This way, we arrive at an orthonormal basis (On|Om) =
�n,m that has been generated by the set {LnO}. We can
now use it to expand any element of this set and the
evolving operator |O(t)). Notice that in addition to the
Krylov basis states |On), this algorithm yields the so-
called Lanczos coe�cients bn. Finding these coe�cients
for the system under consideration amounts to solving for
the dynamics and it is one of the technical challenges in
this approach, see [24]. Let us also point that the above
algorithm can be generalized to include diagonal terms
in the Liouvillian (see e.g. Appendix A).

Given {O,LO,L2
O, ...}
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we need a basis   

First, we must pick an inner product (freedom):
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Knowing the result of these commutators is equivalent
to solving the operator dynamics. Unfortunately, this is
rarely the case in generic physical systems.

Despite this technical obstruction, we would like to
have a notion of growth or complexity of the Heisenberg
operator as a function of time. Intuitively, if the Hamil-
tonian governing the dynamics is su�ciently “chaotic”,
even if we start from a “simple” operator O, the result
of these commutators will be given by increasingly com-
plex operators. In other words, the more “chaotic” the
Hamiltonian H, the faster the operator O will mix with
other operators of the theory. The main objective is then
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Lanczos Algorithm and Krylov Basis

In order to sharpen the previous intuitions it will be
useful to switch to a better suited formalism and define
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This view suggests interpreting (3) as an “operator’s
wavefunction”, and the Liouvillian L as a Hamiltonian in
the Schrodinger formulation. However, we cannot qual-
ify the coe�cients of tn associated with operators Õn as
“amplitudes”. One transparent reason is that the sum
of their modulus squared is not conserved in time. The
precise reason though is that to use the operator algebra
as a Hilbert space (in which we expand vectors unam-
biguously in an orthonormal basis), we need to introduce
an inner product. The choice of such an inner product
is one of the ambiguities (features) of this approach. In
this work, we will follow the most canonical one used in
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More concretely, associating |O) with the Hilbert space
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(A|B) = heH�/2A†e�H�/2Bi� , (9)

which corresponds to g(�) = �(�� �/2). This is a phys-
ical choice that amounts to taking the expectation value
of the operators in the thermofield double state, with
operators A and B inserted in the two di↵erent copies.
In any case, once the dynamics is solved for one specific
choice of inner product, the behaviour associated with
other choices can be found (see e.g. App A in [22]).
Once we have chosen an inner product, the arbitrary

choice of basis in which to expand our evolving opera-
tor does not a↵ect the physics of the problem. However,
some choices are more convenient than others. Here we
will follow the Lanczos approach to non-equilibrium dy-
namics, which uses the canonical basis generated by the
|Õn). More precisely, starting from |Õn) and using the
Gram–Schmidt orthogonalization procedure we arrive at
an orthonormal basis, known as the Krylov basis |On).
In a certain precise sense, this is the “optimal” choice
since the operators |Õn) are the only ones appearing in
(3).
The Krylov basis is defined recursively using the fol-

lowing algorithm (also known as Lanczos algorithm). We
start by noticing that the first two operators in |Õn)
are always orthogonal with respect to the previous inner
products (6). Therefore we can directly include them in
our basis

|O0) := |Õ0) = |O), |O1) := b�1
1 L|Õ0), (10)

where b1 = (Õ0L|LÕ0)1/2 normalizes the vector. The
next states are constructed iteratively by first computing

|An) = L|On�1)� bn�1|On�2), (11)

and then normalizing

|On) = b�1
n

|An), bn = (An|An)
1/2. (12)

This way, we arrive at an orthonormal basis (On|Om) =
�n,m that has been generated by the set {LnO}. We can
now use it to expand any element of this set and the
evolving operator |O(t)). Notice that in addition to the
Krylov basis states |On), this algorithm yields the so-
called Lanczos coe�cients bn. Finding these coe�cients
for the system under consideration amounts to solving for
the dynamics and it is one of the technical challenges in
this approach, see [24]. Let us also point that the above
algorithm can be generalized to include diagonal terms
in the Liouvillian (see e.g. Appendix A).
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Knowing the result of these commutators is equivalent
to solving the operator dynamics. Unfortunately, this is
rarely the case in generic physical systems.

Despite this technical obstruction, we would like to
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operator as a function of time. Intuitively, if the Hamil-
tonian governing the dynamics is su�ciently “chaotic”,
even if we start from a “simple” operator O, the result
of these commutators will be given by increasingly com-
plex operators. In other words, the more “chaotic” the
Hamiltonian H, the faster the operator O will mix with
other operators of the theory. The main objective is then
to quantify such a mixing in a precise manner.
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the Liouvillian super-operator L (see e.g. [24]) as

L = [H, ·], O(t) ⌘ eiLtO, (5)

and by super-operator we just mean a linear map in the
space of operators of the theory. In this language, the
operators Õn in (3) are results of the repeated action of
the Liouvillian L on O such that Õn ⌘ LnO.

This view suggests interpreting (3) as an “operator’s
wavefunction”, and the Liouvillian L as a Hamiltonian in
the Schrodinger formulation. However, we cannot qual-
ify the coe�cients of tn associated with operators Õn as
“amplitudes”. One transparent reason is that the sum
of their modulus squared is not conserved in time. The
precise reason though is that to use the operator algebra
as a Hilbert space (in which we expand vectors unam-
biguously in an orthonormal basis), we need to introduce
an inner product. The choice of such an inner product
is one of the ambiguities (features) of this approach. In
this work, we will follow the most canonical one used in
the physics literature.
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vector corresponding to operator O, the following family
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Wightman inner product

(A|B) = heH�/2A†e�H�/2Bi� , (9)

which corresponds to g(�) = �(�� �/2). This is a phys-
ical choice that amounts to taking the expectation value
of the operators in the thermofield double state, with
operators A and B inserted in the two di↵erent copies.
In any case, once the dynamics is solved for one specific
choice of inner product, the behaviour associated with
other choices can be found (see e.g. App A in [22]).
Once we have chosen an inner product, the arbitrary

choice of basis in which to expand our evolving opera-
tor does not a↵ect the physics of the problem. However,
some choices are more convenient than others. Here we
will follow the Lanczos approach to non-equilibrium dy-
namics, which uses the canonical basis generated by the
|Õn). More precisely, starting from |Õn) and using the
Gram–Schmidt orthogonalization procedure we arrive at
an orthonormal basis, known as the Krylov basis |On).
In a certain precise sense, this is the “optimal” choice
since the operators |Õn) are the only ones appearing in
(3).
The Krylov basis is defined recursively using the fol-

lowing algorithm (also known as Lanczos algorithm). We
start by noticing that the first two operators in |Õn)
are always orthogonal with respect to the previous inner
products (6). Therefore we can directly include them in
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|O0) := |Õ0) = |O), |O1) := b�1
1 L|Õ0), (10)

where b1 = (Õ0L|LÕ0)1/2 normalizes the vector. The
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This way, we arrive at an orthonormal basis (On|Om) =
�n,m that has been generated by the set {LnO}. We can
now use it to expand any element of this set and the
evolving operator |O(t)). Notice that in addition to the
Krylov basis states |On), this algorithm yields the so-
called Lanczos coe�cients bn. Finding these coe�cients
for the system under consideration amounts to solving for
the dynamics and it is one of the technical challenges in
this approach, see [24]. Let us also point that the above
algorithm can be generalized to include diagonal terms
in the Liouvillian (see e.g. Appendix A).
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Then the orthonormal basis is constructed using Lanczos algorithm (G-S)
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�n,m that has been generated by the set {LnO}. We can
now use it to expand any element of this set and the
evolving operator |O(t)). Notice that in addition to the
Krylov basis states |On), this algorithm yields the so-
called Lanczos coe�cients bn. Finding these coe�cients
for the system under consideration amounts to solving for
the dynamics and it is one of the technical challenges in
this approach, see [24]. Let us also point that the above
algorithm can be generalized to include diagonal terms
in the Liouvillian (see e.g. Appendix A).
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the physics literature.
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In this formula, the bracket hi� denotes the thermal ex-
pectation value

hAi� =
1

Z
Tr

�
e��HA

�
, Z = Tr

�
e��H

�
. (7)

Also, for this definition to be a proper inner-product,
g(�) has to satisfy the following conditions
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choice of inner product, the behaviour associated with
other choices can be found (see e.g. App A in [22]).
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since the operators |Õn) are the only ones appearing in
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The Krylov basis is defined recursively using the fol-
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are always orthogonal with respect to the previous inner
products (6). Therefore we can directly include them in
our basis
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This way, we arrive at an orthonormal basis (On|Om) =
�n,m that has been generated by the set {LnO}. We can
now use it to expand any element of this set and the
evolving operator |O(t)). Notice that in addition to the
Krylov basis states |On), this algorithm yields the so-
called Lanczos coe�cients bn. Finding these coe�cients
for the system under consideration amounts to solving for
the dynamics and it is one of the technical challenges in
this approach, see [24]. Let us also point that the above
algorithm can be generalized to include diagonal terms
in the Liouvillian (see e.g. Appendix A).
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[Recursion Method: Viswanath,Muller ’63]



Schrodinger equation

Now we expand the operator in the Krylov basis

|O(t)) = eiLt
|O) ⌘

X

n

in'n(t)|On)
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4

We now expand the time-dependent operator in the
Krylov basis as

|O(t)) =
X

n

in'n(t)|On) . (13)

In this expansion, the amplitudes 'n(t) turn out to be
real. Generally, their modulus squared defines probabil-
ities whose sum is conserved in time

X

n

|'n(t)|2 ⌘
X

n

pn(t) = 1. (14)

These amplitudes are determined by solving a
“Schrodinger equation”, that descends from the original
Heisenberg equation satisfied by O(t). To derive this
equation, notice that the previously defined Liouvillian
L plays the role of the Hamiltonian in the new Hilbert
space spanned by the Krylov basis |On). In particular,
the state representing O(t) is given by

|O(t)) = eiLt|O). (15)

Computing the time derivative

@t|O(t)) = iL|O(t)), (16)

or equivalently, using (13) we arrive at

@t|O(t)) =
X

n

in@t'n(t)|On). (17)

Next, from the Lanczos algorithm (11), we find the action
of the Liouvillian on the Krylov basis vectors

L|On) = bn|On�1) + bn+1|On+1). (18)

From this expression it is clear that the Liovillian is tridi-
agonal in the Krylov basis (generally we may have a di-
agonal term in (18)). This fact will play an important
role in the following sections. Applying this to (16) and
shifting the summation appropriately, we derive

@t|O(t)) =
X

n

in (bn'n�1(t)� bn+1'n+1(t)) |On). (19)

Comparing the coe�cients of (17) and (19), we arrive at
the discrete Schrodinger equation determining the time
evolution of the amplitudes 'n(t)

@t'n(t) = bn'n�1(t)� bn+1'n+1(t) . (20)

With this equation, once we derive the Lanczos coe�-
cients bn, we can solve for the amplitudes 'n(t) with
initial condition 'n(0) = �n0 and determine the opera-
tor wavefunction (13). The operator’s wavefunction then
completely determines the growth of the operator that,
as we will describe below, can be measured using tools of
quantum mechanics, quantum information, or quantum
complexity.

Before we discuss operator’s complexity, we note that
a very special role in the Krylov approach is played by
the so-called auto-correlation function

C(t) ⌘ (O(t)|O) = '0(t) . (21)

Indeed, as reviewed in [23], starting from C(t) and/or its
appropriate transforms we can obtain the Lanczos coe�-
cients bn and operator wavefunction. In this work, it will
be more instructive to develop our physical understand-
ing of the Liouvillian instead. This will allow us to easily
extract both C(t) and bn.

Krylov Complexity

We now describe how to quantify operator complex-
ity in this framework. Using physical intuition, we can
first interpret the dynamics in equation (20) as that of
a particle moving on a one-dimensional chain, where the
sites with label n are in one-to-one correspondence with
the Krylov basis vectors (see also [29] for a Toda chain
perspective). This suggests a natural measure of opera-
tor complexity, dubbed Krylov complexity [23], defined
to be the average position in the chain

KO ⌘
X

n

n pn(t) =
X

n

n |'n(t)|2 . (22)

Formally, this quantity can be written as the expectation
value in the evolving state |O(t)) of the following “Krylov
complexity operator”

K̂O =
X

n

n|On)(On| , (23)

such that Krylov complexity reads

KO = (O(t)|K̂O|O(t)) . (24)

Intuitively, this position operator (23) in the chain can
also be interpreted as a “number operator”. Unlike the
Liouvillian, it is diagonal in the Krylov basis.
Clearly, as with the choice of the inner product, there

is a certain ambiguity in this definition of operator com-
plexity. Indeed, several definitions of operator complex-
ities that have appeared in the literature can always be
written in such a way, see [22, 23]. However, as we will
see in this work, this “minimal” choice acquires a simple
geometric interpretation.
The recent interest in the Krylov approach to opera-

tor complexity has various origins. First, modulo simple
physical assumptions, it is a well defined and concrete ap-
proach, potentially applicable to QFTs. These features
make it appealing from the point of view of holography.
Second, based on various explicit numerical as well as
analytical examples, [23] conjectured a maximal possi-
ble growth of Lanczos coe�cients in quantum systems,
namely a linear growth:

bn  ↵n+ � +O(1), (25)

= iL|O(t)) =
X

n

in'n(t)L|On)
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X

n

pn(t) = 1. (14)

These amplitudes are determined by solving a
“Schrodinger equation”, that descends from the original
Heisenberg equation satisfied by O(t). To derive this
equation, notice that the previously defined Liouvillian
L plays the role of the Hamiltonian in the new Hilbert
space spanned by the Krylov basis |On). In particular,
the state representing O(t) is given by

|O(t)) = eiLt|O). (15)

Computing the time derivative

@t|O(t)) = iL|O(t)), (16)

or equivalently, using (13) we arrive at

@t|O(t)) =
X

n

in@t'n(t)|On). (17)

Next, from the Lanczos algorithm (11), we find the action
of the Liouvillian on the Krylov basis vectors

L|On) = bn|On�1) + bn+1|On+1). (18)

From this expression it is clear that the Liovillian is tridi-
agonal in the Krylov basis (generally we may have a di-
agonal term in (18)). This fact will play an important
role in the following sections. Applying this to (16) and
shifting the summation appropriately, we derive

@t|O(t)) =
X

n

in (bn'n�1(t)� bn+1'n+1(t)) |On). (19)

Comparing the coe�cients of (17) and (19), we arrive at
the discrete Schrodinger equation determining the time
evolution of the amplitudes 'n(t)

@t'n(t) = bn'n�1(t)� bn+1'n+1(t) . (20)

With this equation, once we derive the Lanczos coe�-
cients bn, we can solve for the amplitudes 'n(t) with
initial condition 'n(0) = �n0 and determine the opera-
tor wavefunction (13). The operator’s wavefunction then
completely determines the growth of the operator that,
as we will describe below, can be measured using tools of
quantum mechanics, quantum information, or quantum
complexity.

Before we discuss operator’s complexity, we note that
a very special role in the Krylov approach is played by
the so-called auto-correlation function

C(t) ⌘ (O(t)|O) = '0(t) . (21)

Indeed, as reviewed in [23], starting from C(t) and/or its
appropriate transforms we can obtain the Lanczos coe�-
cients bn and operator wavefunction. In this work, it will
be more instructive to develop our physical understand-
ing of the Liouvillian instead. This will allow us to easily
extract both C(t) and bn.

Krylov Complexity

We now describe how to quantify operator complex-
ity in this framework. Using physical intuition, we can
first interpret the dynamics in equation (20) as that of
a particle moving on a one-dimensional chain, where the
sites with label n are in one-to-one correspondence with
the Krylov basis vectors (see also [29] for a Toda chain
perspective). This suggests a natural measure of opera-
tor complexity, dubbed Krylov complexity [23], defined
to be the average position in the chain

KO ⌘
X

n

n pn(t) =
X

n

n |'n(t)|2 . (22)

Formally, this quantity can be written as the expectation
value in the evolving state |O(t)) of the following “Krylov
complexity operator”

K̂O =
X

n

n|On)(On| , (23)

such that Krylov complexity reads

KO = (O(t)|K̂O|O(t)) . (24)

Intuitively, this position operator (23) in the chain can
also be interpreted as a “number operator”. Unlike the
Liouvillian, it is diagonal in the Krylov basis.
Clearly, as with the choice of the inner product, there

is a certain ambiguity in this definition of operator com-
plexity. Indeed, several definitions of operator complex-
ities that have appeared in the literature can always be
written in such a way, see [22, 23]. However, as we will
see in this work, this “minimal” choice acquires a simple
geometric interpretation.
The recent interest in the Krylov approach to opera-

tor complexity has various origins. First, modulo simple
physical assumptions, it is a well defined and concrete ap-
proach, potentially applicable to QFTs. These features
make it appealing from the point of view of holography.
Second, based on various explicit numerical as well as
analytical examples, [23] conjectured a maximal possi-
ble growth of Lanczos coe�cients in quantum systems,
namely a linear growth:

bn  ↵n+ � +O(1), (25)

Comparing the coefficients and shifting the summation we derive
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Once we know Lanczos coefficients       we can find the “amplitudes”!bn
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Comment: Auto-correlators

Lanczos coefficients are also “encoded” in the auto-correlator

C(t) = (O|O(t)) = (O|eiLt
|O) = '0(t)
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Moments of C(t) can give us      in some recursive algorithm 

We now quantify this idea precisely. This is done by
applying the Lanczos algorithm, which iteratively com-
putes a tridiagonal representation of a matrix. The idea is to
find the sequence fLnjOÞg and then apply Gram-Schmidt
to orthogonalize. Explicitly, start with a normalized vector
jO0Þ ≔ jOÞ. As a base case, let jO1Þ ≔ b−11 LjO0Þ, where
b1 ≔ ðO0LjLO0Þ1=2. Then inductively define

jAnÞ ≔ LjOn−1Þ − bn−1jOn−2Þ;
bn ≔ ðAnjAnÞ1=2;

jOnÞ ≔ b−1n jAnÞ: ð4Þ

The output of the algorithm is a sequence of positive
numbers, fbng, called the Lanczos coefficients, and an
orthonormal sequence of operators, fjOnÞg, called the
Krylov basis. [This is a bit of a misnomer, as the Krylov
basis spans an operator space containing OðtÞ for any t but
does not usually span the full space of operators.] The
Liouvillian is tridiagonal in this basis:

Lnm ≔ ðOnjLjOmÞ ¼

0

BBBBBBBB@

0 b1 0 0 $ $ $
b1 0 b2 0 $ $ $
0 b2 0 b3 $ $ $

0 0 b3 0 . .
.

..

. ..
. ..

. . .
. . .

.

1

CCCCCCCCA

: ð5Þ

We make four remarks. First, if the operator Hilbert
space is d-dimensional with d finite [or if the subspace

spanned by jO0Þ; jO1Þ; jO2Þ;… is so], the algorithm halts
at n ¼ dþ 1: In this work, we work always in the
thermodynamic limit and discard this nongeneric situation.
Second, the Lanczos algorithm presented here is adapted to
operator dynamics. Generally, a tridiagonal matrix will
have nonzero diagonal entries, but they vanish in Eq. (5),
because one can inductively show that inOn is Hermitian
for all n, and, hence, ðOnjLjOnÞ ¼ 0. Third, the knowledge
of the Lanczos coefficients b1;…; bn is equivalent to that of
the moments μ2; μ4;…; μ2n, defined as the Taylor series
coefficients of the correlation function

μ2n ≔ ðOjL2njOÞ ¼ d2n

dt2n
CðtÞjt¼0: ð6Þ

The nontrivial transformation between the Lanczos coef-
ficients and the moments is reviewed in the Appendix A.
Fourth, the Lanczos coefficients have units of energy.
In the Krylov basis, the correlation function CðtÞ is

CðtÞ ¼ ðeiLtÞ00: ð7Þ

Hence, the autocorrelation depends only on the Lanczos
coefficients and not on the Krylov basis. One way to
interpret the Lanczos coefficients, which we employ
extensively below, is as the hopping amplitudes of a
semi-infinite tight-binding model—see Fig. 1. The wave
function on the semi-infinite chain is defined as
φnðtÞ ≔ i−nðOnjOðtÞÞ. Heisenberg evolution of OðtÞ
becomes a discrete Schrödinger equation:

∂tφn ¼ −bnþ1φnþ1 þ bnφn−1; φnð0Þ ¼ δn0; ð8Þ

where b0 ¼ φ−1 ¼ 0 by convention. The autocorrelation
is simply CðtÞ ¼ φ0ðtÞ, so the Lanczos coefficients are
completely equivalent to the autocorrelation function.
Just as different bases are well suited for particular

computations, a number of equivalent representations of the
autocorrelation function appear in this work, namely, the
Green’s function

GðzÞ ¼
!
O
""""

1

z − L

""""O
#

¼ i
Z

∞

0
e−iztCðtÞdt ð9Þ

and the spectral function

ΦðωÞ ¼
Z

∞

−∞
CðtÞe−iωtdt: ð10Þ

In summary, we have reviewed five equivalent ways to
describe the dynamics

CðtÞ ↔ GðzÞ ↔ ΦðωÞ ↔ fμ2ng ↔ fbng: ð11Þ

Just as with a choice of basis, we use the most convenient
representation for the task at hand and translate freely

FIG. 1. Artist’s impression of the space of operators and its
relation to the 1D chain defined by the Lanczos algorithm starting
from a simple operator O. The region of complex operators
corresponds to that of largen on the1Dchain.Under our hypothesis,
the hopping amplitudes bn on the chain grow linearly asymptoti-
cally in generic thermalizing systems (with a log correction in one
dimension; see Sec. IV C). This implies an exponential spreading
ðnÞt ∼ e2αt of the wave function φn on the 1D chain, which reflects
the exponential growth of operator complexity under Heisenberg
evolution, in a sense that wemake precise in Sec. V. The form of the
wave function φn is only a sketch; see Fig. 5 for a realistic picture.
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The Lanczos coefficients, on the other hand, are related
to the others via a nonlinear transformation. The rest of this
Appendix discusses how to perform the nontrivial trans-
lation between the Lanczos coefficients and the moments
both asymptotically and numerically.

1. From moments to Lanczos coefficients

Cumulative products of the first n Lanczos coefficients
are given by determinants of the Hankel matrix of
moments [23]

b21…b2n ¼ det ðμiþjÞ0≤i;j≤n: ðA4Þ

If the moments are known, the determinant can be
computed efficiently by transforming the Hankel matrix
into diagonal form. Doing this iteratively for k ∈ ½1; n&
provides a fast algorithm that computes b1;…; bn from
μ2; μ4;…; μ2n. The algorithm may be expressed concisely
as a recursion relation [see Eq. (3.33) in Ref. [23] ] as
follows:

bn ¼
ffiffiffiffiffiffiffiffiffi
MðnÞ

2n

q
;

Mð0Þ
2k ¼

Mðm−1Þ
2k

b2m−1
−
Mðm−2Þ

2k−2
b2m−2

; k ¼ m;…; n;

Mð0Þ
2k ¼ μ2k; b−1 ¼ b0 ≔ 1; Mð−1Þ

2k ≔ 0: ðA5Þ

If an analytic expression for CðtÞ is known, then an
arbitrary number of the Lanczos coefficients may be
computed numerically via Eq. (A5). We remark that this
algorithm suffers from large numerical instabilities due to
repeated floating-point divisions.

2. From Lanczos coefficients to moments

It follows from the tridiagonal form of L that the
moments may be expressed in terms of the Lanczos
coefficients as

μ2n ¼ ðOjL2njOÞ ¼ ðL2nÞ00: ðA6Þ

If the Lanczos coefficients are known, this is a completely
combinatorial object. In particular, the moments are given
by a sum over Dyck paths. Formally, a Dyck path of length
2n can be defined as a sequence ðh0; h1;…; h2nÞ such that
h0 ¼ h2n ¼ 1=2; hk ≥ 1

2 and jhk − hkþ1j ¼ 1 for any k.
These are often visualized as paths starting at height zero
where each segment either increases or decreases the height
by one unit, with the constraint that the height is always
non-negative and returns to zero at the end. Denoting the
set of such paths by Dn, we have

μ2n ¼
X

fhkg∈Dn

Y2n

k¼1

bðhkþhk−1Þ=2: ðA7Þ

For example, μ2 ¼ b21 and μ4 ¼ b41 þ b21b
2
2. The number of

Dyck paths of length 2n is given by the Catalan numbers
Cn ¼ f½ð2nÞ!&=½ðnþ 1Þ!n!&g. A consequence of Eq. (A7) is
the following lower bound:

μ2n ≥ b21b
2
2 ' ' ' b2n: ðA8Þ

On the other hand, we have the upper bound μ2n ≤
maxnk¼1ðb2kÞCn. Applying the upper and lower bounds,
linear growth of the Lanczos coefficients bn corresponds to
the following growth rate of moments:

μ2n ¼ exp½2n ln nþOðnÞ&: ðA9Þ

This equation is a useful reformulation of the linear growth
hypothesis.
If the growth rate is known as well, bn ¼ αnþOð1Þ,

it is possible to refine the asymptotic by specifying the
next-order exponential term:

μ2n ¼
"
4nα
eπ

#
2n
eoðnÞ: ðA10Þ

Combining this equation with the Stirling formula, the
correlation function CðtÞ ¼

P
n μ2nðitÞ2n=ð2nÞ! has con-

vergence radius r ¼ π=ð2αÞ, due to singularities at t¼(ir;
in fact, CðtÞ is analytical in the strip −r < ImðtÞ < r; see
Fig. 3. Therefore, the Fourier transform of CðtÞ, which is
the spectral density ΦðωÞ, has an exponential decay

jΦðωÞj ¼ e−jωj=ω0þoðωÞ; ω0 ¼ r−1 ¼ 2α=π: ðA11Þ

We illustrate the above results by a simple example:
When bn ¼ αn, then CðtÞ ¼ sechðαtÞ and ΦðωÞ ¼
ðα=πÞsech½ðπωÞ=ð2αÞ&. The moments μ2n ¼ 1; 1; 5; 61;
1385;… are known as Euler or secant numbers and have
the asymptotic behavior μ2n ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð4nÞ=π&

p
½ð4nÞ=ðπeÞ&2n×

½1þ oð1Þ& [103]. We checked that Eqs. (A10) and (A11)
hold in all analytic examples we are aware of in the
literature and believe them to hold, in general.

APPENDIX B: MOMENTS AND LANCZOS
COEFFICIENTS IN THE SYK MODEL

In this Appendix, we compute the Lanczos coefficients
in the large-N SYK model at an infinite temperature with
the initial operator O ¼

ffiffiffi
2

p
γ1. Most often, this is done by

computing the moments and applying the mapping
described in Appendix A.
For convenience, we recall the SYK Hamiltonian and

disorder normalization:

HðqÞ
SYK ¼ iq=2

X

1≤i1<i2<'''<iq≤N
Ji1…iqγi1…γiq ; ðB1Þ

J2i1…iq ¼ 0; ðB2Þ
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Usually C(t) are difficult to obtain but in some cases they are known explicitly 
(2d CFT on a line, integrable models, SYK, RM…). They are also related to 
Green’s functions or spectral functions.

In 2d CFT they can be interpreted in terms of geodesic between two sides of TFD 
at 0 and t.

C(t) ⇠ cosh�2h

✓
⇡t

�

◆
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“Krylov Complexity” (K-Complexity)

The physics of the growth can be understood as a motion of a particle on a chain

We now quantify this idea precisely. This is done by
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putes a tridiagonal representation of a matrix. The idea is to
find the sequence fLnjOÞg and then apply Gram-Schmidt
to orthogonalize. Explicitly, start with a normalized vector
jO0Þ ≔ jOÞ. As a base case, let jO1Þ ≔ b−11 LjO0Þ, where
b1 ≔ ðO0LjLO0Þ1=2. Then inductively define

jAnÞ ≔ LjOn−1Þ − bn−1jOn−2Þ;
bn ≔ ðAnjAnÞ1=2;

jOnÞ ≔ b−1n jAnÞ: ð4Þ

The output of the algorithm is a sequence of positive
numbers, fbng, called the Lanczos coefficients, and an
orthonormal sequence of operators, fjOnÞg, called the
Krylov basis. [This is a bit of a misnomer, as the Krylov
basis spans an operator space containing OðtÞ for any t but
does not usually span the full space of operators.] The
Liouvillian is tridiagonal in this basis:

Lnm ≔ ðOnjLjOmÞ ¼

0
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0 b1 0 0 $ $ $
b1 0 b2 0 $ $ $
0 b2 0 b3 $ $ $

0 0 b3 0 . .
.

..

. ..
. ..

. . .
. . .

.

1

CCCCCCCCA

: ð5Þ

We make four remarks. First, if the operator Hilbert
space is d-dimensional with d finite [or if the subspace

spanned by jO0Þ; jO1Þ; jO2Þ;… is so], the algorithm halts
at n ¼ dþ 1: In this work, we work always in the
thermodynamic limit and discard this nongeneric situation.
Second, the Lanczos algorithm presented here is adapted to
operator dynamics. Generally, a tridiagonal matrix will
have nonzero diagonal entries, but they vanish in Eq. (5),
because one can inductively show that inOn is Hermitian
for all n, and, hence, ðOnjLjOnÞ ¼ 0. Third, the knowledge
of the Lanczos coefficients b1;…; bn is equivalent to that of
the moments μ2; μ4;…; μ2n, defined as the Taylor series
coefficients of the correlation function

μ2n ≔ ðOjL2njOÞ ¼ d2n

dt2n
CðtÞjt¼0: ð6Þ

The nontrivial transformation between the Lanczos coef-
ficients and the moments is reviewed in the Appendix A.
Fourth, the Lanczos coefficients have units of energy.
In the Krylov basis, the correlation function CðtÞ is

CðtÞ ¼ ðeiLtÞ00: ð7Þ

Hence, the autocorrelation depends only on the Lanczos
coefficients and not on the Krylov basis. One way to
interpret the Lanczos coefficients, which we employ
extensively below, is as the hopping amplitudes of a
semi-infinite tight-binding model—see Fig. 1. The wave
function on the semi-infinite chain is defined as
φnðtÞ ≔ i−nðOnjOðtÞÞ. Heisenberg evolution of OðtÞ
becomes a discrete Schrödinger equation:

∂tφn ¼ −bnþ1φnþ1 þ bnφn−1; φnð0Þ ¼ δn0; ð8Þ

where b0 ¼ φ−1 ¼ 0 by convention. The autocorrelation
is simply CðtÞ ¼ φ0ðtÞ, so the Lanczos coefficients are
completely equivalent to the autocorrelation function.
Just as different bases are well suited for particular

computations, a number of equivalent representations of the
autocorrelation function appear in this work, namely, the
Green’s function

GðzÞ ¼
!
O
""""

1

z − L

""""O
#

¼ i
Z

∞

0
e−iztCðtÞdt ð9Þ

and the spectral function

ΦðωÞ ¼
Z

∞

−∞
CðtÞe−iωtdt: ð10Þ

In summary, we have reviewed five equivalent ways to
describe the dynamics

CðtÞ ↔ GðzÞ ↔ ΦðωÞ ↔ fμ2ng ↔ fbng: ð11Þ

Just as with a choice of basis, we use the most convenient
representation for the task at hand and translate freely

FIG. 1. Artist’s impression of the space of operators and its
relation to the 1D chain defined by the Lanczos algorithm starting
from a simple operator O. The region of complex operators
corresponds to that of largen on the1Dchain.Under our hypothesis,
the hopping amplitudes bn on the chain grow linearly asymptoti-
cally in generic thermalizing systems (with a log correction in one
dimension; see Sec. IV C). This implies an exponential spreading
ðnÞt ∼ e2αt of the wave function φn on the 1D chain, which reflects
the exponential growth of operator complexity under Heisenberg
evolution, in a sense that wemake precise in Sec. V. The form of the
wave function φn is only a sketch; see Fig. 5 for a realistic picture.

A UNIVERSAL OPERATOR GROWTH HYPOTHESIS PHYS. REV. X 9, 041017 (2019)

041017-3

The further in the chain the particle is, the more complex state in the Krylov basis 
is employed 

This motivates a natural definition of complexity as average position on the chain:
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One can also think about the “Complexity Operator”

4

We now expand the time-dependent operator in the
Krylov basis as

|O(t)) =
X

n

in'n(t)|On) . (13)

In this expansion, the amplitudes 'n(t) turn out to be
real. Generally, their modulus squared defines probabil-
ities whose sum is conserved in time

X

n

|'n(t)|2 ⌘
X

n

pn(t) = 1. (14)

These amplitudes are determined by solving a
“Schrodinger equation”, that descends from the original
Heisenberg equation satisfied by O(t). To derive this
equation, notice that the previously defined Liouvillian
L plays the role of the Hamiltonian in the new Hilbert
space spanned by the Krylov basis |On). In particular,
the state representing O(t) is given by

|O(t)) = eiLt|O). (15)

Computing the time derivative

@t|O(t)) = iL|O(t)), (16)

or equivalently, using (13) we arrive at

@t|O(t)) =
X

n

in@t'n(t)|On). (17)

Next, from the Lanczos algorithm (11), we find the action
of the Liouvillian on the Krylov basis vectors

L|On) = bn|On�1) + bn+1|On+1). (18)

From this expression it is clear that the Liovillian is tridi-
agonal in the Krylov basis (generally we may have a di-
agonal term in (18)). This fact will play an important
role in the following sections. Applying this to (16) and
shifting the summation appropriately, we derive

@t|O(t)) =
X

n

in (bn'n�1(t)� bn+1'n+1(t)) |On). (19)

Comparing the coe�cients of (17) and (19), we arrive at
the discrete Schrodinger equation determining the time
evolution of the amplitudes 'n(t)

@t'n(t) = bn'n�1(t)� bn+1'n+1(t) . (20)

With this equation, once we derive the Lanczos coe�-
cients bn, we can solve for the amplitudes 'n(t) with
initial condition 'n(0) = �n0 and determine the opera-
tor wavefunction (13). The operator’s wavefunction then
completely determines the growth of the operator that,
as we will describe below, can be measured using tools of
quantum mechanics, quantum information, or quantum
complexity.

Before we discuss operator’s complexity, we note that
a very special role in the Krylov approach is played by
the so-called auto-correlation function

C(t) ⌘ (O(t)|O) = '0(t) . (21)

Indeed, as reviewed in [23], starting from C(t) and/or its
appropriate transforms we can obtain the Lanczos coe�-
cients bn and operator wavefunction. In this work, it will
be more instructive to develop our physical understand-
ing of the Liouvillian instead. This will allow us to easily
extract both C(t) and bn.

Krylov Complexity

We now describe how to quantify operator complex-
ity in this framework. Using physical intuition, we can
first interpret the dynamics in equation (20) as that of
a particle moving on a one-dimensional chain, where the
sites with label n are in one-to-one correspondence with
the Krylov basis vectors (see also [29] for a Toda chain
perspective). This suggests a natural measure of opera-
tor complexity, dubbed Krylov complexity [23], defined
to be the average position in the chain

KO ⌘
X

n

n pn(t) =
X

n

n |'n(t)|2 . (22)

Formally, this quantity can be written as the expectation
value in the evolving state |O(t)) of the following “Krylov
complexity operator”

K̂O =
X

n

n|On)(On| , (23)

such that Krylov complexity reads

KO = (O(t)|K̂O|O(t)) . (24)

Intuitively, this position operator (23) in the chain can
also be interpreted as a “number operator”. Unlike the
Liouvillian, it is diagonal in the Krylov basis.
Clearly, as with the choice of the inner product, there

is a certain ambiguity in this definition of operator com-
plexity. Indeed, several definitions of operator complex-
ities that have appeared in the literature can always be
written in such a way, see [22, 23]. However, as we will
see in this work, this “minimal” choice acquires a simple
geometric interpretation.
The recent interest in the Krylov approach to opera-

tor complexity has various origins. First, modulo simple
physical assumptions, it is a well defined and concrete ap-
proach, potentially applicable to QFTs. These features
make it appealing from the point of view of holography.
Second, based on various explicit numerical as well as
analytical examples, [23] conjectured a maximal possi-
ble growth of Lanczos coe�cients in quantum systems,
namely a linear growth:

bn  ↵n+ � +O(1), (25)
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where ↵ is the operator growth rate and � is a non-
universal constant that depends on the details of the op-
erator. In particular, for this type of Lanczos coe�cients,
i.e., systems saturating the bound, the Krylov complex-
ity grows exponentially fast with an exponent given by
� = 2↵. In several examples, some of which will be de-
scribed below, at finite temperature T = 1/� one arrives
at ↵ = ⇡/�, and this was conjectured to bound the Lya-
punov exponent, as defined by out-of-time ordered cor-
relation functions [9].

SYK example

As the key example of the behaviour (25), the SYK
model [6, 16], which is a modern playground for quan-
tum chaos [6, 9], was analyzed in [23]. The SYK model
[6, 16] is a model of N Majorana fermions interacting
with all-to-all random couplings. For random q-body in-
teractions, the Hamiltonian is of the form

H = iq/2
X

1i1<i2<···<iqN

Ji1i2···iq i1 i2 · · · iq , (26)

This model has been at the center of attention for the
past years for several important reasons, namely exact
solvability at large N , conformal phase at low energies,
and maximal chaos in the sense of [9].

Operator growth for this system was considered in [17],
using a natural notion of growth arising from the exact
Majorana fermion formulation of the model. An advan-
tage of such an approach is that it was naturally related
to out-of-time ordered correlation functions, see also [18].
A disadvantage is that such a definition does not seem to
find a natural extension to higher dimensions and QFTs.

Operator growth for this system was also reconsidered
in [23] using the Lanczos approach. As explained above,
the starting point of this approach can be taken to be the
autocorrelation function. For SYK at low temperatures
this is

C(t) = cosh�⌘

✓
⇡t

�

◆
. (27)

In this case, the Lanczos coe�cients can be obtained an-
alytically [23] (see also [29]) and are given by

bn =
⇡

�

p
n(⌘ + n� 1) . (28)

The operator wavefunction can then be found by solving
(20) and reads

'n(t) =

s
�(⌘ + n)

n!�(⌘)

tanhn(↵t)

cosh⌘(↵t)
. (29)

The probabilities pn(t) = |'n(t)|2 from this solution cor-
respond to the negative binomial distribution. The evolu-
tion of these probabilities depicts a one-dimensional dif-
fusion process over the Krylov basis. The time evolution

of the mean position in this chain, or equivalently the evo-
lution of Krylov complexity, is of exponential type. It is
controlled by the maximal Lyapunov exponent � = 2⇡/�.
More explicitly

KO = ⌘ sinh2(↵t) ⇠ ⌘

4
e2↵t = e2↵(t�

1
2↵ log( 4

⌘ )) , (30)

where we have written the coe�cient of the exponent in
an analogous way to the scrambling time in the OTOC.
Observe that, while the exponential growth is “more uni-
versal” than the usual Lyapunov growth (it does not re-
ceive stringy corrections for example in the context of
holography), the “scrambling time” for a given operator
is by construction less universal. Nevertheless, it depends
on the scaling dimension of the initial perturbation and
may also be a good probe for the operator growth.
Before moving forward we want to make a couple of

remarks. First, from a technical standpoint, the deriva-
tion of the operator wavefunctions in both [17] and [23] is
quite involved. This feature makes it di�cult to extrapo-
late to other systems, in particular to higher dimensions.
On the other hand, readers familiar with the SYK model
and the arguments that lead to the derivation of the cor-
relator (27) (using large-N techniques, see [6, 16]) may
recall it was the conformal symmetry appearing in the
low energy Schwinger-Dyson equations that was respon-
sible for the form of this two-point function. In other
words, the fermions behave as primaries transforming in
specific representations of the SL(2,R) algebra. In par-
ticular, for the q-body interaction, the associated scaling
dimension is h = 1/q. We might expect a deeper and
simpler understanding of operator dynamics and wave-
function when such a feature is included in the analysis.
Second, from a more holographic standpoint, the rela-

tion between Krylov complexity and the actual physics
of the problem is far from clear. In the light of recent dis-
cussions on near horizon symmetries in black hole physics
and their potential connections with operator complexity
[22, 32, 43, 45–47], we would like to have a better under-
standing of the Krylov complexity operator.
In the following sections, we will explore a geometric av-
enue towards both problems, which more broadly can be
seen as a new perspective on the Lanczos approach.

III. LIOUVILLIAN AND SYMMETRY: GENERAL
IDEA

In this section, we describe a general paradigm that we
will follow through the rest of the article. The main idea
is simple yet powerful, and we describe it in the follow-
ing. From the zoo of complicated quantum systems, we
focus our attention on models governed by symmetry. By
this, we mean systems for which the Liouvillian operator
belongs to the Lie algebra of a given symmetry group.
In the context of the usual Shrodinger evolution, this is

“Maximal growth Lanczos coefficients”

Saturated for “maximally chaotic” systems (OTOC) 

Saturation is related to the exponential growth to Krylov Complexity

Example: SYK model (low T,                )
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using a natural notion of growth arising from the exact
Majorana fermion formulation of the model. An advan-
tage of such an approach is that it was naturally related
to out-of-time ordered correlation functions, see also [18].
A disadvantage is that such a definition does not seem to
find a natural extension to higher dimensions and QFTs.

Operator growth for this system was also reconsidered
in [23] using the Lanczos approach. As explained above,
the starting point of this approach can be taken to be the
autocorrelation function. For SYK at low temperatures
this is

C(t) = cosh�⌘

✓
⇡t

�

◆
. (27)

In this case, the Lanczos coe�cients can be obtained an-
alytically [23] (see also [29]) and are given by

bn =
⇡

�

p
n(⌘ + n� 1) . (28)

The operator wavefunction can then be found by solving
(20) and reads

'n(t) =

s
�(⌘ + n)

n!�(⌘)

tanhn(↵t)

cosh⌘(↵t)
. (29)

The probabilities pn(t) = |'n(t)|2 from this solution cor-
respond to the negative binomial distribution. The evolu-
tion of these probabilities depicts a one-dimensional dif-
fusion process over the Krylov basis. The time evolution

of the mean position in this chain, or equivalently the evo-
lution of Krylov complexity, is of exponential type. It is
controlled by the maximal Lyapunov exponent � = 2⇡/�.
More explicitly

KO = ⌘ sinh2(↵t) ⇠ ⌘

4
e2↵t = e2↵(t�

1
2↵ log( 4

⌘ )) , (30)

where we have written the coe�cient of the exponent in
an analogous way to the scrambling time in the OTOC.
Observe that, while the exponential growth is “more uni-
versal” than the usual Lyapunov growth (it does not re-
ceive stringy corrections for example in the context of
holography), the “scrambling time” for a given operator
is by construction less universal. Nevertheless, it depends
on the scaling dimension of the initial perturbation and
may also be a good probe for the operator growth.
Before moving forward we want to make a couple of

remarks. First, from a technical standpoint, the deriva-
tion of the operator wavefunctions in both [17] and [23] is
quite involved. This feature makes it di�cult to extrapo-
late to other systems, in particular to higher dimensions.
On the other hand, readers familiar with the SYK model
and the arguments that lead to the derivation of the cor-
relator (27) (using large-N techniques, see [6, 16]) may
recall it was the conformal symmetry appearing in the
low energy Schwinger-Dyson equations that was respon-
sible for the form of this two-point function. In other
words, the fermions behave as primaries transforming in
specific representations of the SL(2,R) algebra. In par-
ticular, for the q-body interaction, the associated scaling
dimension is h = 1/q. We might expect a deeper and
simpler understanding of operator dynamics and wave-
function when such a feature is included in the analysis.
Second, from a more holographic standpoint, the rela-

tion between Krylov complexity and the actual physics
of the problem is far from clear. In the light of recent dis-
cussions on near horizon symmetries in black hole physics
and their potential connections with operator complexity
[22, 32, 43, 45–47], we would like to have a better under-
standing of the Krylov complexity operator.
In the following sections, we will explore a geometric av-
enue towards both problems, which more broadly can be
seen as a new perspective on the Lanczos approach.

III. LIOUVILLIAN AND SYMMETRY: GENERAL
IDEA

In this section, we describe a general paradigm that we
will follow through the rest of the article. The main idea
is simple yet powerful, and we describe it in the follow-
ing. From the zoo of complicated quantum systems, we
focus our attention on models governed by symmetry. By
this, we mean systems for which the Liouvillian operator
belongs to the Lie algebra of a given symmetry group.
In the context of the usual Shrodinger evolution, this is
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[Parker et al. ’19]

between them. We note that fbng is special in the sense that
it is a nonlinear representation of the autocorrelation, while
all other representations are linearly related. We provide
the details on the mapping to bn in Appendix A, with a
particular focus on asymptotic properties.
The nonlinearity involved in fbng also makes them more

abstract. Intuitively, we can think of the Krylov basis fOng
as stratifying operators by their “complexity” (with respect
to the initial operator O), and bn’s describe how operators
of different complexities transform into one another. The
goal of this work is to study aspects of operator growth
that can be reduced to the quantum mechanics on this semi-
infinite chain.

IV. THE HYPOTHESIS

We now state the hypothesis. Informally, in a chaotic
quantum system, the Lanczos coefficients fbng should
grow as fast as possible. The maximal possible growth
rate turns out to be linear (with logarithm corrections in
1D). Our precise statement is therefore as follows. Suppose
thatH describes an infinite, nonintegrable [28], many-body
system in dimension d > 1 andO is a local operator having
zero overlap with any conserved quantity [in particular,
ðOjHÞ ¼ 0]. Then, the Lanczos coefficients are asymp-
totically linear:

bn ¼ αnþ γ þ oð1Þ; ð12Þ

for some real constants α > 0 and γ. This linear growth is
an example of universality. We will refer to α as the growth
rate, and it plays a multitude of roles. In fact, it quanti-
tatively captures the growth of “operator complexity” in a
precise sense (Sec. V B). On the other hand, it is observable
by standard linear response measures (Sec. IVA). This
section first describes why linear growth is maximal,
amasses a weight of evidence in favor of the hypothesis,
and finally discusses the special case of one dimension.
We note that the idea of classifying operator dynamics by

Lanczos coefficient asymptotics is as old as the recursion
method itself. Many examples have been explored, result-
ing in a broad zoology, as surveyed in Ref. [23]. In
particular, it is known that noninteracting models (such
as lattice free fermions) give rise to a bounded sequence
bn ∼Oð1Þ. If we start with a two-body operator O in such
free models, all On’s remain two-body. In this sense, the
operator dynamics is simple. In this work, we focus on the
opposite extreme of generic chaotic dynamics. To our
knowledge, the ubiquity of asymptotically linear growth
in these systems and its consequences have not been
systematically studied in quantum systems. Interacting
models with obstructions to thermalization (e.g., integrable
systems) lead to more involved behaviors, which have not
been thoroughly explored. Nevertheless, a square root
behavior bn ∼

ffiffiffi
n

p
is observed in a few examples

(Refs. [23,29]; see also Fig. 2).

A. Upper bounds

We start by showing that linear growth is the maximal
possible growth of the Lanczos coefficients, which is most
easily done starting with the spectral function. In interact-
ing many-body systems, the spectral function has a tail
extending to arbitrarily high frequencies. The asymptotic
behavior of the tail is directly related to the Lanczos
coefficients, with faster growth of Lanczos coefficients
corresponding to slower decay of ΦðωÞ. The precise
asymptotic behavior is [30,31]

bn ∼ nδ ⇔ ΦðωÞ ∼ expð−jω=ω0j1=δÞ ð13Þ

for any δ > 0 and some constant ω0. In particular, δ ¼ 1
corresponds to asymptotically linear Lanczos coefficients
and an exponentially decaying spectral function.
The decay of the spectral function is constrained by a

powerful bound. A rigorous and general result of Ref. [32]
(see also Refs. [33–35] and Appendix F for a self-contained
proof) is that, given an r-local lattice Hamiltonian H ¼P

ihi in any dimension,

ΦðωÞ ≤ Ce−κjωj; κ ¼ 1

2eGrkhik
ð14Þ

for some C > 0 and a known Oð1Þ geometrical factor Gr.
We may conclude δ ≤ 1 in Eq. (13), so the Lanczos
coefficients grow at most linearly.
When linear growth of the bn’s is achieved, the growth

rate α is quantitatively related to the exponential decay rate

FIG. 2. Lanczos coefficients in a variety of models demonstrat-
ing common asymptotic behaviors. “Ising” is H ¼

P
i XiXiþ1 þ

Zi with O ¼
P

j e
iqjZj (q ¼ 1=128 here and below) and has

bn ∼Oð1Þ. “X in XX” is H ¼
P

i XiXiþ1 þ YiYiþ1 with
O ¼

P
j Xj, which is a string rather than a bilinear in the

Majorana fermion representation, so this is effectively an interact-
ing integrable model that has bn ∼

ffiffiffi
n

p
. XXX is H¼

P
i XiXiþ1þ

YiYiþ1þZiZiþ1 with O¼
P

j e
iqjðXjYjþ1−YjXjþ1Þ that appears

to obey bn ∼
ffiffiffi
n

p
. Finally, SYK is Eq. (18), where q ¼ 4, J ¼ 1,

andO ¼
ffiffiffi
2

p
γ1 with bn ∼ n. The Lanczos coefficients are rescaled

vertically for display purposes. Numerical details are given in
Appendixes B and C.
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Questions:

Operational meaning of “Krylov Complexity” and Lanczos         ?

Is it related to other approaches (geom. Nielsen, circuit)?

Symmetry? SYK and SL(2,R)?

What determines the exponential growth (chaotic vs integrable)?

Classification and generalizations? What can we say analytically?

Features of QFT complexity? Holographic discussions?

bn
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We now expand the time-dependent operator in the
Krylov basis as

|O(t)) =
X

n

in'n(t)|On) . (13)

In this expansion, the amplitudes 'n(t) turn out to be
real. Generally, their modulus squared defines probabil-
ities whose sum is conserved in time

X

n

|'n(t)|2 ⌘
X

n

pn(t) = 1. (14)

These amplitudes are determined by solving a
“Schrodinger equation”, that descends from the original
Heisenberg equation satisfied by O(t). To derive this
equation, notice that the previously defined Liouvillian
L plays the role of the Hamiltonian in the new Hilbert
space spanned by the Krylov basis |On). In particular,
the state representing O(t) is given by

|O(t)) = eiLt|O). (15)

Computing the time derivative

@t|O(t)) = iL|O(t)), (16)

or equivalently, using (13) we arrive at

@t|O(t)) =
X

n

in@t'n(t)|On). (17)

Next, from the Lanczos algorithm (11), we find the action
of the Liouvillian on the Krylov basis vectors

L|On) = bn|On�1) + bn+1|On+1). (18)

From this expression it is clear that the Liovillian is tridi-
agonal in the Krylov basis (generally we may have a di-
agonal term in (18)). This fact will play an important
role in the following sections. Applying this to (16) and
shifting the summation appropriately, we derive

@t|O(t)) =
X

n

in (bn'n�1(t)� bn+1'n+1(t)) |On). (19)

Comparing the coe�cients of (17) and (19), we arrive at
the discrete Schrodinger equation determining the time
evolution of the amplitudes 'n(t)

@t'n(t) = bn'n�1(t)� bn+1'n+1(t) . (20)

With this equation, once we derive the Lanczos coe�-
cients bn, we can solve for the amplitudes 'n(t) with
initial condition 'n(0) = �n0 and determine the opera-
tor wavefunction (13). The operator’s wavefunction then
completely determines the growth of the operator that,
as we will describe below, can be measured using tools of
quantum mechanics, quantum information, or quantum
complexity.

Before we discuss operator’s complexity, we note that
a very special role in the Krylov approach is played by
the so-called auto-correlation function

C(t) ⌘ (O(t)|O) = '0(t) . (21)

Indeed, as reviewed in [23], starting from C(t) and/or its
appropriate transforms we can obtain the Lanczos coe�-
cients bn and operator wavefunction. In this work, it will
be more instructive to develop our physical understand-
ing of the Liouvillian instead. This will allow us to easily
extract both C(t) and bn.

Krylov Complexity

We now describe how to quantify operator complex-
ity in this framework. Using physical intuition, we can
first interpret the dynamics in equation (20) as that of
a particle moving on a one-dimensional chain, where the
sites with label n are in one-to-one correspondence with
the Krylov basis vectors (see also [29] for a Toda chain
perspective). This suggests a natural measure of opera-
tor complexity, dubbed Krylov complexity [23], defined
to be the average position in the chain

KO ⌘
X

n

n pn(t) =
X

n

n |'n(t)|2 . (22)

Formally, this quantity can be written as the expectation
value in the evolving state |O(t)) of the following “Krylov
complexity operator”

K̂O =
X

n

n|On)(On| , (23)

such that Krylov complexity reads

KO = (O(t)|K̂O|O(t)) . (24)

Intuitively, this position operator (23) in the chain can
also be interpreted as a “number operator”. Unlike the
Liouvillian, it is diagonal in the Krylov basis.
Clearly, as with the choice of the inner product, there

is a certain ambiguity in this definition of operator com-
plexity. Indeed, several definitions of operator complex-
ities that have appeared in the literature can always be
written in such a way, see [22, 23]. However, as we will
see in this work, this “minimal” choice acquires a simple
geometric interpretation.
The recent interest in the Krylov approach to opera-

tor complexity has various origins. First, modulo simple
physical assumptions, it is a well defined and concrete ap-
proach, potentially applicable to QFTs. These features
make it appealing from the point of view of holography.
Second, based on various explicit numerical as well as
analytical examples, [23] conjectured a maximal possi-
ble growth of Lanczos coe�cients in quantum systems,
namely a linear growth:

bn  ↵n+ � +O(1), (25)
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4

We now expand the time-dependent operator in the
Krylov basis as

|O(t)) =
X

n

in'n(t)|On) . (13)

In this expansion, the amplitudes 'n(t) turn out to be
real. Generally, their modulus squared defines probabil-
ities whose sum is conserved in time

X

n

|'n(t)|2 ⌘
X

n

pn(t) = 1. (14)

These amplitudes are determined by solving a
“Schrodinger equation”, that descends from the original
Heisenberg equation satisfied by O(t). To derive this
equation, notice that the previously defined Liouvillian
L plays the role of the Hamiltonian in the new Hilbert
space spanned by the Krylov basis |On). In particular,
the state representing O(t) is given by

|O(t)) = eiLt|O). (15)

Computing the time derivative

@t|O(t)) = iL|O(t)), (16)

or equivalently, using (13) we arrive at

@t|O(t)) =
X

n

in@t'n(t)|On). (17)

Next, from the Lanczos algorithm (11), we find the action
of the Liouvillian on the Krylov basis vectors

L|On) = bn|On�1) + bn+1|On+1). (18)

From this expression it is clear that the Liovillian is tridi-
agonal in the Krylov basis (generally we may have a di-
agonal term in (18)). This fact will play an important
role in the following sections. Applying this to (16) and
shifting the summation appropriately, we derive

@t|O(t)) =
X

n

in (bn'n�1(t)� bn+1'n+1(t)) |On). (19)

Comparing the coe�cients of (17) and (19), we arrive at
the discrete Schrodinger equation determining the time
evolution of the amplitudes 'n(t)

@t'n(t) = bn'n�1(t)� bn+1'n+1(t) . (20)

With this equation, once we derive the Lanczos coe�-
cients bn, we can solve for the amplitudes 'n(t) with
initial condition 'n(0) = �n0 and determine the opera-
tor wavefunction (13). The operator’s wavefunction then
completely determines the growth of the operator that,
as we will describe below, can be measured using tools of
quantum mechanics, quantum information, or quantum
complexity.

Before we discuss operator’s complexity, we note that
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the so-called auto-correlation function

C(t) ⌘ (O(t)|O) = '0(t) . (21)
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Krylov Complexity

We now describe how to quantify operator complex-
ity in this framework. Using physical intuition, we can
first interpret the dynamics in equation (20) as that of
a particle moving on a one-dimensional chain, where the
sites with label n are in one-to-one correspondence with
the Krylov basis vectors (see also [29] for a Toda chain
perspective). This suggests a natural measure of opera-
tor complexity, dubbed Krylov complexity [23], defined
to be the average position in the chain

KO ⌘
X

n

n pn(t) =
X

n

n |'n(t)|2 . (22)

Formally, this quantity can be written as the expectation
value in the evolving state |O(t)) of the following “Krylov
complexity operator”

K̂O =
X

n

n|On)(On| , (23)

such that Krylov complexity reads

KO = (O(t)|K̂O|O(t)) . (24)

Intuitively, this position operator (23) in the chain can
also be interpreted as a “number operator”. Unlike the
Liouvillian, it is diagonal in the Krylov basis.
Clearly, as with the choice of the inner product, there

is a certain ambiguity in this definition of operator com-
plexity. Indeed, several definitions of operator complex-
ities that have appeared in the literature can always be
written in such a way, see [22, 23]. However, as we will
see in this work, this “minimal” choice acquires a simple
geometric interpretation.
The recent interest in the Krylov approach to opera-

tor complexity has various origins. First, modulo simple
physical assumptions, it is a well defined and concrete ap-
proach, potentially applicable to QFTs. These features
make it appealing from the point of view of holography.
Second, based on various explicit numerical as well as
analytical examples, [23] conjectured a maximal possi-
ble growth of Lanczos coe�cients in quantum systems,
namely a linear growth:

bn  ↵n+ � +O(1), (25)

Liouvillian in the Krylov basis

We now quantify this idea precisely. This is done by
applying the Lanczos algorithm, which iteratively com-
putes a tridiagonal representation of a matrix. The idea is to
find the sequence fLnjOÞg and then apply Gram-Schmidt
to orthogonalize. Explicitly, start with a normalized vector
jO0Þ ≔ jOÞ. As a base case, let jO1Þ ≔ b−11 LjO0Þ, where
b1 ≔ ðO0LjLO0Þ1=2. Then inductively define

jAnÞ ≔ LjOn−1Þ − bn−1jOn−2Þ;
bn ≔ ðAnjAnÞ1=2;

jOnÞ ≔ b−1n jAnÞ: ð4Þ

The output of the algorithm is a sequence of positive
numbers, fbng, called the Lanczos coefficients, and an
orthonormal sequence of operators, fjOnÞg, called the
Krylov basis. [This is a bit of a misnomer, as the Krylov
basis spans an operator space containing OðtÞ for any t but
does not usually span the full space of operators.] The
Liouvillian is tridiagonal in this basis:

Lnm ≔ ðOnjLjOmÞ ¼

0

BBBBBBBB@
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b1 0 b2 0 $ $ $
0 b2 0 b3 $ $ $

0 0 b3 0 . .
.
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. ..

. . .
. . .

.

1

CCCCCCCCA

: ð5Þ

We make four remarks. First, if the operator Hilbert
space is d-dimensional with d finite [or if the subspace

spanned by jO0Þ; jO1Þ; jO2Þ;… is so], the algorithm halts
at n ¼ dþ 1: In this work, we work always in the
thermodynamic limit and discard this nongeneric situation.
Second, the Lanczos algorithm presented here is adapted to
operator dynamics. Generally, a tridiagonal matrix will
have nonzero diagonal entries, but they vanish in Eq. (5),
because one can inductively show that inOn is Hermitian
for all n, and, hence, ðOnjLjOnÞ ¼ 0. Third, the knowledge
of the Lanczos coefficients b1;…; bn is equivalent to that of
the moments μ2; μ4;…; μ2n, defined as the Taylor series
coefficients of the correlation function

μ2n ≔ ðOjL2njOÞ ¼ d2n

dt2n
CðtÞjt¼0: ð6Þ

The nontrivial transformation between the Lanczos coef-
ficients and the moments is reviewed in the Appendix A.
Fourth, the Lanczos coefficients have units of energy.
In the Krylov basis, the correlation function CðtÞ is

CðtÞ ¼ ðeiLtÞ00: ð7Þ

Hence, the autocorrelation depends only on the Lanczos
coefficients and not on the Krylov basis. One way to
interpret the Lanczos coefficients, which we employ
extensively below, is as the hopping amplitudes of a
semi-infinite tight-binding model—see Fig. 1. The wave
function on the semi-infinite chain is defined as
φnðtÞ ≔ i−nðOnjOðtÞÞ. Heisenberg evolution of OðtÞ
becomes a discrete Schrödinger equation:

∂tφn ¼ −bnþ1φnþ1 þ bnφn−1; φnð0Þ ¼ δn0; ð8Þ

where b0 ¼ φ−1 ¼ 0 by convention. The autocorrelation
is simply CðtÞ ¼ φ0ðtÞ, so the Lanczos coefficients are
completely equivalent to the autocorrelation function.
Just as different bases are well suited for particular

computations, a number of equivalent representations of the
autocorrelation function appear in this work, namely, the
Green’s function

GðzÞ ¼
!
O
""""

1

z − L

""""O
#

¼ i
Z

∞

0
e−iztCðtÞdt ð9Þ

and the spectral function

ΦðωÞ ¼
Z

∞

−∞
CðtÞe−iωtdt: ð10Þ

In summary, we have reviewed five equivalent ways to
describe the dynamics

CðtÞ ↔ GðzÞ ↔ ΦðωÞ ↔ fμ2ng ↔ fbng: ð11Þ

Just as with a choice of basis, we use the most convenient
representation for the task at hand and translate freely

FIG. 1. Artist’s impression of the space of operators and its
relation to the 1D chain defined by the Lanczos algorithm starting
from a simple operator O. The region of complex operators
corresponds to that of largen on the1Dchain.Under our hypothesis,
the hopping amplitudes bn on the chain grow linearly asymptoti-
cally in generic thermalizing systems (with a log correction in one
dimension; see Sec. IV C). This implies an exponential spreading
ðnÞt ∼ e2αt of the wave function φn on the 1D chain, which reflects
the exponential growth of operator complexity under Heisenberg
evolution, in a sense that wemake precise in Sec. V. The form of the
wave function φn is only a sketch; see Fig. 5 for a realistic picture.
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It may be natural to think about it in terms of “Ladder Operators”
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quite a common lore. For example, in QFT or CFT the
Hamiltonian belongs to the Lie algebra of the Poincaré
group or the conformal group, respectively. This idea is
old and well explored in Hamiltonian dynamics (see e.g.
review [51]). Here, we import it to the physics of operator
evolution, instead of state evolution, where the Liouvil-
lian plays the role of the Hamiltonian in the Krylov basis.

With symmetries in mind, our key observation is that
the action of the Liouvillian on the Krylov basis (18)
can be interpreted as the action of the sum of abstract
“raising” and “lowering” ladder operators L+ and L�,
namely

L = ↵ (L+ + L�) . (31)

In this expression, ↵ is a proportionality factor, not fixed
by symmetry. It will depend on the details of the phys-
ical setup, such as the choice of the inner-product, etc.
Its meaning will become clearer in the examples below.
With such Liouvillians, the Krylov basis states will nat-
urally furnish representations of the appropriate symme-
try group. This is again analogous to relativistic QFT or
CFT, where states are organized through representations
of the Poincaré or conformal group. The only di↵erence
here is that we apply such a structure to operator dy-
namics on the Krylov basis.

In the light of symmetry, the previously described
quantities associated with the Lanczos approach take a
more transparent meaning. First, since the action of the
ladder operators in a certain representation is fixed by the
symmetry group, this approach allows us to read o↵ the
Lanczos coe�cients immediately. More precisely, they
are simply determined from the action of ladder opera-
tors in the Krylov basis

↵L+|On) = bn+1|On+1), ↵L�|On) = bn|On�1). (32)

We will also see that, under certain conditions, the Lie
group approach leads to quadratic algebraic equations
for Lanczos coe�cients. This will ensure that, at least in
classes of our examples, they will not grow faster than n,
in agreement with the maximal operator growth hypoth-
esis [23].

Moreover, the above paradigm allows us to make a
powerful connection with generalized coherent states [52–
54]. This comes from the fact that the Liouvillian time
evolution in the Krylov basis with (31) can be seen as a
particular instance of a generalized displacement opera-
tor D(⇠) for a Lie group. These displacements operators
typically take the form

D(⇠) ⌘ e⇠L+�⇠̄L� , (33)

for some complex ⇠, its conjugate ⇠̄ and the same ab-
stract ladder operators L±. We will make all these for-
mulas precise when analyzing specific examples in the
next section. The coherent state can now be written as

the action of the displacement operator on some refer-
ence state | 0i, usually chosen to be the highest weight
state of the representation. It is clear that unitary time
evolution, as generated by the Liouvillian (31), is just
a displacement operator with ⇠ = i↵ t. In other words,
we can interpret the operator dynamics and its growth
in the Krylov basis as a trajectory through the Hilbert
space of coherent states. This way, after associating | 0i
with our initial operator |O), and expanding the coherent
states in an orthonormal basis, we will be able to read o↵
the amplitudes 'n(t) and the Krylov basis vectors |On).
The link with coherent states further allows us to ge-

ometrize Krylov complexity. This formulation is rooted
in the well-known connection between coherent states
and information metric (Fubini-Study metric) on the
Hilbert space, abstractly defined for the coherent state
|zi as

ds2
FS

= hdz|dzi � hdz|zihz|dzi. (34)

This metric is also associated with the coadjoint orbit
of the relevant group (see e.g. [51]). As we will see,
the Krylov complexity will be universally proportional
to the “Volume” in this geometry. In addition, both the
Liouvillian L as well as the Krylov complexity operator
K̂O can be related to isometry generators in these in-
formation geometries. Indeed they form a “complexity
algebra” isomorphic to the algebra of isometries and we
will show how it determines Lanczos coe�cients.
Finally, the association of the coherent state complex

label ⇠ with real-time suggests that we are secretly dis-
cussing a classical motion in phase space. This inter-
pretation is indeed correct and it paves a way towards
understanding the relations between Krylov complexity
and circuit complexity.

IV. LIOUVILLIAN AND SYMMETRY:
EXAMPLES

In this section, we analyze explicit examples of the gen-
eral idea above. From a physical perspective, the most
interesting one is that of SL(2,R) and its generalizations
to Conformal Field Theories (CFT). These have applica-
tions to classical and quantum chaos and the physics of
black holes. We will also discuss the examples of SU(2)
and the Heisenberg-Weyl group, which will help us gain
more intuition about the relation between Krylov com-
plexity, group theory, and geometry.

Example I: SL(2,R)

The first example is operator evolution governed by
SL(2,R). In this case, we will re-derive the SYK results
of [23] using the above general paradigm.

Such that
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group or the conformal group, respectively. This idea is
old and well explored in Hamiltonian dynamics (see e.g.
review [51]). Here, we import it to the physics of operator
evolution, instead of state evolution, where the Liouvil-
lian plays the role of the Hamiltonian in the Krylov basis.

With symmetries in mind, our key observation is that
the action of the Liouvillian on the Krylov basis (18)
can be interpreted as the action of the sum of abstract
“raising” and “lowering” ladder operators L+ and L�,
namely

L = ↵ (L+ + L�) . (31)

In this expression, ↵ is a proportionality factor, not fixed
by symmetry. It will depend on the details of the phys-
ical setup, such as the choice of the inner-product, etc.
Its meaning will become clearer in the examples below.
With such Liouvillians, the Krylov basis states will nat-
urally furnish representations of the appropriate symme-
try group. This is again analogous to relativistic QFT or
CFT, where states are organized through representations
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If these ladder operators belong to some Lie algebra then this would 
give a lot of predictive power! We could easily read of        ! bn
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We start from the commutation relations for the SL(2,R)
algebra

[L0, L±1] = ⌥L±1, [L1, L�1] = 2L0, (35)

and consider a discrete series representation labeled by
a positive integer h. This representation is typically
expanded by orthonormal vectors |h, ni, for n a non-
negative integer, satisfying hh,m|h, ni = �n,m. Basis
vectors are the eigenstates of the L0 operator as well
as the Casimir operator C2 = L2

0 � 1
2 (L�1L1 + L1L�1)

with eigenvalue h(h� 1). The full action of the SL(2,R)
generators in this basis is given by

L0 |h, ni = (h+ n) |h, ni ,
L�1 |h, ni =

p
(n+ 1)(2h+ n) |h, n+ 1i ,

L1 |h, ni =
p

n(2h+ n� 1) |h, n� 1i , (36)

which in particular implies that

|h, ni =

s
�(2h)

n!�(2h+ n)
Ln

�1 |hi . (37)

The same Hilbert space can be also expanded by means
of generalized coherent states, see [53], that are defined
by using the displacement operator

|z, hi ⌘ D(⇠) |hi , D(⇠) = e⇠L�1�⇠̄L1 , (38)

where the relation between the complex variables is

z =
⇠

|⇠| tanh(|⇠|), |⇠| =
q
⇠⇠̄. (39)

It is useful to introduce polar coordinates ⇠ = 1
2⇢e

i�, such
that z parametrizes the unit disc

z = tanh
⇣⇢
2

⌘
ei�, |z| < 1. (40)

Using the action of the SL(2,R) generators on the pri-
mary state, in particular relation (37), we can write these
so-called SU(1,1) Perelomov coherent states more explic-
itly as

|z, hi = (1� |z|2)h
1X

n=0

zn

s
�(2h+ n)

n!�(2h)
|h, ni . (41)

Now we will follow the general paradigm described in the
previous section. First, from (36), we note that L�1 is
playing the role of the abstract raising operator L+ and
L1 of the lowering operator L�. This way, the Liouvillian
governing the SL(2,R) operator dynamics in the Krylov
basis is given by

L = ↵ (L�1 + L1) . (42)

As reviewed above, the operator wavefunction (13) is ob-
tained by applying the unitary evolution with L, so that

|O(t)) = ei↵(L�1+L1)t |hi . (43)

Returning to the definition of the coherent state (38), we
make the key observation that our operator’s wavefunc-
tion is nothing but the Perelomov coherent state with
⇠ = i↵t. More explicitly we have the relation

|O(t)) = |z = i tanh(↵t), h = ⌘/2i , (44)

as well as the identification between the Krylov basis and
the basis vectors associated with representation h of the
SL(2,R) group

|O) = |hi , |On) = |h, ni . (45)

Arguably the most elegant consequence of this map is the
fact that from the action of the ladder operators (36), we
immediately get the Lanczos coe�cients

bn = ↵
p

n(2h+ n� 1). (46)

We can indeed check that the wavefunctions (29) are just
coe�cients of the coherent state (41) with z = i tanh(↵t)
and solve the Schrodinger equation (20) with the Lanc-
zos coe�cients above.
The Krylov complexity is then proportional to the high-
est weight h and grows exponentially with time, with the
Lyapunov exponent � = 2↵

KO = (O(t)|n|O(t)) = 2h sinh2(↵t). (47)

Moreover, the n = 0 amplitude is the SYK auto-
correlation function (27) with ⌘ = 2h.
A more appropriate interpretation of the identification

⇠ = i↵t is that operator dynamics in this setup is mapped
to a particular classical trajectory in the phase space of
coherent states. In polar coordinates, this trajectory cor-
responds to setting ⇢ = 2↵t and � = ⇡/2. We will return
to this interpretation in section VII.
We now introduce the “information geometry” associ-

ated with generalized coherent states and use it to inter-
pret operator growth and Krylov complexity geometri-
cally. To this end, we recall that in a quantum theory,
the space of coherent states has an associated geometry
described by the Fubini-Study metric (also dubbed in-
formation metric). For our states (41) this becomes the
standard metric on the hyperbolic disc. In complex co-
ordinates (z, z̄) as well as in (⇢,�) it reads

ds2
FS

=
2hdzdz̄

(1� zz̄)2
=

h

2

�
d⇢2 + sinh2(⇢)d�2

�
. (48)

With this geometry at our disposal, we want to make
several comments. Firstly, the identification used to de-
scribe the growth, namely ⇢ = 2↵t and � = ⇡/2, defines
a geodesic in this geometry. In other words, the operator
growth process gets mapped to a geodesic motion in a
hyperbolic geometry (48). This will be made more pre-
cise in section VII. Secondly, we can interpret the Krylov
complexity operator as a generator of translations in the
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responds to setting ⇢ = 2↵t and � = ⇡/2. We will return
to this interpretation in section VII.
We now introduce the “information geometry” associ-

ated with generalized coherent states and use it to inter-
pret operator growth and Krylov complexity geometri-
cally. To this end, we recall that in a quantum theory,
the space of coherent states has an associated geometry
described by the Fubini-Study metric (also dubbed in-
formation metric). For our states (41) this becomes the
standard metric on the hyperbolic disc. In complex co-
ordinates (z, z̄) as well as in (⇢,�) it reads

ds2
FS

=
2hdzdz̄

(1� zz̄)2
=

h

2

�
d⇢2 + sinh2(⇢)d�2

�
. (48)

With this geometry at our disposal, we want to make
several comments. Firstly, the identification used to de-
scribe the growth, namely ⇢ = 2↵t and � = ⇡/2, defines
a geodesic in this geometry. In other words, the operator
growth process gets mapped to a geodesic motion in a
hyperbolic geometry (48). This will be made more pre-
cise in section VII. Secondly, we can interpret the Krylov
complexity operator as a generator of translations in the

Representation:
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We start from the commutation relations for the SL(2,R)
algebra

[L0, L±1] = ⌥L±1, [L1, L�1] = 2L0, (35)

and consider a discrete series representation labeled by
a positive integer h. This representation is typically
expanded by orthonormal vectors |h, ni, for n a non-
negative integer, satisfying hh,m|h, ni = �n,m. Basis
vectors are the eigenstates of the L0 operator as well
as the Casimir operator C2 = L2

0 � 1
2 (L�1L1 + L1L�1)

with eigenvalue h(h� 1). The full action of the SL(2,R)
generators in this basis is given by

L0 |h, ni = (h+ n) |h, ni ,
L�1 |h, ni =

p
(n+ 1)(2h+ n) |h, n+ 1i ,

L1 |h, ni =
p

n(2h+ n� 1) |h, n� 1i , (36)

which in particular implies that

|h, ni =

s
�(2h)

n!�(2h+ n)
Ln

�1 |hi . (37)

The same Hilbert space can be also expanded by means
of generalized coherent states, see [53], that are defined
by using the displacement operator

|z, hi ⌘ D(⇠) |hi , D(⇠) = e⇠L�1�⇠̄L1 , (38)

where the relation between the complex variables is

z =
⇠

|⇠| tanh(|⇠|), |⇠| =
q
⇠⇠̄. (39)

It is useful to introduce polar coordinates ⇠ = 1
2⇢e

i�, such
that z parametrizes the unit disc

z = tanh
⇣⇢
2

⌘
ei�, |z| < 1. (40)

Using the action of the SL(2,R) generators on the pri-
mary state, in particular relation (37), we can write these
so-called SU(1,1) Perelomov coherent states more explic-
itly as

|z, hi = (1� |z|2)h
1X

n=0

zn

s
�(2h+ n)

n!�(2h)
|h, ni . (41)

Now we will follow the general paradigm described in the
previous section. First, from (36), we note that L�1 is
playing the role of the abstract raising operator L+ and
L1 of the lowering operator L�. This way, the Liouvillian
governing the SL(2,R) operator dynamics in the Krylov
basis is given by

L = ↵ (L�1 + L1) . (42)

As reviewed above, the operator wavefunction (13) is ob-
tained by applying the unitary evolution with L, so that

|O(t)) = ei↵(L�1+L1)t |hi . (43)

Returning to the definition of the coherent state (38), we
make the key observation that our operator’s wavefunc-
tion is nothing but the Perelomov coherent state with
⇠ = i↵t. More explicitly we have the relation

|O(t)) = |z = i tanh(↵t), h = ⌘/2i , (44)

as well as the identification between the Krylov basis and
the basis vectors associated with representation h of the
SL(2,R) group

|O) = |hi , |On) = |h, ni . (45)

Arguably the most elegant consequence of this map is the
fact that from the action of the ladder operators (36), we
immediately get the Lanczos coe�cients

bn = ↵
p

n(2h+ n� 1). (46)

We can indeed check that the wavefunctions (29) are just
coe�cients of the coherent state (41) with z = i tanh(↵t)
and solve the Schrodinger equation (20) with the Lanc-
zos coe�cients above.
The Krylov complexity is then proportional to the high-
est weight h and grows exponentially with time, with the
Lyapunov exponent � = 2↵

KO = (O(t)|n|O(t)) = 2h sinh2(↵t). (47)

Moreover, the n = 0 amplitude is the SYK auto-
correlation function (27) with ⌘ = 2h.
A more appropriate interpretation of the identification

⇠ = i↵t is that operator dynamics in this setup is mapped
to a particular classical trajectory in the phase space of
coherent states. In polar coordinates, this trajectory cor-
responds to setting ⇢ = 2↵t and � = ⇡/2. We will return
to this interpretation in section VII.
We now introduce the “information geometry” associ-

ated with generalized coherent states and use it to inter-
pret operator growth and Krylov complexity geometri-
cally. To this end, we recall that in a quantum theory,
the space of coherent states has an associated geometry
described by the Fubini-Study metric (also dubbed in-
formation metric). For our states (41) this becomes the
standard metric on the hyperbolic disc. In complex co-
ordinates (z, z̄) as well as in (⇢,�) it reads

ds2
FS

=
2hdzdz̄

(1� zz̄)2
=

h

2

�
d⇢2 + sinh2(⇢)d�2

�
. (48)

With this geometry at our disposal, we want to make
several comments. Firstly, the identification used to de-
scribe the growth, namely ⇢ = 2↵t and � = ⇡/2, defines
a geodesic in this geometry. In other words, the operator
growth process gets mapped to a geodesic motion in a
hyperbolic geometry (48). This will be made more pre-
cise in section VII. Secondly, we can interpret the Krylov
complexity operator as a generator of translations in the

“Ladder Operators”: 
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We start from the commutation relations for the SL(2,R)
algebra

[L0, L±1] = ⌥L±1, [L1, L�1] = 2L0, (35)

and consider a discrete series representation labeled by
a positive integer h. This representation is typically
expanded by orthonormal vectors |h, ni, for n a non-
negative integer, satisfying hh,m|h, ni = �n,m. Basis
vectors are the eigenstates of the L0 operator as well
as the Casimir operator C2 = L2

0 � 1
2 (L�1L1 + L1L�1)

with eigenvalue h(h� 1). The full action of the SL(2,R)
generators in this basis is given by

L0 |h, ni = (h+ n) |h, ni ,
L�1 |h, ni =

p
(n+ 1)(2h+ n) |h, n+ 1i ,

L1 |h, ni =
p

n(2h+ n� 1) |h, n� 1i , (36)

which in particular implies that

|h, ni =

s
�(2h)

n!�(2h+ n)
Ln

�1 |hi . (37)

The same Hilbert space can be also expanded by means
of generalized coherent states, see [53], that are defined
by using the displacement operator

|z, hi ⌘ D(⇠) |hi , D(⇠) = e⇠L�1�⇠̄L1 , (38)

where the relation between the complex variables is

z =
⇠

|⇠| tanh(|⇠|), |⇠| =
q
⇠⇠̄. (39)

It is useful to introduce polar coordinates ⇠ = 1
2⇢e

i�, such
that z parametrizes the unit disc

z = tanh
⇣⇢
2

⌘
ei�, |z| < 1. (40)

Using the action of the SL(2,R) generators on the pri-
mary state, in particular relation (37), we can write these
so-called SU(1,1) Perelomov coherent states more explic-
itly as

|z, hi = (1� |z|2)h
1X

n=0

zn

s
�(2h+ n)

n!�(2h)
|h, ni . (41)

Now we will follow the general paradigm described in the
previous section. First, from (36), we note that L�1 is
playing the role of the abstract raising operator L+ and
L1 of the lowering operator L�. This way, the Liouvillian
governing the SL(2,R) operator dynamics in the Krylov
basis is given by

L = ↵ (L�1 + L1) . (42)

As reviewed above, the operator wavefunction (13) is ob-
tained by applying the unitary evolution with L, so that

|O(t)) = ei↵(L�1+L1)t |hi . (43)

Returning to the definition of the coherent state (38), we
make the key observation that our operator’s wavefunc-
tion is nothing but the Perelomov coherent state with
⇠ = i↵t. More explicitly we have the relation

|O(t)) = |z = i tanh(↵t), h = ⌘/2i , (44)

as well as the identification between the Krylov basis and
the basis vectors associated with representation h of the
SL(2,R) group

|O) = |hi , |On) = |h, ni . (45)

Arguably the most elegant consequence of this map is the
fact that from the action of the ladder operators (36), we
immediately get the Lanczos coe�cients

bn = ↵
p

n(2h+ n� 1). (46)

We can indeed check that the wavefunctions (29) are just
coe�cients of the coherent state (41) with z = i tanh(↵t)
and solve the Schrodinger equation (20) with the Lanc-
zos coe�cients above.
The Krylov complexity is then proportional to the high-
est weight h and grows exponentially with time, with the
Lyapunov exponent � = 2↵

KO = (O(t)|n|O(t)) = 2h sinh2(↵t). (47)

Moreover, the n = 0 amplitude is the SYK auto-
correlation function (27) with ⌘ = 2h.
A more appropriate interpretation of the identification

⇠ = i↵t is that operator dynamics in this setup is mapped
to a particular classical trajectory in the phase space of
coherent states. In polar coordinates, this trajectory cor-
responds to setting ⇢ = 2↵t and � = ⇡/2. We will return
to this interpretation in section VII.
We now introduce the “information geometry” associ-

ated with generalized coherent states and use it to inter-
pret operator growth and Krylov complexity geometri-
cally. To this end, we recall that in a quantum theory,
the space of coherent states has an associated geometry
described by the Fubini-Study metric (also dubbed in-
formation metric). For our states (41) this becomes the
standard metric on the hyperbolic disc. In complex co-
ordinates (z, z̄) as well as in (⇢,�) it reads

ds2
FS

=
2hdzdz̄

(1� zz̄)2
=

h

2

�
d⇢2 + sinh2(⇢)d�2

�
. (48)

With this geometry at our disposal, we want to make
several comments. Firstly, the identification used to de-
scribe the growth, namely ⇢ = 2↵t and � = ⇡/2, defines
a geodesic in this geometry. In other words, the operator
growth process gets mapped to a geodesic motion in a
hyperbolic geometry (48). This will be made more pre-
cise in section VII. Secondly, we can interpret the Krylov
complexity operator as a generator of translations in the

|On)
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where ↵ is the operator growth rate and � is a non-
universal constant that depends on the details of the op-
erator. In particular, for this type of Lanczos coe�cients,
i.e., systems saturating the bound, the Krylov complex-
ity grows exponentially fast with an exponent given by
� = 2↵. In several examples, some of which will be de-
scribed below, at finite temperature T = 1/� one arrives
at ↵ = ⇡/�, and this was conjectured to bound the Lya-
punov exponent, as defined by out-of-time ordered cor-
relation functions [9].

SYK example

As the key example of the behaviour (25), the SYK
model [6, 16], which is a modern playground for quan-
tum chaos [6, 9], was analyzed in [23]. The SYK model
[6, 16] is a model of N Majorana fermions interacting
with all-to-all random couplings. For random q-body in-
teractions, the Hamiltonian is of the form

H = iq/2
X

1i1<i2<···<iqN

Ji1i2···iq i1 i2 · · · iq , (26)

This model has been at the center of attention for the
past years for several important reasons, namely exact
solvability at large N , conformal phase at low energies,
and maximal chaos in the sense of [9].

Operator growth for this system was considered in [17],
using a natural notion of growth arising from the exact
Majorana fermion formulation of the model. An advan-
tage of such an approach is that it was naturally related
to out-of-time ordered correlation functions, see also [18].
A disadvantage is that such a definition does not seem to
find a natural extension to higher dimensions and QFTs.

Operator growth for this system was also reconsidered
in [23] using the Lanczos approach. As explained above,
the starting point of this approach can be taken to be the
autocorrelation function. For SYK at low temperatures
this is

C(t) = cosh�⌘

✓
⇡t

�

◆
. (27)

In this case, the Lanczos coe�cients can be obtained an-
alytically [23] (see also [29]) and are given by

bn =
⇡

�

p
n(⌘ + n� 1) . (28)

The operator wavefunction can then be found by solving
(20) and reads

'n(t) =

s
�(⌘ + n)

n!�(⌘)

tanhn(↵t)

cosh⌘(↵t)
. (29)

The probabilities pn(t) = |'n(t)|2 from this solution cor-
respond to the negative binomial distribution. The evolu-
tion of these probabilities depicts a one-dimensional dif-
fusion process over the Krylov basis. The time evolution

of the mean position in this chain, or equivalently the evo-
lution of Krylov complexity, is of exponential type. It is
controlled by the maximal Lyapunov exponent � = 2⇡/�.
More explicitly

KO = ⌘ sinh2(↵t) ⇠ ⌘

4
e2↵t = e2↵(t�

1
2↵ log( 4

⌘ )) , (30)

where we have written the coe�cient of the exponent in
an analogous way to the scrambling time in the OTOC.
Observe that, while the exponential growth is “more uni-
versal” than the usual Lyapunov growth (it does not re-
ceive stringy corrections for example in the context of
holography), the “scrambling time” for a given operator
is by construction less universal. Nevertheless, it depends
on the scaling dimension of the initial perturbation and
may also be a good probe for the operator growth.
Before moving forward we want to make a couple of

remarks. First, from a technical standpoint, the deriva-
tion of the operator wavefunctions in both [17] and [23] is
quite involved. This feature makes it di�cult to extrapo-
late to other systems, in particular to higher dimensions.
On the other hand, readers familiar with the SYK model
and the arguments that lead to the derivation of the cor-
relator (27) (using large-N techniques, see [6, 16]) may
recall it was the conformal symmetry appearing in the
low energy Schwinger-Dyson equations that was respon-
sible for the form of this two-point function. In other
words, the fermions behave as primaries transforming in
specific representations of the SL(2,R) algebra. In par-
ticular, for the q-body interaction, the associated scaling
dimension is h = 1/q. We might expect a deeper and
simpler understanding of operator dynamics and wave-
function when such a feature is included in the analysis.
Second, from a more holographic standpoint, the rela-

tion between Krylov complexity and the actual physics
of the problem is far from clear. In the light of recent dis-
cussions on near horizon symmetries in black hole physics
and their potential connections with operator complexity
[22, 32, 43, 45–47], we would like to have a better under-
standing of the Krylov complexity operator.
In the following sections, we will explore a geometric av-
enue towards both problems, which more broadly can be
seen as a new perspective on the Lanczos approach.

III. LIOUVILLIAN AND SYMMETRY: GENERAL
IDEA

In this section, we describe a general paradigm that we
will follow through the rest of the article. The main idea
is simple yet powerful, and we describe it in the follow-
ing. From the zoo of complicated quantum systems, we
focus our attention on models governed by symmetry. By
this, we mean systems for which the Liouvillian operator
belongs to the Lie algebra of a given symmetry group.
In the context of the usual Shrodinger evolution, this is

⌘ = 2h
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We start from the commutation relations for the SL(2,R)
algebra

[L0, L±1] = ⌥L±1, [L1, L�1] = 2L0, (35)

and consider a discrete series representation labeled by
a positive integer h. This representation is typically
expanded by orthonormal vectors |h, ni, for n a non-
negative integer, satisfying hh,m|h, ni = �n,m. Basis
vectors are the eigenstates of the L0 operator as well
as the Casimir operator C2 = L2

0 � 1
2 (L�1L1 + L1L�1)

with eigenvalue h(h� 1). The full action of the SL(2,R)
generators in this basis is given by

L0 |h, ni = (h+ n) |h, ni ,
L�1 |h, ni =

p
(n+ 1)(2h+ n) |h, n+ 1i ,

L1 |h, ni =
p

n(2h+ n� 1) |h, n� 1i , (36)

which in particular implies that

|h, ni =

s
�(2h)

n!�(2h+ n)
Ln

�1 |hi . (37)

The same Hilbert space can be also expanded by means
of generalized coherent states, see [53], that are defined
by using the displacement operator

|z, hi ⌘ D(⇠) |hi , D(⇠) = e⇠L�1�⇠̄L1 , (38)

where the relation between the complex variables is

z =
⇠

|⇠| tanh(|⇠|), |⇠| =
q
⇠⇠̄. (39)

It is useful to introduce polar coordinates ⇠ = 1
2⇢e

i�, such
that z parametrizes the unit disc

z = tanh
⇣⇢
2

⌘
ei�, |z| < 1. (40)

Using the action of the SL(2,R) generators on the pri-
mary state, in particular relation (37), we can write these
so-called SU(1,1) Perelomov coherent states more explic-
itly as

|z, hi = (1� |z|2)h
1X

n=0

zn

s
�(2h+ n)

n!�(2h)
|h, ni . (41)

Now we will follow the general paradigm described in the
previous section. First, from (36), we note that L�1 is
playing the role of the abstract raising operator L+ and
L1 of the lowering operator L�. This way, the Liouvillian
governing the SL(2,R) operator dynamics in the Krylov
basis is given by

L = ↵ (L�1 + L1) . (42)

As reviewed above, the operator wavefunction (13) is ob-
tained by applying the unitary evolution with L, so that

|O(t)) = ei↵(L�1+L1)t |hi . (43)

Returning to the definition of the coherent state (38), we
make the key observation that our operator’s wavefunc-
tion is nothing but the Perelomov coherent state with
⇠ = i↵t. More explicitly we have the relation

|O(t)) = |z = i tanh(↵t), h = ⌘/2i , (44)

as well as the identification between the Krylov basis and
the basis vectors associated with representation h of the
SL(2,R) group

|O) = |hi , |On) = |h, ni . (45)

Arguably the most elegant consequence of this map is the
fact that from the action of the ladder operators (36), we
immediately get the Lanczos coe�cients

bn = ↵
p

n(2h+ n� 1). (46)

We can indeed check that the wavefunctions (29) are just
coe�cients of the coherent state (41) with z = i tanh(↵t)
and solve the Schrodinger equation (20) with the Lanc-
zos coe�cients above.
The Krylov complexity is then proportional to the high-
est weight h and grows exponentially with time, with the
Lyapunov exponent � = 2↵

KO = (O(t)|n|O(t)) = 2h sinh2(↵t). (47)

Moreover, the n = 0 amplitude is the SYK auto-
correlation function (27) with ⌘ = 2h.
A more appropriate interpretation of the identification

⇠ = i↵t is that operator dynamics in this setup is mapped
to a particular classical trajectory in the phase space of
coherent states. In polar coordinates, this trajectory cor-
responds to setting ⇢ = 2↵t and � = ⇡/2. We will return
to this interpretation in section VII.
We now introduce the “information geometry” associ-

ated with generalized coherent states and use it to inter-
pret operator growth and Krylov complexity geometri-
cally. To this end, we recall that in a quantum theory,
the space of coherent states has an associated geometry
described by the Fubini-Study metric (also dubbed in-
formation metric). For our states (41) this becomes the
standard metric on the hyperbolic disc. In complex co-
ordinates (z, z̄) as well as in (⇢,�) it reads

ds2
FS

=
2hdzdz̄

(1� zz̄)2
=

h

2

�
d⇢2 + sinh2(⇢)d�2

�
. (48)

With this geometry at our disposal, we want to make
several comments. Firstly, the identification used to de-
scribe the growth, namely ⇢ = 2↵t and � = ⇡/2, defines
a geodesic in this geometry. In other words, the operator
growth process gets mapped to a geodesic motion in a
hyperbolic geometry (48). This will be made more pre-
cise in section VII. Secondly, we can interpret the Krylov
complexity operator as a generator of translations in the
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We now expand the time-dependent operator in the
Krylov basis as

|O(t)) =
X

n

in'n(t)|On) . (13)

In this expansion, the amplitudes 'n(t) turn out to be
real. Generally, their modulus squared defines probabil-
ities whose sum is conserved in time

X

n

|'n(t)|2 ⌘
X

n

pn(t) = 1. (14)

These amplitudes are determined by solving a
“Schrodinger equation”, that descends from the original
Heisenberg equation satisfied by O(t). To derive this
equation, notice that the previously defined Liouvillian
L plays the role of the Hamiltonian in the new Hilbert
space spanned by the Krylov basis |On). In particular,
the state representing O(t) is given by

|O(t)) = eiLt|O). (15)

Computing the time derivative

@t|O(t)) = iL|O(t)), (16)

or equivalently, using (13) we arrive at

@t|O(t)) =
X

n

in@t'n(t)|On). (17)

Next, from the Lanczos algorithm (11), we find the action
of the Liouvillian on the Krylov basis vectors

L|On) = bn|On�1) + bn+1|On+1). (18)

From this expression it is clear that the Liovillian is tridi-
agonal in the Krylov basis (generally we may have a di-
agonal term in (18)). This fact will play an important
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X
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Krylov Complexity

We now describe how to quantify operator complex-
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X

n
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is a certain ambiguity in this definition of operator com-
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ities that have appeared in the literature can always be
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see in this work, this “minimal” choice acquires a simple
geometric interpretation.
The recent interest in the Krylov approach to opera-

tor complexity has various origins. First, modulo simple
physical assumptions, it is a well defined and concrete ap-
proach, potentially applicable to QFTs. These features
make it appealing from the point of view of holography.
Second, based on various explicit numerical as well as
analytical examples, [23] conjectured a maximal possi-
ble growth of Lanczos coe�cients in quantum systems,
namely a linear growth:

bn  ↵n+ � +O(1), (25)

Recall coherent states for SL(2,R) (SU(1,1))
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We start from the commutation relations for the SL(2,R)
algebra

[L0, L±1] = ⌥L±1, [L1, L�1] = 2L0, (35)

and consider a discrete series representation labeled by
a positive integer h. This representation is typically
expanded by orthonormal vectors |h, ni, for n a non-
negative integer, satisfying hh,m|h, ni = �n,m. Basis
vectors are the eigenstates of the L0 operator as well
as the Casimir operator C2 = L2

0 � 1
2 (L�1L1 + L1L�1)

with eigenvalue h(h� 1). The full action of the SL(2,R)
generators in this basis is given by

L0 |h, ni = (h+ n) |h, ni ,
L�1 |h, ni =

p
(n+ 1)(2h+ n) |h, n+ 1i ,

L1 |h, ni =
p

n(2h+ n� 1) |h, n� 1i , (36)

which in particular implies that

|h, ni =

s
�(2h)

n!�(2h+ n)
Ln

�1 |hi . (37)

The same Hilbert space can be also expanded by means
of generalized coherent states, see [53], that are defined
by using the displacement operator

|z, hi ⌘ D(⇠) |hi , D(⇠) = e⇠L�1�⇠̄L1 , (38)

where the relation between the complex variables is

z =
⇠

|⇠| tanh(|⇠|), |⇠| =
q
⇠⇠̄. (39)

It is useful to introduce polar coordinates ⇠ = 1
2⇢e

i�, such
that z parametrizes the unit disc

z = tanh
⇣⇢
2

⌘
ei�, |z| < 1. (40)

Using the action of the SL(2,R) generators on the pri-
mary state, in particular relation (37), we can write these
so-called SU(1,1) Perelomov coherent states more explic-
itly as

|z, hi = (1� |z|2)h
1X

n=0

zn

s
�(2h+ n)

n!�(2h)
|h, ni . (41)

Now we will follow the general paradigm described in the
previous section. First, from (36), we note that L�1 is
playing the role of the abstract raising operator L+ and
L1 of the lowering operator L�. This way, the Liouvillian
governing the SL(2,R) operator dynamics in the Krylov
basis is given by

L = ↵ (L�1 + L1) . (42)

As reviewed above, the operator wavefunction (13) is ob-
tained by applying the unitary evolution with L, so that

|O(t)) = ei↵(L�1+L1)t |hi . (43)

Returning to the definition of the coherent state (38), we
make the key observation that our operator’s wavefunc-
tion is nothing but the Perelomov coherent state with
⇠ = i↵t. More explicitly we have the relation

|O(t)) = |z = i tanh(↵t), h = ⌘/2i , (44)

as well as the identification between the Krylov basis and
the basis vectors associated with representation h of the
SL(2,R) group

|O) = |hi , |On) = |h, ni . (45)

Arguably the most elegant consequence of this map is the
fact that from the action of the ladder operators (36), we
immediately get the Lanczos coe�cients

bn = ↵
p

n(2h+ n� 1). (46)

We can indeed check that the wavefunctions (29) are just
coe�cients of the coherent state (41) with z = i tanh(↵t)
and solve the Schrodinger equation (20) with the Lanc-
zos coe�cients above.
The Krylov complexity is then proportional to the high-
est weight h and grows exponentially with time, with the
Lyapunov exponent � = 2↵

KO = (O(t)|n|O(t)) = 2h sinh2(↵t). (47)

Moreover, the n = 0 amplitude is the SYK auto-
correlation function (27) with ⌘ = 2h.
A more appropriate interpretation of the identification

⇠ = i↵t is that operator dynamics in this setup is mapped
to a particular classical trajectory in the phase space of
coherent states. In polar coordinates, this trajectory cor-
responds to setting ⇢ = 2↵t and � = ⇡/2. We will return
to this interpretation in section VII.
We now introduce the “information geometry” associ-

ated with generalized coherent states and use it to inter-
pret operator growth and Krylov complexity geometri-
cally. To this end, we recall that in a quantum theory,
the space of coherent states has an associated geometry
described by the Fubini-Study metric (also dubbed in-
formation metric). For our states (41) this becomes the
standard metric on the hyperbolic disc. In complex co-
ordinates (z, z̄) as well as in (⇢,�) it reads

ds2
FS

=
2hdzdz̄

(1� zz̄)2
=

h

2

�
d⇢2 + sinh2(⇢)d�2

�
. (48)

With this geometry at our disposal, we want to make
several comments. Firstly, the identification used to de-
scribe the growth, namely ⇢ = 2↵t and � = ⇡/2, defines
a geodesic in this geometry. In other words, the operator
growth process gets mapped to a geodesic motion in a
hyperbolic geometry (48). This will be made more pre-
cise in section VII. Secondly, we can interpret the Krylov
complexity operator as a generator of translations in the
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where ↵ is the operator growth rate and � is a non-
universal constant that depends on the details of the op-
erator. In particular, for this type of Lanczos coe�cients,
i.e., systems saturating the bound, the Krylov complex-
ity grows exponentially fast with an exponent given by
� = 2↵. In several examples, some of which will be de-
scribed below, at finite temperature T = 1/� one arrives
at ↵ = ⇡/�, and this was conjectured to bound the Lya-
punov exponent, as defined by out-of-time ordered cor-
relation functions [9].

SYK example

As the key example of the behaviour (25), the SYK
model [6, 16], which is a modern playground for quan-
tum chaos [6, 9], was analyzed in [23]. The SYK model
[6, 16] is a model of N Majorana fermions interacting
with all-to-all random couplings. For random q-body in-
teractions, the Hamiltonian is of the form

H = iq/2
X

1i1<i2<···<iqN

Ji1i2···iq i1 i2 · · · iq , (26)

This model has been at the center of attention for the
past years for several important reasons, namely exact
solvability at large N , conformal phase at low energies,
and maximal chaos in the sense of [9].

Operator growth for this system was considered in [17],
using a natural notion of growth arising from the exact
Majorana fermion formulation of the model. An advan-
tage of such an approach is that it was naturally related
to out-of-time ordered correlation functions, see also [18].
A disadvantage is that such a definition does not seem to
find a natural extension to higher dimensions and QFTs.

Operator growth for this system was also reconsidered
in [23] using the Lanczos approach. As explained above,
the starting point of this approach can be taken to be the
autocorrelation function. For SYK at low temperatures
this is

C(t) = cosh�⌘

✓
⇡t

�

◆
. (27)

In this case, the Lanczos coe�cients can be obtained an-
alytically [23] (see also [29]) and are given by

bn =
⇡

�

p
n(⌘ + n� 1) . (28)

The operator wavefunction can then be found by solving
(20) and reads

'n(t) =

s
�(⌘ + n)

n!�(⌘)

tanhn(↵t)

cosh⌘(↵t)
. (29)

The probabilities pn(t) = |'n(t)|2 from this solution cor-
respond to the negative binomial distribution. The evolu-
tion of these probabilities depicts a one-dimensional dif-
fusion process over the Krylov basis. The time evolution

of the mean position in this chain, or equivalently the evo-
lution of Krylov complexity, is of exponential type. It is
controlled by the maximal Lyapunov exponent � = 2⇡/�.
More explicitly

KO = ⌘ sinh2(↵t) ⇠ ⌘

4
e2↵t = e2↵(t�

1
2↵ log( 4

⌘ )) , (30)

where we have written the coe�cient of the exponent in
an analogous way to the scrambling time in the OTOC.
Observe that, while the exponential growth is “more uni-
versal” than the usual Lyapunov growth (it does not re-
ceive stringy corrections for example in the context of
holography), the “scrambling time” for a given operator
is by construction less universal. Nevertheless, it depends
on the scaling dimension of the initial perturbation and
may also be a good probe for the operator growth.
Before moving forward we want to make a couple of

remarks. First, from a technical standpoint, the deriva-
tion of the operator wavefunctions in both [17] and [23] is
quite involved. This feature makes it di�cult to extrapo-
late to other systems, in particular to higher dimensions.
On the other hand, readers familiar with the SYK model
and the arguments that lead to the derivation of the cor-
relator (27) (using large-N techniques, see [6, 16]) may
recall it was the conformal symmetry appearing in the
low energy Schwinger-Dyson equations that was respon-
sible for the form of this two-point function. In other
words, the fermions behave as primaries transforming in
specific representations of the SL(2,R) algebra. In par-
ticular, for the q-body interaction, the associated scaling
dimension is h = 1/q. We might expect a deeper and
simpler understanding of operator dynamics and wave-
function when such a feature is included in the analysis.
Second, from a more holographic standpoint, the rela-

tion between Krylov complexity and the actual physics
of the problem is far from clear. In the light of recent dis-
cussions on near horizon symmetries in black hole physics
and their potential connections with operator complexity
[22, 32, 43, 45–47], we would like to have a better under-
standing of the Krylov complexity operator.
In the following sections, we will explore a geometric av-
enue towards both problems, which more broadly can be
seen as a new perspective on the Lanczos approach.

III. LIOUVILLIAN AND SYMMETRY: GENERAL
IDEA

In this section, we describe a general paradigm that we
will follow through the rest of the article. The main idea
is simple yet powerful, and we describe it in the follow-
ing. From the zoo of complicated quantum systems, we
focus our attention on models governed by symmetry. By
this, we mean systems for which the Liouvillian operator
belongs to the Lie algebra of a given symmetry group.
In the context of the usual Shrodinger evolution, this is

|z, hi =
1X

n=0

ein�

s
�(2h+ n)

n!�(2h)

tanhn(⇢/2)

cosh2h(⇢/2)
|k, hi
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quite a common lore. For example, in QFT or CFT the
Hamiltonian belongs to the Lie algebra of the Poincaré
group or the conformal group, respectively. This idea is
old and well explored in Hamiltonian dynamics (see e.g.
review [51]). Here, we import it to the physics of operator
evolution, instead of state evolution, where the Liouvil-
lian plays the role of the Hamiltonian in the Krylov basis.

With symmetries in mind, our key observation is that
the action of the Liouvillian on the Krylov basis (18)
can be interpreted as the action of the sum of abstract
“raising” and “lowering” ladder operators L+ and L�,
namely

L = ↵ (L+ + L�) . (31)

In this expression, ↵ is a proportionality factor, not fixed
by symmetry. It will depend on the details of the phys-
ical setup, such as the choice of the inner-product, etc.
Its meaning will become clearer in the examples below.
With such Liouvillians, the Krylov basis states will nat-
urally furnish representations of the appropriate symme-
try group. This is again analogous to relativistic QFT or
CFT, where states are organized through representations
of the Poincaré or conformal group. The only di↵erence
here is that we apply such a structure to operator dy-
namics on the Krylov basis.

In the light of symmetry, the previously described
quantities associated with the Lanczos approach take a
more transparent meaning. First, since the action of the
ladder operators in a certain representation is fixed by the
symmetry group, this approach allows us to read o↵ the
Lanczos coe�cients immediately. More precisely, they
are simply determined from the action of ladder opera-
tors in the Krylov basis

↵L+|On) = bn+1|On+1), ↵L�|On) = bn|On�1). (32)

We will also see that, under certain conditions, the Lie
group approach leads to quadratic algebraic equations
for Lanczos coe�cients. This will ensure that, at least in
classes of our examples, they will not grow faster than n,
in agreement with the maximal operator growth hypoth-
esis [23].

Moreover, the above paradigm allows us to make a
powerful connection with generalized coherent states [52–
54]. This comes from the fact that the Liouvillian time
evolution in the Krylov basis with (31) can be seen as a
particular instance of a generalized displacement opera-
tor D(⇠) for a Lie group. These displacements operators
typically take the form

D(⇠) ⌘ e⇠L+�⇠̄L� , (33)

for some complex ⇠, its conjugate ⇠̄ and the same ab-
stract ladder operators L±. We will make all these for-
mulas precise when analyzing specific examples in the
next section. The coherent state can now be written as

the action of the displacement operator on some refer-
ence state | 0i, usually chosen to be the highest weight
state of the representation. It is clear that unitary time
evolution, as generated by the Liouvillian (31), is just
a displacement operator with ⇠ = i↵ t. In other words,
we can interpret the operator dynamics and its growth
in the Krylov basis as a trajectory through the Hilbert
space of coherent states. This way, after associating | 0i
with our initial operator |O), and expanding the coherent
states in an orthonormal basis, we will be able to read o↵
the amplitudes 'n(t) and the Krylov basis vectors |On).
The link with coherent states further allows us to ge-

ometrize Krylov complexity. This formulation is rooted
in the well-known connection between coherent states
and information metric (Fubini-Study metric) on the
Hilbert space, abstractly defined for the coherent state
|zi as

ds2
FS

= hdz|dzi � hdz|zihz|dzi. (34)

This metric is also associated with the coadjoint orbit
of the relevant group (see e.g. [51]). As we will see,
the Krylov complexity will be universally proportional
to the “Volume” in this geometry. In addition, both the
Liouvillian L as well as the Krylov complexity operator
K̂O can be related to isometry generators in these in-
formation geometries. Indeed they form a “complexity
algebra” isomorphic to the algebra of isometries and we
will show how it determines Lanczos coe�cients.
Finally, the association of the coherent state complex

label ⇠ with real-time suggests that we are secretly dis-
cussing a classical motion in phase space. This inter-
pretation is indeed correct and it paves a way towards
understanding the relations between Krylov complexity
and circuit complexity.

IV. LIOUVILLIAN AND SYMMETRY:
EXAMPLES

In this section, we analyze explicit examples of the gen-
eral idea above. From a physical perspective, the most
interesting one is that of SL(2,R) and its generalizations
to Conformal Field Theories (CFT). These have applica-
tions to classical and quantum chaos and the physics of
black holes. We will also discuss the examples of SU(2)
and the Heisenberg-Weyl group, which will help us gain
more intuition about the relation between Krylov com-
plexity, group theory, and geometry.

Example I: SL(2,R)

The first example is operator evolution governed by
SL(2,R). In this case, we will re-derive the SYK results
of [23] using the above general paradigm.

E.g. for SL(2,R) this becomes a hyperbolic disc metric
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We start from the commutation relations for the SL(2,R)
algebra

[L0, L±1] = ⌥L±1, [L1, L�1] = 2L0, (35)

and consider a discrete series representation labeled by
a positive integer h. This representation is typically
expanded by orthonormal vectors |h, ni, for n a non-
negative integer, satisfying hh,m|h, ni = �n,m. Basis
vectors are the eigenstates of the L0 operator as well
as the Casimir operator C2 = L2

0 � 1
2 (L�1L1 + L1L�1)

with eigenvalue h(h� 1). The full action of the SL(2,R)
generators in this basis is given by

L0 |h, ni = (h+ n) |h, ni ,
L�1 |h, ni =

p
(n+ 1)(2h+ n) |h, n+ 1i ,

L1 |h, ni =
p

n(2h+ n� 1) |h, n� 1i , (36)

which in particular implies that

|h, ni =

s
�(2h)

n!�(2h+ n)
Ln

�1 |hi . (37)

The same Hilbert space can be also expanded by means
of generalized coherent states, see [53], that are defined
by using the displacement operator

|z, hi ⌘ D(⇠) |hi , D(⇠) = e⇠L�1�⇠̄L1 , (38)

where the relation between the complex variables is

z =
⇠

|⇠| tanh(|⇠|), |⇠| =
q
⇠⇠̄. (39)

It is useful to introduce polar coordinates ⇠ = 1
2⇢e

i�, such
that z parametrizes the unit disc

z = tanh
⇣⇢
2

⌘
ei�, |z| < 1. (40)

Using the action of the SL(2,R) generators on the pri-
mary state, in particular relation (37), we can write these
so-called SU(1,1) Perelomov coherent states more explic-
itly as

|z, hi = (1� |z|2)h
1X

n=0

zn

s
�(2h+ n)

n!�(2h)
|h, ni . (41)

Now we will follow the general paradigm described in the
previous section. First, from (36), we note that L�1 is
playing the role of the abstract raising operator L+ and
L1 of the lowering operator L�. This way, the Liouvillian
governing the SL(2,R) operator dynamics in the Krylov
basis is given by

L = ↵ (L�1 + L1) . (42)

As reviewed above, the operator wavefunction (13) is ob-
tained by applying the unitary evolution with L, so that

|O(t)) = ei↵(L�1+L1)t |hi . (43)

Returning to the definition of the coherent state (38), we
make the key observation that our operator’s wavefunc-
tion is nothing but the Perelomov coherent state with
⇠ = i↵t. More explicitly we have the relation

|O(t)) = |z = i tanh(↵t), h = ⌘/2i , (44)

as well as the identification between the Krylov basis and
the basis vectors associated with representation h of the
SL(2,R) group

|O) = |hi , |On) = |h, ni . (45)

Arguably the most elegant consequence of this map is the
fact that from the action of the ladder operators (36), we
immediately get the Lanczos coe�cients

bn = ↵
p

n(2h+ n� 1). (46)

We can indeed check that the wavefunctions (29) are just
coe�cients of the coherent state (41) with z = i tanh(↵t)
and solve the Schrodinger equation (20) with the Lanc-
zos coe�cients above.
The Krylov complexity is then proportional to the high-
est weight h and grows exponentially with time, with the
Lyapunov exponent � = 2↵

KO = (O(t)|n|O(t)) = 2h sinh2(↵t). (47)

Moreover, the n = 0 amplitude is the SYK auto-
correlation function (27) with ⌘ = 2h.
A more appropriate interpretation of the identification

⇠ = i↵t is that operator dynamics in this setup is mapped
to a particular classical trajectory in the phase space of
coherent states. In polar coordinates, this trajectory cor-
responds to setting ⇢ = 2↵t and � = ⇡/2. We will return
to this interpretation in section VII.
We now introduce the “information geometry” associ-

ated with generalized coherent states and use it to inter-
pret operator growth and Krylov complexity geometri-
cally. To this end, we recall that in a quantum theory,
the space of coherent states has an associated geometry
described by the Fubini-Study metric (also dubbed in-
formation metric). For our states (41) this becomes the
standard metric on the hyperbolic disc. In complex co-
ordinates (z, z̄) as well as in (⇢,�) it reads

ds2
FS

=
2hdzdz̄

(1� zz̄)2
=

h

2

�
d⇢2 + sinh2(⇢)d�2

�
. (48)

With this geometry at our disposal, we want to make
several comments. Firstly, the identification used to de-
scribe the growth, namely ⇢ = 2↵t and � = ⇡/2, defines
a geodesic in this geometry. In other words, the operator
growth process gets mapped to a geodesic motion in a
hyperbolic geometry (48). This will be made more pre-
cise in section VII. Secondly, we can interpret the Krylov
complexity operator as a generator of translations in the
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� direction (an isometry generator). This is seen from
the explicit form of the coherent state, and the fact that
�i@� produces a factor n. We will discuss more precisely
the relation between the isometries of this information
geometry and the complexity algebra generated by the
Liouvillian and the Krylov complexity operator in a later
section.

Thirdly, motivated by the recent developments con-
cerning the geometric approach to complexity, we note
that the actual Krylov complexity is proportional to the
volume enclosed by the geodesic radius ⇢ = ↵t, i.e., it is
proportional to the volume of the region from the origin
⇢ = 0 up to ⇢ = 2↵t. The explicit computation gives

Vt =

Z 2↵t

0
d⇢

Z 2⇡

0
d�

p
g = 2⇡h sinh2(↵t) = ⇡KO. (49)

This is one of the main new results of our work. We
will show that this relation holds more generally in other
examples.

Based on the intuition from Nielsen’s approach to cir-
cuit complexity, to be described later, one may have
naively expected a relation between the geodesic length
and complexity. However, the geodesic distance between
two arbitrary points (⇢i,�i) and (⇢f ,�f ) in geometry (48)
is given by

cosh(L/l) = cosh(⇢f ) cosh(⇢i)�cos(��) sinh(⇢f ) sinh(⇢i),
(50)

where the radius of the hyperbolic space is denoted as
l2 = h/2. This way, if we measure it from the center
of the disc ⇢i = 0, the geodesic length is L = ⇢f . For
our geodesic motion, we have ⇢f = ↵t, which only grows
linearly in t. We will also return to this point in a later
section, where we will see the more direct relation to
Nielsen’s complexity.

Last but not least, geometry (48) is negatively curved.
The Ricci scalar is related to the highest weight state h
as

R = � 4

h
, (51)

and it decreases for large h.
There have already been several discussions, both in clas-
sical and quantum chaos as well as in the complexity lit-
erature, about the role of negatively curved information
geometry [55–59]. In the context of black holes, for ex-
ample, perturbations in the near horizon region can be
described in this way, see [13, 14, 60, 61]. The present
example is a precise contribution to this intuition. In-
deed, we will see in the following examples that the sign
of the curvature is correlated with the nature of Krylov
complexity growth.

Example II: SU(2)

We now analyze the example in which the Liouvil-
lian belongs to the SU(2) algebra. This will give us
a more general intuition about the Krylov approach in
non-chaotic systems. In particular, we will see the con-
sequences of working with a finite-dimensional Hilbert
space and having non-maximal Lanczos coe�cients on
the Krylov complexity and its geometry.
We start with the familiar SU(2) Lie algebra

[Ji, Jj ] = i✏ijkJk, (52)

and introduce the ladder operators J± = J1 ± iJ2. Re-
naming J3 ! J0 the previous algebra transforms into

[J0, J±] = ±J±, [J+, J�] = 2J0. (53)

Using the ladder operators we can build the usual ba-
sis for representation j = 0, 1

2 , 1, · · · , namely |j, ni, with
�j  n  j. In order to make the connection with op-
erator growth, it will be convenient to re-label the basis
vectors as n ! j + n, so that n = 0, ..., 2j. This way, the
2j + 1 orthonormal basis vectors can be written as

|j,�j + ni =

s
�(2j � n+ 1)

n!�(2j + 1)
Jn

+ |j,�ji . (54)

In this basis, the action of the Lie algebra generators is

J0 |j,�j + ni = (�j + n) |j,�j + ni ,
J+ |j,�j + ni =

p
(n+ 1)(2j � n) |j,�j + n+ 1i ,

J� |j,�j + ni =
p

n(2j � n+ 1) |j,�j + n� 1i . (55)

As before, we will choose the highest weight state |j,�ji,
annihilated by J�, as our initial state. Equivalently we
could have started from J+ |j, ji = 0 but we chose to
follow the usual convention [53].
Following previous steps, we build the so-called spin

coherent states by applying the displacement operator

|z, ji = D(⇠) |j,�ji , D(⇠) = e⇠J+�⇠̄J� , (56)

where now we have the complex coordinate

z = tan

✓
✓

2

◆
ei�, (57)

that parametrizes a spherical geometry.
More explicitly, the spin coherent states are written in

the orthonormal basis as

|z, ji = (1 + zz̄)�j

2jX

n=0

zn

s
�(2j + 1)

n!�(2j � n+ 1)
|j,�j + ni .

(58)
To analyze the operator growth we repeat the same steps
as in the previous example. The SU(2) Liouvillian takes
the form

L = ↵(J+ + J�) , (59)

Operator growth is a geodesic in this manifold (phase space): 

⇢ = 2↵t, � = ⇡/2

<latexit sha1_base64="LQ/xolwSz3r4orR/zrZl4229n8k=">AAACCXicbVC7SgNBFJ2NrxhfUUubwSBYSNwNEW0CQRvLCOYB2SXcnUyyQ2Z3JzOzQljS2vgrNhaK2PoHdv6Nk0ehiQcuHM65l3vv8QVnStv2t5VZWV1b38hu5ra2d3b38vsHDRUnktA6iXksWz4oyllE65ppTltCUgh9Tpv+4GbiNx+oVCyO7vVIUC+EfsR6jIA2UiePXRnElZILXASA9Zk7HCbQxa4IWMUV7LzUyRfsoj0FXibOnBTQHLVO/svtxiQJaaQJB6Xaji20l4LUjHA6zrmJogLIAPq0bWgEIVVeOv1kjE+M0sW9WJqKNJ6qvydSCJUahb7pDEEHatGbiP957UT3rryURSLRNCKzRb2EYx3jSSy4yyQlmo8MASKZuRWTACQQbcLLmRCcxZeXSaNUdMrFi7tyoXo9jyOLjtAxOkUOukRVdItqqI4IekTP6BW9WU/Wi/VufcxaM9Z85hD9gfX5A+WumTE=</latexit>

Observe a universal relation between the Volume and Krylov complexity

8

� direction (an isometry generator). This is seen from
the explicit form of the coherent state, and the fact that
�i@� produces a factor n. We will discuss more precisely
the relation between the isometries of this information
geometry and the complexity algebra generated by the
Liouvillian and the Krylov complexity operator in a later
section.

Thirdly, motivated by the recent developments con-
cerning the geometric approach to complexity, we note
that the actual Krylov complexity is proportional to the
volume enclosed by the geodesic radius ⇢ = ↵t, i.e., it is
proportional to the volume of the region from the origin
⇢ = 0 up to ⇢ = 2↵t. The explicit computation gives

Vt =

Z 2↵t

0
d⇢

Z 2⇡

0
d�

p
g = 2⇡h sinh2(↵t) = ⇡KO. (49)

This is one of the main new results of our work. We
will show that this relation holds more generally in other
examples.

Based on the intuition from Nielsen’s approach to cir-
cuit complexity, to be described later, one may have
naively expected a relation between the geodesic length
and complexity. However, the geodesic distance between
two arbitrary points (⇢i,�i) and (⇢f ,�f ) in geometry (48)
is given by

cosh(L/l) = cosh(⇢f ) cosh(⇢i)�cos(��) sinh(⇢f ) sinh(⇢i),
(50)

where the radius of the hyperbolic space is denoted as
l2 = h/2. This way, if we measure it from the center
of the disc ⇢i = 0, the geodesic length is L = ⇢f . For
our geodesic motion, we have ⇢f = ↵t, which only grows
linearly in t. We will also return to this point in a later
section, where we will see the more direct relation to
Nielsen’s complexity.

Last but not least, geometry (48) is negatively curved.
The Ricci scalar is related to the highest weight state h
as

R = � 4

h
, (51)

and it decreases for large h.
There have already been several discussions, both in clas-
sical and quantum chaos as well as in the complexity lit-
erature, about the role of negatively curved information
geometry [55–59]. In the context of black holes, for ex-
ample, perturbations in the near horizon region can be
described in this way, see [13, 14, 60, 61]. The present
example is a precise contribution to this intuition. In-
deed, we will see in the following examples that the sign
of the curvature is correlated with the nature of Krylov
complexity growth.

Example II: SU(2)

We now analyze the example in which the Liouvil-
lian belongs to the SU(2) algebra. This will give us
a more general intuition about the Krylov approach in
non-chaotic systems. In particular, we will see the con-
sequences of working with a finite-dimensional Hilbert
space and having non-maximal Lanczos coe�cients on
the Krylov complexity and its geometry.
We start with the familiar SU(2) Lie algebra

[Ji, Jj ] = i✏ijkJk, (52)

and introduce the ladder operators J± = J1 ± iJ2. Re-
naming J3 ! J0 the previous algebra transforms into

[J0, J±] = ±J±, [J+, J�] = 2J0. (53)

Using the ladder operators we can build the usual ba-
sis for representation j = 0, 1

2 , 1, · · · , namely |j, ni, with
�j  n  j. In order to make the connection with op-
erator growth, it will be convenient to re-label the basis
vectors as n ! j + n, so that n = 0, ..., 2j. This way, the
2j + 1 orthonormal basis vectors can be written as

|j,�j + ni =

s
�(2j � n+ 1)

n!�(2j + 1)
Jn

+ |j,�ji . (54)

In this basis, the action of the Lie algebra generators is

J0 |j,�j + ni = (�j + n) |j,�j + ni ,
J+ |j,�j + ni =

p
(n+ 1)(2j � n) |j,�j + n+ 1i ,

J� |j,�j + ni =
p

n(2j � n+ 1) |j,�j + n� 1i . (55)

As before, we will choose the highest weight state |j,�ji,
annihilated by J�, as our initial state. Equivalently we
could have started from J+ |j, ji = 0 but we chose to
follow the usual convention [53].
Following previous steps, we build the so-called spin

coherent states by applying the displacement operator

|z, ji = D(⇠) |j,�ji , D(⇠) = e⇠J+�⇠̄J� , (56)

where now we have the complex coordinate

z = tan

✓
✓

2

◆
ei�, (57)

that parametrizes a spherical geometry.
More explicitly, the spin coherent states are written in

the orthonormal basis as

|z, ji = (1 + zz̄)�j

2jX

n=0

zn

s
�(2j + 1)

n!�(2j � n+ 1)
|j,�j + ni .

(58)
To analyze the operator growth we repeat the same steps
as in the previous example. The SU(2) Liouvillian takes
the form

L = ↵(J+ + J�) , (59)

This relation holds in all examples that we studied
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� direction (an isometry generator). This is seen from
the explicit form of the coherent state, and the fact that
�i@� produces a factor n. We will discuss more precisely
the relation between the isometries of this information
geometry and the complexity algebra generated by the
Liouvillian and the Krylov complexity operator in a later
section.

Thirdly, motivated by the recent developments con-
cerning the geometric approach to complexity, we note
that the actual Krylov complexity is proportional to the
volume enclosed by the geodesic radius ⇢ = ↵t, i.e., it is
proportional to the volume of the region from the origin
⇢ = 0 up to ⇢ = 2↵t. The explicit computation gives

Vt =

Z 2↵t

0
d⇢

Z 2⇡

0
d�

p
g = 2⇡h sinh2(↵t) = ⇡KO. (49)

This is one of the main new results of our work. We
will show that this relation holds more generally in other
examples.

Based on the intuition from Nielsen’s approach to cir-
cuit complexity, to be described later, one may have
naively expected a relation between the geodesic length
and complexity. However, the geodesic distance between
two arbitrary points (⇢i,�i) and (⇢f ,�f ) in geometry (48)
is given by

cosh(L/l) = cosh(⇢f ) cosh(⇢i)�cos(��) sinh(⇢f ) sinh(⇢i),
(50)

where the radius of the hyperbolic space is denoted as
l2 = h/2. This way, if we measure it from the center
of the disc ⇢i = 0, the geodesic length is L = ⇢f . For
our geodesic motion, we have ⇢f = ↵t, which only grows
linearly in t. We will also return to this point in a later
section, where we will see the more direct relation to
Nielsen’s complexity.

Last but not least, geometry (48) is negatively curved.
The Ricci scalar is related to the highest weight state h
as

R = � 4

h
, (51)

and it decreases for large h.
There have already been several discussions, both in clas-
sical and quantum chaos as well as in the complexity lit-
erature, about the role of negatively curved information
geometry [55–59]. In the context of black holes, for ex-
ample, perturbations in the near horizon region can be
described in this way, see [13, 14, 60, 61]. The present
example is a precise contribution to this intuition. In-
deed, we will see in the following examples that the sign
of the curvature is correlated with the nature of Krylov
complexity growth.

Example II: SU(2)

We now analyze the example in which the Liouvil-
lian belongs to the SU(2) algebra. This will give us
a more general intuition about the Krylov approach in
non-chaotic systems. In particular, we will see the con-
sequences of working with a finite-dimensional Hilbert
space and having non-maximal Lanczos coe�cients on
the Krylov complexity and its geometry.
We start with the familiar SU(2) Lie algebra

[Ji, Jj ] = i✏ijkJk, (52)

and introduce the ladder operators J± = J1 ± iJ2. Re-
naming J3 ! J0 the previous algebra transforms into

[J0, J±] = ±J±, [J+, J�] = 2J0. (53)

Using the ladder operators we can build the usual ba-
sis for representation j = 0, 1

2 , 1, · · · , namely |j, ni, with
�j  n  j. In order to make the connection with op-
erator growth, it will be convenient to re-label the basis
vectors as n ! j + n, so that n = 0, ..., 2j. This way, the
2j + 1 orthonormal basis vectors can be written as

|j,�j + ni =

s
�(2j � n+ 1)

n!�(2j + 1)
Jn

+ |j,�ji . (54)

In this basis, the action of the Lie algebra generators is

J0 |j,�j + ni = (�j + n) |j,�j + ni ,
J+ |j,�j + ni =

p
(n+ 1)(2j � n) |j,�j + n+ 1i ,

J� |j,�j + ni =
p

n(2j � n+ 1) |j,�j + n� 1i . (55)

As before, we will choose the highest weight state |j,�ji,
annihilated by J�, as our initial state. Equivalently we
could have started from J+ |j, ji = 0 but we chose to
follow the usual convention [53].
Following previous steps, we build the so-called spin

coherent states by applying the displacement operator

|z, ji = D(⇠) |j,�ji , D(⇠) = e⇠J+�⇠̄J� , (56)

where now we have the complex coordinate

z = tan

✓
✓

2

◆
ei�, (57)

that parametrizes a spherical geometry.
More explicitly, the spin coherent states are written in

the orthonormal basis as

|z, ji = (1 + zz̄)�j

2jX

n=0

zn

s
�(2j + 1)

n!�(2j � n+ 1)
|j,�j + ni .

(58)
To analyze the operator growth we repeat the same steps
as in the previous example. The SU(2) Liouvillian takes
the form

L = ↵(J+ + J�) , (59)

1. Geodesic length ~ at most linear

2. Observation: explicit computation (in all our examples)
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Finally, for standard Heisenberg-Weyl symmetry we
generically have

HHW = an̂+ bâ† + câ+ d1, (131)

with arbitrary constants a, b, c, d. The classical Hamilto-
nian is then

HHW = ar2 + r(be�i� + cei�) + d, (132)

and the equations follow

r0(t) = � i

2
(be�i�(t) � cei�(t)),

�0(t) = �a� 1

2r
(be�i�(t) + cei�(t)). (133)

Setting � = �⇡/2 as well as a = 0 and b = c = ↵ (or
r = ↵t) corresponds to motion of a particle on this phase
space with Hamiltonian HHW = ↵(a† + a).

We conclude that the operator wavefunctions consid-
ered earlier, including the example of SYK, can be simply
mapped to classical motions i.e., solutions of the classical
Hamilton equations of motion in the appropriate gener-
alized coherent state phase space. The classical Hamil-
tonians above follow directly by taking the expectation
value in the generalized coherent states of our proposed
form of the Liouvillian L = ↵(L+ + L�). This way, we
can not only think about operator growth geometrically
but also naturally regard unitary Liouvillian evolution as
a quantum circuit

|O(t)) = eiLt|O). (134)

With this results in mind, let us return to Nielsen’s
approach. In this framework, after assigning a particular
(highly non-unique) cost function to the instantaneous
gates, one can estimate the computational complexity of
the task by finding the length of the minimal geodesic in
the geometry of unitaries. The ambiguity in the cost
functions somewhat parallels the freedom in choosing
the inner product to turn the operator algebra into a
Hilbert space. However, the geodesic length is not ob-
viously related to the operator complexity. Naively, one
is tempted to identify the information geometry (Fubini-
Study metric) with Nielsen’s metric, but as we saw before
the geodesic length between the origin and ⇢ = 2↵t (at
fixed � = ⇡/2) grows only linearly in time. Indeed, as we
saw before, it is the phase space Volume in the Fubini-
Study metric that Krylov complexity measures.

Still, one can interpret Krylov complexity in terms of
a geodesic length. This fact comes from the universal re-
lation between the F1 norm and Krylov complexity (see
(258) in Appendix D). Indeed, for phase-space displace-
ments in the angular direction we have

F1 = |hz|�zi| = KOd�, (135)

This can be interpreted as the Nielsen complexity, defined
with F1 cost functions [47, 73, 85, 86], of the circuit that

takes us from trajectory (⇢ = 2↵t,� = ⇡/2) to a nearby
geodesic with (⇢ = 2↵t,� = ⇡/2 + ��). This in turn
is very closely related to the definition of classical chaos
that we discussed in the introduction.

VII. QUANTUM INFORMATION TOOLS FOR
OPERATOR GROWTH

This last section is devoted to contrasting the evolution
of Krylov complexity with more conventional quantum
information tools. For this, we step again on the con-
nection between operator dynamics and coherent states.
More concretely, a certain two-mode representation of
the displacement operator will allow us to derive a den-
sity matrix associated with the evolving operator. Then,
instead of quantifying complexity with expectation values
of operators, such as the Krylov complexity, we will ex-
plore it with di↵erent quantum information tools. As new
outcomes, we will discuss traces of the operator growth
in entanglement measures, define a notion of operator
proper temperature that connects to the physics of black
holes and to quantum optics. This last outcome will sug-
gest a way to contrast these theoretical problems with
experiments.
Below we will concentrate on the “chaotic” example of

SL(2,R), and focus on the time dependence of the dif-
ferent quantities, comparing their growth with Krylov
complexity. Most of these results hold for other coherent
states as well and here we only survey the most impor-
tant findings. Further details with non-chaotic examples
will be described in [87].
We start by representing the SL(2,R) generators in

terms of two oscillator modes as

L�1 = a†1a
†

2, L1 = a1a2, L0 =
1

2
(a†1a1 + a†2a2 + 1),

(136)
where the creation a†

i
and annihilation ai operators sat-

isfy the Weyl-Heisenberg algebra. In this representa-
tion, the displacement operator D(⇠) becomes the stan-
dard two-mode squeezing operator frequently used in
theoretical as well as experimental quantum optics, see
e.g. [88]. Then we consider the so-called k-photon
added/subtracted states

|z, ki ⌘ N (a2)
kS(⇠) |0, 0i , (137)

in which there is a di↵erence of k-excitations between the
two modes. Using the standard Bogoliubov transforma-
tion we can expand this state in the two oscillator Fock
space basis as

|z, ki = (1� |z|2)
k+1
2

1X

n=0

zn

s
�(k + 1 + n)

n!�(k + 1)
|n+ k, ni .

(138)
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� direction (an isometry generator). This is seen from
the explicit form of the coherent state, and the fact that
�i@� produces a factor n. We will discuss more precisely
the relation between the isometries of this information
geometry and the complexity algebra generated by the
Liouvillian and the Krylov complexity operator in a later
section.

Thirdly, motivated by the recent developments con-
cerning the geometric approach to complexity, we note
that the actual Krylov complexity is proportional to the
volume enclosed by the geodesic radius ⇢ = ↵t, i.e., it is
proportional to the volume of the region from the origin
⇢ = 0 up to ⇢ = 2↵t. The explicit computation gives

Vt =

Z 2↵t

0
d⇢

Z 2⇡

0
d�

p
g = 2⇡h sinh2(↵t) = ⇡KO. (49)

This is one of the main new results of our work. We
will show that this relation holds more generally in other
examples.

Based on the intuition from Nielsen’s approach to cir-
cuit complexity, to be described later, one may have
naively expected a relation between the geodesic length
and complexity. However, the geodesic distance between
two arbitrary points (⇢i,�i) and (⇢f ,�f ) in geometry (48)
is given by

cosh(L/l) = cosh(⇢f ) cosh(⇢i)�cos(��) sinh(⇢f ) sinh(⇢i),
(50)

where the radius of the hyperbolic space is denoted as
l2 = h/2. This way, if we measure it from the center
of the disc ⇢i = 0, the geodesic length is L = ⇢f . For
our geodesic motion, we have ⇢f = ↵t, which only grows
linearly in t. We will also return to this point in a later
section, where we will see the more direct relation to
Nielsen’s complexity.

Last but not least, geometry (48) is negatively curved.
The Ricci scalar is related to the highest weight state h
as

R = � 4

h
, (51)

and it decreases for large h.
There have already been several discussions, both in clas-
sical and quantum chaos as well as in the complexity lit-
erature, about the role of negatively curved information
geometry [55–59]. In the context of black holes, for ex-
ample, perturbations in the near horizon region can be
described in this way, see [13, 14, 60, 61]. The present
example is a precise contribution to this intuition. In-
deed, we will see in the following examples that the sign
of the curvature is correlated with the nature of Krylov
complexity growth.

Example II: SU(2)

We now analyze the example in which the Liouvil-
lian belongs to the SU(2) algebra. This will give us
a more general intuition about the Krylov approach in
non-chaotic systems. In particular, we will see the con-
sequences of working with a finite-dimensional Hilbert
space and having non-maximal Lanczos coe�cients on
the Krylov complexity and its geometry.
We start with the familiar SU(2) Lie algebra

[Ji, Jj ] = i✏ijkJk, (52)

and introduce the ladder operators J± = J1 ± iJ2. Re-
naming J3 ! J0 the previous algebra transforms into

[J0, J±] = ±J±, [J+, J�] = 2J0. (53)

Using the ladder operators we can build the usual ba-
sis for representation j = 0, 1

2 , 1, · · · , namely |j, ni, with
�j  n  j. In order to make the connection with op-
erator growth, it will be convenient to re-label the basis
vectors as n ! j + n, so that n = 0, ..., 2j. This way, the
2j + 1 orthonormal basis vectors can be written as

|j,�j + ni =

s
�(2j � n+ 1)

n!�(2j + 1)
Jn

+ |j,�ji . (54)

In this basis, the action of the Lie algebra generators is

J0 |j,�j + ni = (�j + n) |j,�j + ni ,
J+ |j,�j + ni =

p
(n+ 1)(2j � n) |j,�j + n+ 1i ,

J� |j,�j + ni =
p

n(2j � n+ 1) |j,�j + n� 1i . (55)

As before, we will choose the highest weight state |j,�ji,
annihilated by J�, as our initial state. Equivalently we
could have started from J+ |j, ji = 0 but we chose to
follow the usual convention [53].
Following previous steps, we build the so-called spin

coherent states by applying the displacement operator

|z, ji = D(⇠) |j,�ji , D(⇠) = e⇠J+�⇠̄J� , (56)

where now we have the complex coordinate

z = tan

✓
✓

2

◆
ei�, (57)

that parametrizes a spherical geometry.
More explicitly, the spin coherent states are written in

the orthonormal basis as

|z, ji = (1 + zz̄)�j

2jX

n=0

zn

s
�(2j + 1)

n!�(2j � n+ 1)
|j,�j + ni .

(58)
To analyze the operator growth we repeat the same steps
as in the previous example. The SU(2) Liouvillian takes
the form

L = ↵(J+ + J�) , (59)
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|z, ji = D(⇠) |j,�ji , D(⇠) = e⇠J+�⇠̄J� , (56)

where now we have the complex coordinate

z = tan
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ei�, (57)

that parametrizes a spherical geometry.
More explicitly, the spin coherent states are written in

the orthonormal basis as

|z, ji = (1 + zz̄)�j

2jX

n=0

zn

s
�(2j + 1)

n!�(2j � n+ 1)
|j,�j + ni .

(58)
To analyze the operator growth we repeat the same steps
as in the previous example. The SU(2) Liouvillian takes
the form

L = ↵(J+ + J�) , (59)
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� direction (an isometry generator). This is seen from
the explicit form of the coherent state, and the fact that
�i@� produces a factor n. We will discuss more precisely
the relation between the isometries of this information
geometry and the complexity algebra generated by the
Liouvillian and the Krylov complexity operator in a later
section.

Thirdly, motivated by the recent developments con-
cerning the geometric approach to complexity, we note
that the actual Krylov complexity is proportional to the
volume enclosed by the geodesic radius ⇢ = ↵t, i.e., it is
proportional to the volume of the region from the origin
⇢ = 0 up to ⇢ = 2↵t. The explicit computation gives

Vt =

Z 2↵t

0
d⇢

Z 2⇡

0
d�

p
g = 2⇡h sinh2(↵t) = ⇡KO. (49)

This is one of the main new results of our work. We
will show that this relation holds more generally in other
examples.

Based on the intuition from Nielsen’s approach to cir-
cuit complexity, to be described later, one may have
naively expected a relation between the geodesic length
and complexity. However, the geodesic distance between
two arbitrary points (⇢i,�i) and (⇢f ,�f ) in geometry (48)
is given by

cosh(L/l) = cosh(⇢f ) cosh(⇢i)�cos(��) sinh(⇢f ) sinh(⇢i),
(50)

where the radius of the hyperbolic space is denoted as
l2 = h/2. This way, if we measure it from the center
of the disc ⇢i = 0, the geodesic length is L = ⇢f . For
our geodesic motion, we have ⇢f = ↵t, which only grows
linearly in t. We will also return to this point in a later
section, where we will see the more direct relation to
Nielsen’s complexity.

Last but not least, geometry (48) is negatively curved.
The Ricci scalar is related to the highest weight state h
as

R = � 4

h
, (51)

and it decreases for large h.
There have already been several discussions, both in clas-
sical and quantum chaos as well as in the complexity lit-
erature, about the role of negatively curved information
geometry [55–59]. In the context of black holes, for ex-
ample, perturbations in the near horizon region can be
described in this way, see [13, 14, 60, 61]. The present
example is a precise contribution to this intuition. In-
deed, we will see in the following examples that the sign
of the curvature is correlated with the nature of Krylov
complexity growth.

Example II: SU(2)

We now analyze the example in which the Liouvil-
lian belongs to the SU(2) algebra. This will give us
a more general intuition about the Krylov approach in
non-chaotic systems. In particular, we will see the con-
sequences of working with a finite-dimensional Hilbert
space and having non-maximal Lanczos coe�cients on
the Krylov complexity and its geometry.
We start with the familiar SU(2) Lie algebra

[Ji, Jj ] = i✏ijkJk, (52)

and introduce the ladder operators J± = J1 ± iJ2. Re-
naming J3 ! J0 the previous algebra transforms into

[J0, J±] = ±J±, [J+, J�] = 2J0. (53)

Using the ladder operators we can build the usual ba-
sis for representation j = 0, 1

2 , 1, · · · , namely |j, ni, with
�j  n  j. In order to make the connection with op-
erator growth, it will be convenient to re-label the basis
vectors as n ! j + n, so that n = 0, ..., 2j. This way, the
2j + 1 orthonormal basis vectors can be written as

|j,�j + ni =

s
�(2j � n+ 1)

n!�(2j + 1)
Jn

+ |j,�ji . (54)

In this basis, the action of the Lie algebra generators is

J0 |j,�j + ni = (�j + n) |j,�j + ni ,
J+ |j,�j + ni =

p
(n+ 1)(2j � n) |j,�j + n+ 1i ,

J� |j,�j + ni =
p

n(2j � n+ 1) |j,�j + n� 1i . (55)

As before, we will choose the highest weight state |j,�ji,
annihilated by J�, as our initial state. Equivalently we
could have started from J+ |j, ji = 0 but we chose to
follow the usual convention [53].
Following previous steps, we build the so-called spin

coherent states by applying the displacement operator

|z, ji = D(⇠) |j,�ji , D(⇠) = e⇠J+�⇠̄J� , (56)

where now we have the complex coordinate

z = tan
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that parametrizes a spherical geometry.
More explicitly, the spin coherent states are written in

the orthonormal basis as

|z, ji = (1 + zz̄)�j

2jX

n=0
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s
�(2j + 1)

n!�(2j � n+ 1)
|j,�j + ni .

(58)
To analyze the operator growth we repeat the same steps
as in the previous example. The SU(2) Liouvillian takes
the form

L = ↵(J+ + J�) , (59)
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geometry [55–59]. In the context of black holes, for ex-
ample, perturbations in the near horizon region can be
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As before, we will choose the highest weight state |j,�ji,
annihilated by J�, as our initial state. Equivalently we
could have started from J+ |j, ji = 0 but we chose to
follow the usual convention [53].
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coherent states by applying the displacement operator

|z, ji = D(⇠) |j,�ji , D(⇠) = e⇠J+�⇠̄J� , (56)

where now we have the complex coordinate
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that parametrizes a spherical geometry.
More explicitly, the spin coherent states are written in

the orthonormal basis as

|z, ji = (1 + zz̄)�j
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|j,�j + ni .

(58)
To analyze the operator growth we repeat the same steps
as in the previous example. The SU(2) Liouvillian takes
the form

L = ↵(J+ + J�) , (59)

Liouvillian:
L = ↵(J+ + J�)
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Figure 1. Distribution of the SU(2) Lanczos coe�cients. Sam-
ple plot for j = 20.

and we find finite-dimensional Hilbert spaces, with di-
mensions 2j+1, where Krylov basis states are associated
with orthonormal vectors in an obvious way

|On) = |j,�j + ni , n = 0, ..., 2j. (60)

With this identification, the action of the lowering oper-
ator J� in (55) automatically allows us to read o↵ the
bn’s

bn = ↵
p

n(2j � n+ 1). (61)

These Lanczos coe�cients grow slower than their
SL(2,R) cousins, namely as ↵

p
2j n up to a maximum

value

nmax = j +
1

2
, b

j+ 1
2
= ↵

✓
j +

1

2

◆
= ↵nmax, (62)

and then come back down to the final value (see example
on Fig. 1)

b2j = ↵
p

2j = b1. (63)

Using the above form of the spin coherent states, we
find the Heisenberg operator wavefunction |O(t)) in the
Krylov space by replacing ✓ = 2↵t and � = ⇡/2. More
precisely

|O(t)) = |z = i tan(↵t), ji = ei↵(J++J�)t |j,�ji . (64)

The SU(2) wavefunction arising from this identification

'n(t) =
tann(↵t)

cos�2j(↵t)

s
�(2j + 1)

n!�(2j � n+ 1)
, (65)

satisfies the Schrodinger equation (20) with Lanczos co-
e�cients (61). To get intuition about the shape of these
functions, we plot the example of j = 5 in Fig (2). In
this SU(2) case, the probabilities pn(t) form the binomial
distribution

pn(t) = |'n(t)|2 =

✓
2j

n

◆
�n(1� �)2j�n, (66)

with � = sin(↵t). The auto-correlation function for
SU(2), from which one obtains the return probability,
is given by

C(t) = '0(t) =
1

cos2(�j)(↵t)
. (67)

This correlation function appears e.g. when analyzing a
free harmonic oscillator at finite temperature. The two-
point function in Euclidean time for such an oscillator is
(see e.g. [62])

G(⌧) =
1

2!

cosh[(�/2� ⌧)!]

sinh(�!/2)
. (68)

After doing the usual analytic continuation ⌧ ! it, and
then the analytic continuation towards the inner product
t ! t� i�/2 we find

C(t) =
1

2!

cos(t!)

sinh(�!/2)
, (69)

which is the previous SU(2) result for j = 1/2 and ↵ = !,
up to operator normalization (which should be fixed at
initial times). Other j are e.g. achieved by considering a
di↵erent number of uncoupled harmonic oscillators with
the same frequencies.
We also remark that in this class of models, the right

assignation of ↵ is temperature independent. This im-
plies that e.g. introducing temperature in a free system
does not change the complexity/operator growth. It just
changes the correct operator normalization at the initial
time, but not the operator wavefunction. This is simi-
lar to the computation of Lyapunov exponents at high
temperature in SYK [63] (free regime), where it only de-
pends on the coupling constant, the only scale-dependent
parameter of the theory.
Using the operator wavefunction (65), we can now

Figure 2. All the 11 wavefunctions 'n(t) for spin j = 5 plotted
between ↵t 2 (0,⇡/2). Di↵erent wavefunctions are peaked at
later values of ↵t symmetrically, reflecting the symmetry of
bn’s.
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� direction (an isometry generator). This is seen from
the explicit form of the coherent state, and the fact that
�i@� produces a factor n. We will discuss more precisely
the relation between the isometries of this information
geometry and the complexity algebra generated by the
Liouvillian and the Krylov complexity operator in a later
section.

Thirdly, motivated by the recent developments con-
cerning the geometric approach to complexity, we note
that the actual Krylov complexity is proportional to the
volume enclosed by the geodesic radius ⇢ = ↵t, i.e., it is
proportional to the volume of the region from the origin
⇢ = 0 up to ⇢ = 2↵t. The explicit computation gives

Vt =

Z 2↵t

0
d⇢

Z 2⇡

0
d�

p
g = 2⇡h sinh2(↵t) = ⇡KO. (49)

This is one of the main new results of our work. We
will show that this relation holds more generally in other
examples.

Based on the intuition from Nielsen’s approach to cir-
cuit complexity, to be described later, one may have
naively expected a relation between the geodesic length
and complexity. However, the geodesic distance between
two arbitrary points (⇢i,�i) and (⇢f ,�f ) in geometry (48)
is given by

cosh(L/l) = cosh(⇢f ) cosh(⇢i)�cos(��) sinh(⇢f ) sinh(⇢i),
(50)

where the radius of the hyperbolic space is denoted as
l2 = h/2. This way, if we measure it from the center
of the disc ⇢i = 0, the geodesic length is L = ⇢f . For
our geodesic motion, we have ⇢f = ↵t, which only grows
linearly in t. We will also return to this point in a later
section, where we will see the more direct relation to
Nielsen’s complexity.

Last but not least, geometry (48) is negatively curved.
The Ricci scalar is related to the highest weight state h
as

R = � 4

h
, (51)

and it decreases for large h.
There have already been several discussions, both in clas-
sical and quantum chaos as well as in the complexity lit-
erature, about the role of negatively curved information
geometry [55–59]. In the context of black holes, for ex-
ample, perturbations in the near horizon region can be
described in this way, see [13, 14, 60, 61]. The present
example is a precise contribution to this intuition. In-
deed, we will see in the following examples that the sign
of the curvature is correlated with the nature of Krylov
complexity growth.
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(n+ 1)(2j � n) |j,�j + n+ 1i ,
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n(2j � n+ 1) |j,�j + n� 1i . (55)

As before, we will choose the highest weight state |j,�ji,
annihilated by J�, as our initial state. Equivalently we
could have started from J+ |j, ji = 0 but we chose to
follow the usual convention [53].
Following previous steps, we build the so-called spin

coherent states by applying the displacement operator

|z, ji = D(⇠) |j,�ji , D(⇠) = e⇠J+�⇠̄J� , (56)

where now we have the complex coordinate
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that parametrizes a spherical geometry.
More explicitly, the spin coherent states are written in

the orthonormal basis as

|z, ji = (1 + zz̄)�j
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(58)
To analyze the operator growth we repeat the same steps
as in the previous example. The SU(2) Liouvillian takes
the form

L = ↵(J+ + J�) , (59)
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R = � 4

h
, (51)

and it decreases for large h.
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Example II: SU(2)
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s
�(2j � n+ 1)

n!�(2j + 1)
Jn

+ |j,�ji . (54)

In this basis, the action of the Lie algebra generators is

J0 |j,�j + ni = (�j + n) |j,�j + ni ,
J+ |j,�j + ni =

p
(n+ 1)(2j � n) |j,�j + n+ 1i ,

J� |j,�j + ni =
p

n(2j � n+ 1) |j,�j + n� 1i . (55)
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coherent states by applying the displacement operator

|z, ji = D(⇠) |j,�ji , D(⇠) = e⇠J+�⇠̄J� , (56)

where now we have the complex coordinate

z = tan

✓
✓

2

◆
ei�, (57)

that parametrizes a spherical geometry.
More explicitly, the spin coherent states are written in

the orthonormal basis as

|z, ji = (1 + zz̄)�j

2jX

n=0

zn

s
�(2j + 1)

n!�(2j � n+ 1)
|j,�j + ni .

(58)
To analyze the operator growth we repeat the same steps
as in the previous example. The SU(2) Liouvillian takes
the form

L = ↵(J+ + J�) , (59)
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Figure 1. Distribution of the SU(2) Lanczos coe�cients. Sam-
ple plot for j = 20.

and we find finite-dimensional Hilbert spaces, with di-
mensions 2j+1, where Krylov basis states are associated
with orthonormal vectors in an obvious way

|On) = |j,�j + ni , n = 0, ..., 2j. (60)

With this identification, the action of the lowering oper-
ator J� in (55) automatically allows us to read o↵ the
bn’s

bn = ↵
p

n(2j � n+ 1). (61)

These Lanczos coe�cients grow slower than their
SL(2,R) cousins, namely as ↵

p
2j n up to a maximum

value

nmax = j +
1

2
, b

j+ 1
2
= ↵

✓
j +

1

2

◆
= ↵nmax, (62)

and then come back down to the final value (see example
on Fig. 1)

b2j = ↵
p

2j = b1. (63)

Using the above form of the spin coherent states, we
find the Heisenberg operator wavefunction |O(t)) in the
Krylov space by replacing ✓ = 2↵t and � = ⇡/2. More
precisely

|O(t)) = |z = i tan(↵t), ji = ei↵(J++J�)t |j,�ji . (64)

The SU(2) wavefunction arising from this identification

'n(t) =
tann(↵t)

cos�2j(↵t)

s
�(2j + 1)

n!�(2j � n+ 1)
, (65)

satisfies the Schrodinger equation (20) with Lanczos co-
e�cients (61). To get intuition about the shape of these
functions, we plot the example of j = 5 in Fig (2). In
this SU(2) case, the probabilities pn(t) form the binomial
distribution

pn(t) = |'n(t)|2 =

✓
2j

n

◆
�n(1� �)2j�n, (66)

with � = sin(↵t). The auto-correlation function for
SU(2), from which one obtains the return probability,
is given by

C(t) = '0(t) =
1

cos2(�j)(↵t)
. (67)

This correlation function appears e.g. when analyzing a
free harmonic oscillator at finite temperature. The two-
point function in Euclidean time for such an oscillator is
(see e.g. [62])

G(⌧) =
1

2!

cosh[(�/2� ⌧)!]

sinh(�!/2)
. (68)

After doing the usual analytic continuation ⌧ ! it, and
then the analytic continuation towards the inner product
t ! t� i�/2 we find

C(t) =
1

2!

cos(t!)

sinh(�!/2)
, (69)

which is the previous SU(2) result for j = 1/2 and ↵ = !,
up to operator normalization (which should be fixed at
initial times). Other j are e.g. achieved by considering a
di↵erent number of uncoupled harmonic oscillators with
the same frequencies.
We also remark that in this class of models, the right

assignation of ↵ is temperature independent. This im-
plies that e.g. introducing temperature in a free system
does not change the complexity/operator growth. It just
changes the correct operator normalization at the initial
time, but not the operator wavefunction. This is simi-
lar to the computation of Lyapunov exponents at high
temperature in SYK [63] (free regime), where it only de-
pends on the coupling constant, the only scale-dependent
parameter of the theory.
Using the operator wavefunction (65), we can now

Figure 2. All the 11 wavefunctions 'n(t) for spin j = 5 plotted
between ↵t 2 (0,⇡/2). Di↵erent wavefunctions are peaked at
later values of ↵t symmetrically, reflecting the symmetry of
bn’s.
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compute the Krylov complexity

KO =
2jX

n=0

n|'n(t)|2 = 2j sin2(↵t). (70)

Clearly, there is no exponential growth of complexity in
this case. This fits well with the fact that bn’s are not lin-
ear in n. More precisely, the complexity grows quadrat-
ically KO ⇠ 2j↵2t2 at early times and reaches its maxi-
mum at t = ⇡/(2↵) given by Kmax

O
= 2j. After that it

reduces back to zero at t = ⇡/↵. This is the expected
behaviour for a complexity measure. The reason is that
t = ⇡/(2↵) is the furthest point in the complexity geom-
etry, as we are going to show shortly. Passing that point
in phase space we begin our trip back to the initial state.

As in the case of SL(2,R), we can better observe these
complexity features geometrically, by deriving the infor-
mation metric associated with (58). This is the spherical
metric

ds2 =
2jdzdz̄

(1 + |z|2)2 =
j

2

�
d✓2 + sin2 ✓d�2

�
. (71)

We conclude that this particular non-chaotic operator
dynamics is associated with geometry of constant positive
curvature

R =
4

j
. (72)

As before, for large spin j the curvature decreases. The
operator growth again gets mapped to a geodesic in this
geometry.

Last but not least, we can evaluate the volume in this
information geometry up to ✓ = 2↵t

Vt =

Z 2↵t

0
d✓

Z 2⇡

0
d�

p
g = 2⇡j sin2(↵t) = ⇡KO , (73)

confirming our proposed relation between the volume in
the information geometry and the Krylov complexity.

Example III: Heisenberg-Weyl

The next example is somewhat in between the previous
two. It concerns the Heisenberg-Weyl algebra and its
associated standard coherent states. We start with the
usual creation (a†) and annihilation (a) operators, the
identity 1 and the number operator (n̂ = a†a). These
operators define the following algebra

[a, a†] = 1, [n̂, a†] = a†, [n̂, a] = �a, (74)

with all other commutators vanishing. The infinite di-
mensional Hilbert space is expanded in the usual or-
thonormal basis

|ni = 1p
n!
(a†)n |0i , (75)

on which the ladder operators a† and a act as

a† |ni =
p
n+ 1 |n+ 1i , a |ni =

p
n |n� 1i , (76)

and n is the eigenvalue of the number operator.
Following the general paradigm, these relations allow

us to identify the Heisenberg-Weyl Liouvillian, the in-
finite dimensional Krylov basis and the Lanczos coe�-
cients. These are given by

L = ↵(a† + a), |On) = |ni , bn = ↵
p
n. (77)

The standard coherent states are defined by the action
of the displacement operator on the vacuum state

|zi = D(z) |0i , D(z) = eza
†
�z̄a, (78)

with complex coordinate z = rei�. Using the previous
algebra one finds

|zi = e�|z|
2
/2

1X

n=0

znp
n!

|ni . (79)

We can now find the operator wavefunction by exploring
the relation between the unitary evolution with the Li-
ouvillian and the displacement operator. In particular,
by setting z = i↵t, or r = ↵t and � = ⇡/2, we write the
Heisenberg’s operator state in the Krylov space

|O(t)) = |z = i↵ti = ei↵(a
†+a)t |0i , (80)

from where the operator wavefunction is

'n(t) = e�↵
2
t
2
/2↵

ntnp
n!

,
1X

n=0

|'n|2 = 1. (81)

It solves the Schrodinger equation (20) with the above
bn’s and corresponding probabilities form the Poisson dis-
tribution. Examples are plotted on Fig. 3.
Here, the basis is infinite-dimensional but the growth of
bn’s is not maximal. Also, the auto-correlation function,
in this case, is exponentially decaying

C(t) = '0(t) = exp
�
�↵2t2/2

�
. (82)

With the explicit solution we can compute the Krylov
complexity

KO =
1X

n=0

n|'n(t)|2 = ↵2t2 . (83)

Similarly to SL(2,R) and SU(2), the early time growth
is universally proportional to t2 (quadratic), but here it
continues as such for all times.
Finally, the information metric is the flat (R = 0) com-

plex plane

ds2
FS

= dzdz̄ = dr2 + r2d�2. (84)
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Clearly, for �+ 6= ��, Krylov complexity is sensitive to
the operator’s spin s.

Finally, the information geometry consists of two
copies of the Euclidean Poincaré disc (48). The classi-
cal trajectory corresponds to a geodesic in this product
manifold and the Krylov complexity is proportional to
the volume as in previous examples.

Note that this generalization to 2d CFTs seems com-
pletely determined by symmetries (see more discussion
in [30]). This universality is a simple consequence of the
operators that we chose to describe the growth of. For a
free CFT, we could have chosen a momentum mode in-
stead, and the Krylov approach would look like the case
of SU(2), instead of SL(2,R). We can also imagine consid-
ering composite CFT operators and/or consider the ther-
mal CFT on the circle. Such setups will require more de-
tailed information about the CFT spectrum etc, and they
will distinguish between chaotic and non-chaotic CFT’s.
Moreover, in 2d CFTs, we could also study the less uni-
versal Liouvillian dynamics based on the Virasoro alge-
bra. Even though we leave this as an interesting future
direction, in appendix B we consider a simpler but non-
trivial example of SL(2,R) subalgebras of the Virasoro
algebra given by {L�k, L0, Lk} for some fixed k [67]. Al-
ready in this case we end up with Krylov complexity that
depends on the central charge c of the CFT

KO = 2hk sinh
2(↵kt), (96)

where

hk =
c

24

✓
k � 1

k
+

24h

ck

◆
, ↵k = k↵, (97)

and Lanczos coe�cients are also asymptotically linear
bn ' ↵kn.
We will return to discussion of CFT generalizations at
the very end.

V. COMPLEXITY ALGEBRA AND GEOMETRY

Previously we have analyzed specific examples related
to di↵erent groups. In this section, we come back to a
more general discussion of the Lanczos coe�cients in the
light of symmetry. We argue that there exists a natural
algebra associated with operator dynamics and Krylov
complexity, and that the closure of this algebra on di↵er-
ent levels provides another way towards finding potential
sets of Lanczos coe�cients. In particular, we will again
reproduce our previous results from this angle.

The logic proceeds as follows. As described above, the
action of the Liouvillian in the Krylov basis yields two
terms (18) and suggests a definition of “generalized lad-
der operators”

L = L̃+ + L̃�, (98)

where for simplicity we absorbed ↵ into the ladder oper-
ators of the previous section L̃± = ↵L± such that

L̃+|On) = bn+1|On+1), L̃�|On) = bn|On�1). (99)

The algebra generated by the generalized ladder opera-
tors L̃+ and L̃� is simply equivalent to the algebra gen-
erated by the Liouvillian and the operator B, defined as

B = L̃+ � L̃� . (100)

By definition, action of this anti-Hermitian operator on
the Krylov basis is

B|On) = �bn|On�1) + bn+1|On+1) . (101)

We now want to explore the following question. What
happens when we start commuting these two operators?
From their definitions, we can easily derive the action of
the commutator, that we name K̃, in the Krylov basis.
Using (18) and (101) we obtain

K̃ ⌘ [L, B]|On) = 2(b2
n+1 � b2
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This operator turns out to be diagonal in the Krylov basis
with eigenvalues k̃(n) = 2(b2
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Given this generic algebraic structure, we now enter-
tain a “simplicity” hypothesis. This hypothesis demands
that these three operators close an algebra that we may
call a “complexity algebra”. This enforces the following
constraint on the commutator eigenvalues

k̃(n) = An+B , (103)

for some constants A and B, implying that k̃(n) grows at
most linearly in n. We then conclude that this hypothesis
(closure of the algebra) provides a recurrence equation for
the Lanczos coe�cients
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A general solution to this equation is given by (the posi-
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with C also being an arbitrary constant. Furthermore,
requiring b0 = 1, which holds for any operator growth,
fixes this constant to C = 0. We see that the hypothesis
does not allow the Lanczos coe�cients to grow faster than
n. It would be interesting to see if imposing the closure
of the algebra at a later level, by allowing the complexity
algebra to include more operators generated by L and B,
still enforces the universal linear bound.
Note that the examples considered earlier all fall within

the simplicity hypothesis. For instance, for SL(2, R) we
have that

L = ↵(L�1 + L1), B = ↵(L�1 � L1), K̃ = 4↵2L0,
(106)
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Finally, the information geometry consists of two
copies of the Euclidean Poincaré disc (48). The classi-
cal trajectory corresponds to a geodesic in this product
manifold and the Krylov complexity is proportional to
the volume as in previous examples.

Note that this generalization to 2d CFTs seems com-
pletely determined by symmetries (see more discussion
in [30]). This universality is a simple consequence of the
operators that we chose to describe the growth of. For a
free CFT, we could have chosen a momentum mode in-
stead, and the Krylov approach would look like the case
of SU(2), instead of SL(2,R). We can also imagine consid-
ering composite CFT operators and/or consider the ther-
mal CFT on the circle. Such setups will require more de-
tailed information about the CFT spectrum etc, and they
will distinguish between chaotic and non-chaotic CFT’s.
Moreover, in 2d CFTs, we could also study the less uni-
versal Liouvillian dynamics based on the Virasoro alge-
bra. Even though we leave this as an interesting future
direction, in appendix B we consider a simpler but non-
trivial example of SL(2,R) subalgebras of the Virasoro
algebra given by {L�k, L0, Lk} for some fixed k [67]. Al-
ready in this case we end up with Krylov complexity that
depends on the central charge c of the CFT
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ing of the Liouvillian instead. This will allow us to easily
extract both C(t) and bn.

Krylov Complexity

We now describe how to quantify operator complex-
ity in this framework. Using physical intuition, we can
first interpret the dynamics in equation (20) as that of
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to be the average position in the chain

KO ⌘
X

n

n pn(t) =
X

n

n |'n(t)|2 . (22)

Formally, this quantity can be written as the expectation
value in the evolving state |O(t)) of the following “Krylov
complexity operator”

K̂O =
X

n

n|On)(On| , (23)

such that Krylov complexity reads

KO = (O(t)|K̂O|O(t)) . (24)

Intuitively, this position operator (23) in the chain can
also be interpreted as a “number operator”. Unlike the
Liouvillian, it is diagonal in the Krylov basis.
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Finally, the information geometry consists of two
copies of the Euclidean Poincaré disc (48). The classi-
cal trajectory corresponds to a geodesic in this product
manifold and the Krylov complexity is proportional to
the volume as in previous examples.

Note that this generalization to 2d CFTs seems com-
pletely determined by symmetries (see more discussion
in [30]). This universality is a simple consequence of the
operators that we chose to describe the growth of. For a
free CFT, we could have chosen a momentum mode in-
stead, and the Krylov approach would look like the case
of SU(2), instead of SL(2,R). We can also imagine consid-
ering composite CFT operators and/or consider the ther-
mal CFT on the circle. Such setups will require more de-
tailed information about the CFT spectrum etc, and they
will distinguish between chaotic and non-chaotic CFT’s.
Moreover, in 2d CFTs, we could also study the less uni-
versal Liouvillian dynamics based on the Virasoro alge-
bra. Even though we leave this as an interesting future
direction, in appendix B we consider a simpler but non-
trivial example of SL(2,R) subalgebras of the Virasoro
algebra given by {L�k, L0, Lk} for some fixed k [67]. Al-
ready in this case we end up with Krylov complexity that
depends on the central charge c of the CFT
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We will return to discussion of CFT generalizations at
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algebra associated with operator dynamics and Krylov
complexity, and that the closure of this algebra on di↵er-
ent levels provides another way towards finding potential
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terms (18) and suggests a definition of “generalized lad-
der operators”
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By definition, action of this anti-Hermitian operator on
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We now want to explore the following question. What
happens when we start commuting these two operators?
From their definitions, we can easily derive the action of
the commutator, that we name K̃, in the Krylov basis.
Using (18) and (101) we obtain
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with eigenvalues k̃(n) = 2(b2
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Given this generic algebraic structure, we now enter-
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constraint on the commutator eigenvalues
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most linearly in n. We then conclude that this hypothesis
(closure of the algebra) provides a recurrence equation for
the Lanczos coe�cients

2(b2
n+1 � b2

n
) = An+B. (104)

A general solution to this equation is given by (the posi-
tive root)

bn =

r
1

4
An(n� 1) +

1

2
Bn+ C , (105)

with C also being an arbitrary constant. Furthermore,
requiring b0 = 1, which holds for any operator growth,
fixes this constant to C = 0. We see that the hypothesis
does not allow the Lanczos coe�cients to grow faster than
n. It would be interesting to see if imposing the closure
of the algebra at a later level, by allowing the complexity
algebra to include more operators generated by L and B,
still enforces the universal linear bound.
Note that the examples considered earlier all fall within

the simplicity hypothesis. For instance, for SL(2, R) we
have that

L = ↵(L�1 + L1), B = ↵(L�1 � L1), K̃ = 4↵2L0,
(106)

Lets commute: From these definitions
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manifold and the Krylov complexity is proportional to
the volume as in previous examples.

Note that this generalization to 2d CFTs seems com-
pletely determined by symmetries (see more discussion
in [30]). This universality is a simple consequence of the
operators that we chose to describe the growth of. For a
free CFT, we could have chosen a momentum mode in-
stead, and the Krylov approach would look like the case
of SU(2), instead of SL(2,R). We can also imagine consid-
ering composite CFT operators and/or consider the ther-
mal CFT on the circle. Such setups will require more de-
tailed information about the CFT spectrum etc, and they
will distinguish between chaotic and non-chaotic CFT’s.
Moreover, in 2d CFTs, we could also study the less uni-
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bra. Even though we leave this as an interesting future
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call a “complexity algebra”. This enforces the following
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with C also being an arbitrary constant. Furthermore,
requiring b0 = 1, which holds for any operator growth,
fixes this constant to C = 0. We see that the hypothesis
does not allow the Lanczos coe�cients to grow faster than
n. It would be interesting to see if imposing the closure
of the algebra at a later level, by allowing the complexity
algebra to include more operators generated by L and B,
still enforces the universal linear bound.
Note that the examples considered earlier all fall within

the simplicity hypothesis. For instance, for SL(2, R) we
have that
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We can demand that the algebra closes at this first step. This gives
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mal CFT on the circle. Such setups will require more de-
tailed information about the CFT spectrum etc, and they
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depends on the central charge c of the CFT

KO = 2hk sinh
2(↵kt), (96)

where

hk =
c

24

✓
k � 1

k
+

24h

ck

◆
, ↵k = k↵, (97)

and Lanczos coe�cients are also asymptotically linear
bn ' ↵kn.
We will return to discussion of CFT generalizations at
the very end.

V. COMPLEXITY ALGEBRA AND GEOMETRY

Previously we have analyzed specific examples related
to di↵erent groups. In this section, we come back to a
more general discussion of the Lanczos coe�cients in the
light of symmetry. We argue that there exists a natural
algebra associated with operator dynamics and Krylov
complexity, and that the closure of this algebra on di↵er-
ent levels provides another way towards finding potential
sets of Lanczos coe�cients. In particular, we will again
reproduce our previous results from this angle.

The logic proceeds as follows. As described above, the
action of the Liouvillian in the Krylov basis yields two
terms (18) and suggests a definition of “generalized lad-
der operators”

L = L̃+ + L̃�, (98)

where for simplicity we absorbed ↵ into the ladder oper-
ators of the previous section L̃± = ↵L± such that

L̃+|On) = bn+1|On+1), L̃�|On) = bn|On�1). (99)

The algebra generated by the generalized ladder opera-
tors L̃+ and L̃� is simply equivalent to the algebra gen-
erated by the Liouvillian and the operator B, defined as

B = L̃+ � L̃� . (100)

By definition, action of this anti-Hermitian operator on
the Krylov basis is

B|On) = �bn|On�1) + bn+1|On+1) . (101)

We now want to explore the following question. What
happens when we start commuting these two operators?
From their definitions, we can easily derive the action of
the commutator, that we name K̃, in the Krylov basis.
Using (18) and (101) we obtain

K̃ ⌘ [L, B]|On) = 2(b2
n+1 � b2

n
)|On). (102)

This operator turns out to be diagonal in the Krylov basis
with eigenvalues k̃(n) = 2(b2

n+1 � b2
n
).

Given this generic algebraic structure, we now enter-
tain a “simplicity” hypothesis. This hypothesis demands
that these three operators close an algebra that we may
call a “complexity algebra”. This enforces the following
constraint on the commutator eigenvalues

k̃(n) = An+B , (103)

for some constants A and B, implying that k̃(n) grows at
most linearly in n. We then conclude that this hypothesis
(closure of the algebra) provides a recurrence equation for
the Lanczos coe�cients

2(b2
n+1 � b2

n
) = An+B. (104)

A general solution to this equation is given by (the posi-
tive root)

bn =

r
1

4
An(n� 1) +

1

2
Bn+ C , (105)

with C also being an arbitrary constant. Furthermore,
requiring b0 = 1, which holds for any operator growth,
fixes this constant to C = 0. We see that the hypothesis
does not allow the Lanczos coe�cients to grow faster than
n. It would be interesting to see if imposing the closure
of the algebra at a later level, by allowing the complexity
algebra to include more operators generated by L and B,
still enforces the universal linear bound.
Note that the examples considered earlier all fall within

the simplicity hypothesis. For instance, for SL(2, R) we
have that

L = ↵(L�1 + L1), B = ↵(L�1 � L1), K̃ = 4↵2L0,
(106)

What if it doesn't? Number of steps to the closure? Classification?
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Geometrically, these are simply combinations of the isometry generators
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and hence the eigenvalue

k̃sl(2,R)(n) = 4↵2(n+ h). (107)

Moreover, we can observe a simple relation between
the commutator K̃ and the Krylov complexity operator,
namely

K̃ = 4↵2(K̂O + h) . (108)

They are the same up to a constant and a proportion-
ality factor. In particular, they both grow exponentially
with the same growth rate/Lyapunov exponent. This
suggests that the operator L0 (or more generally the en-
ergy in CFTs) may also be a good candidate for operator
complexity or a witness of the operator growth. This pro-
posal was put forward in [47] and present results provide
a firmer ground for this idea. Nevertheless, the definition
of the operator (23) seems more robust, especially from
the point of view of generic systems that we can analyze
only numerically.

The geometric interpretation of this complexity alge-
bra generators is also very elegant. They are just related
to the Killing vectors of the information metric (48), that
in our coordinates become

L0 = i@�,

L�1 = �ie�i� [coth(⇢)@� + i@⇢] ,

L1 = �iei� [coth(⇢)@� � i@⇢] . (109)

The operators (L,B, K̃) are built from these generators
and satisfy the same algebra. They are therefore asso-
ciated with the isometries of the information metric. In
particular, K̃, almost equal to the Krylov complexity op-
erator, generates translations in �. Since the di↵erence
between K̃ and K is a constant, which just produces
non-physical overall phases, we conclude that the Krylov
complexity operator is also the generator of translations
in �. In addition, the geometric picture shows that (abso-
lute value of) the expectation value of the operator B also
grows exponentially in the course of operator dynamics
(i.e., with ⇢ = 2↵t and � = ⇡/2).

In complete analogy, for SU(2) we have

L = ↵(J+ + J�), B = ↵(J+ � J�), K̃ = �4↵2J0,
(110)

and the eigenvalues of K̃ becomes

k̃su(2)(n) = �4↵2(n� j). (111)

Again this implies a simple relation with the Krylov com-
plexity operator

K̃ = �4↵2(K̂O � j) , (112)

and both K̃ and the Krylov complexity operator generate
rotations in the information metric.

Finally, for the Heisenberg-Weyl algebra the appropri-
ate assignation is

L = ↵(a† + a), B = ↵(a† � a), K̃ = 2↵21, (113)

providing the eigenvalue

k̃HW (n) = 2↵2. (114)

In this case, the commutator is proportional to the iden-
tity. Therefore, the relation to Krylov complexity oper-
ator is not just a simple constant shift and appears less
natural.
We believe that this new perspective will serve as a

solid starting point for a systematic approach to the clas-
sification of various operator dynamics. This classifica-
tion could start by specifying the number of operators
we need to add to the Liouviilian and the operator B to
close an algebra. This program may follow by analyzing
the possible representations of such a complexity algebra.
Certainly, new examples associated with other Lie groups
as well as their deformations will serve as important data
points in this direction.

VI. RELATION TO GEOMETRIC COMPLEXITY:
PARTICLE ON A GROUP

In this section, we provide a bridge between opera-
tor dynamics and Krylov complexity, and the geomet-
ric approach to computational/circuit complexity. This
approach stands out in its similarities to the way physi-
cists think. It was pioneered by Nielsen and collaborators
[68–70] and, more recently, attracted significant attention
with prospective applications to holographic complexity
(see e.g. [71–78] as well as [79–82] for some of the alter-
native definitions). The main elegant idea in Nielsen’s
works is to think about quantum circuits as paths in the
manifold of unitary transformations. These paths are de-
termined by di↵erent choices of instantaneous quantum
gates, characterised by time-dependent Hamiltonians.
On one hand, linking these two ideas is important from

a physics point of view, given the recent activity con-
cerning the relation between complexity and black hole
physics [36–39, 43, 47]. On the other hand, this connec-
tion can sharpen the operational meaning of the operator
wavefunction and the Krylov complexity.
The bridge is built upon the previously described con-

nection to generalized coherent states. To make our
points clear, we start from the transition amplitude be-
tween a coherent state |zii at some initial time ti and a
coherent state |zf i for time tf , defined as

T (zf , tf ; zi, ti) = hzf | exp (�iH(tf � ti)) |zii . (115)

We can write a path integral representation of these tran-
sition amplitudes, see [83]

T (zf , tf ; zi, ti) =

Z
dµ[z(t)]eiS , (116)

In particular 
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Figure 3. Wavefunctions from the Weyl-Heisenberg coherent
states as functions of n for ↵t = 1, 2, 4, 6, 8, 10, from left to
right.

The classical trajectory r = ↵t describing the operator
dynamics is again a geodesic in this manifold. Moreover,
we find the same universal relation between the Volume
in the information geometry and Krylov complexity

Vt =

Z
↵t

0
dr

Z 2⇡

0
d�

p
g = ⇡↵2t2 = ⇡KO. (85)

In the next example, we proceed towards settings more
akin to holography.

Example IV: Conformal Field Theories in 2d

As our last example we consider the case of global sym-
metry of 2d CFTs [64, 65]. This is an extension of the
single SL(2, R) described above and it follows by con-
sidering the growth defined by two copies of SL(2, R),
corresponding to the global part of the conformal group.
From this perspective, the SYK example is equivalent to
a chiral CFT with a single SL(2,R). The Lie algebra is
then given by

[L0, L±1] = ⌥L±1, [L1, L�1] = 2L0,⇥
L̄0, L̄±1

⇤
= ⌥L̄±1,

⇥
L̄1, L̄�1

⇤
= 2L̄0 . (86)

We will begin with the highest weight state
��h, h̄

↵
that is

an eigenstate of the CFT Hamiltonian

H
��h, h̄

↵
= (L0 + L̄0)

��h, h̄
↵
= (h+ h̄)

��h, h̄
↵
, (87)

This state arises by acting with the mode O�h,�h̄
of the

primary operator O with conformal dimension � = h+ h̄
and spin s = h� h̄ on the CFT vacuum

��h, h̄
↵
= O�h,�h̄

|0, 0i . (88)

Generalization of the coherent states to 2d CFT is now
straightforward. We just use two copies of the SL(2,R)
displacement operator

��z, h;w, h̄
↵
= D(⇠)D̄(⇣)

��h, h̄
↵
, (89)

where z and w are related to ⇠ and ⇣ respectively as
in (39). The Liouvillian becomes the sum of two terms
with generally two di↵erent coe�cients

L = ↵+ (L�1 + L1) + ↵� (L̄�1 + L̄1) . (90)

For example, in a general (charged) thermal state inner-
product with di↵erent left and right temperatures �± =
T�1
±

= �(1±⌦) (e.g. with angular momentum and chem-
ical potential ⌦) we may associate ↵± = ⇡/�±.
Unitary evolution with the Liouvillian is again a dis-

placement of the initial state. By setting

z = i tanh(↵+t), w = i tanh(↵�t) , (91)

this leads to the coherent state or operator wavefunction

|O(t)) =
��z = i tanh(↵+t), h;w = i tanh(↵�t), h̄

↵

=
1X

n,m=0

'n,m(t)
��h, n; h̄,m

↵
.

The total wavefunction 'n,m(t) = '↵+
n (t)'↵�

m (t) is a
product of the “left” and “right” wavefunctions:

'↵+
n

(t) =

s
�(2h+ n)

n!�(2h)

tanhn(↵+t)

cosh2h(↵+t)

'↵�
m

(t) =

s
�(2h̄+m)

m!�(2h̄)

tanhm(↵�t)

cosh2h̄(↵�t)
. (92)

The evolution of 'n,m(t) is again described by the
Schrodinger equation with two pairs of “left” and “right”
SL(2,R) Lanczos coe�cients. Details are given in ap-
pendix A.
This product solution and its n = m = 0 components

lead to a consistent two-point function in CFT

C(t) = (O(t)|O(0))

'
✓
cosh

⇡t

�+

◆�2h ✓
cosh

⇡t

��

◆�2h̄

. (93)

Recall that, for holographic CFTs, this two point corre-
lator can be computed in the standard way from gravity
by exponent of the length of a geodesic that stretches
between the two sides of the eternal black hole (see e.g.
[66]).
The Krylov complexity is now the sum of the expec-

tation values of the position in the left and right chains
(see also next section)

KO =
X

n,m

(n+m)|'n,m(t)|2. (94)

In terms of the total conformal dimension � = h+ h̄ and
the spin s = h� h̄ this becomes

KO = �


sinh2

✓
⇡t

�+

◆
+ sinh2

✓
⇡t

��

◆�

+ s


sinh2

✓
⇡t

�+

◆
� sinh2

✓
⇡t

��

◆�
. (95)
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Figure 3. Wavefunctions from the Weyl-Heisenberg coherent
states as functions of n for ↵t = 1, 2, 4, 6, 8, 10, from left to
right.
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T�1
±

= �(1±⌦) (e.g. with angular momentum and chem-
ical potential ⌦) we may associate ↵± = ⇡/�±.
Unitary evolution with the Liouvillian is again a dis-

placement of the initial state. By setting

z = i tanh(↵+t), w = i tanh(↵�t) , (91)

this leads to the coherent state or operator wavefunction

|O(t)) =
��z = i tanh(↵+t), h;w = i tanh(↵�t), h̄

↵

=
1X

n,m=0

'n,m(t)
��h, n; h̄,m

↵
.

The total wavefunction 'n,m(t) = '↵+
n (t)'↵�

m (t) is a
product of the “left” and “right” wavefunctions:

'↵+
n
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s
�(2h+ n)

n!�(2h)

tanhn(↵+t)

cosh2h(↵+t)

'↵�
m
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s
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. (92)

The evolution of 'n,m(t) is again described by the
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SL(2,R) Lanczos coe�cients. Details are given in ap-
pendix A.
This product solution and its n = m = 0 components

lead to a consistent two-point function in CFT
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◆�2h ✓
cosh
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��

◆�2h̄

. (93)

Recall that, for holographic CFTs, this two point corre-
lator can be computed in the standard way from gravity
by exponent of the length of a geodesic that stretches
between the two sides of the eternal black hole (see e.g.
[66]).
The Krylov complexity is now the sum of the expec-

tation values of the position in the left and right chains
(see also next section)

KO =
X

n,m

(n+m)|'n,m(t)|2. (94)

In terms of the total conformal dimension � = h+ h̄ and
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◆
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��
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sinh2

✓
⇡t

�+

◆
� sinh2

✓
⇡t

��

◆�
. (95)
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Clearly, for �+ 6= ��, Krylov complexity is sensitive to
the operator’s spin s.

Finally, the information geometry consists of two
copies of the Euclidean Poincaré disc (48). The classi-
cal trajectory corresponds to a geodesic in this product
manifold and the Krylov complexity is proportional to
the volume as in previous examples.

Note that this generalization to 2d CFTs seems com-
pletely determined by symmetries (see more discussion
in [30]). This universality is a simple consequence of the
operators that we chose to describe the growth of. For a
free CFT, we could have chosen a momentum mode in-
stead, and the Krylov approach would look like the case
of SU(2), instead of SL(2,R). We can also imagine consid-
ering composite CFT operators and/or consider the ther-
mal CFT on the circle. Such setups will require more de-
tailed information about the CFT spectrum etc, and they
will distinguish between chaotic and non-chaotic CFT’s.
Moreover, in 2d CFTs, we could also study the less uni-
versal Liouvillian dynamics based on the Virasoro alge-
bra. Even though we leave this as an interesting future
direction, in appendix B we consider a simpler but non-
trivial example of SL(2,R) subalgebras of the Virasoro
algebra given by {L�k, L0, Lk} for some fixed k [67]. Al-
ready in this case we end up with Krylov complexity that
depends on the central charge c of the CFT

KO = 2hk sinh
2(↵kt), (96)

where

hk =
c

24

✓
k � 1

k
+

24h

ck

◆
, ↵k = k↵, (97)

and Lanczos coe�cients are also asymptotically linear
bn ' ↵kn.
We will return to discussion of CFT generalizations at
the very end.

V. COMPLEXITY ALGEBRA AND GEOMETRY

Previously we have analyzed specific examples related
to di↵erent groups. In this section, we come back to a
more general discussion of the Lanczos coe�cients in the
light of symmetry. We argue that there exists a natural
algebra associated with operator dynamics and Krylov
complexity, and that the closure of this algebra on di↵er-
ent levels provides another way towards finding potential
sets of Lanczos coe�cients. In particular, we will again
reproduce our previous results from this angle.

The logic proceeds as follows. As described above, the
action of the Liouvillian in the Krylov basis yields two
terms (18) and suggests a definition of “generalized lad-
der operators”

L = L̃+ + L̃�, (98)

where for simplicity we absorbed ↵ into the ladder oper-
ators of the previous section L̃± = ↵L± such that

L̃+|On) = bn+1|On+1), L̃�|On) = bn|On�1). (99)

The algebra generated by the generalized ladder opera-
tors L̃+ and L̃� is simply equivalent to the algebra gen-
erated by the Liouvillian and the operator B, defined as

B = L̃+ � L̃� . (100)

By definition, action of this anti-Hermitian operator on
the Krylov basis is

B|On) = �bn|On�1) + bn+1|On+1) . (101)

We now want to explore the following question. What
happens when we start commuting these two operators?
From their definitions, we can easily derive the action of
the commutator, that we name K̃, in the Krylov basis.
Using (18) and (101) we obtain

K̃ ⌘ [L, B]|On) = 2(b2
n+1 � b2

n
)|On). (102)

This operator turns out to be diagonal in the Krylov basis
with eigenvalues k̃(n) = 2(b2

n+1 � b2
n
).

Given this generic algebraic structure, we now enter-
tain a “simplicity” hypothesis. This hypothesis demands
that these three operators close an algebra that we may
call a “complexity algebra”. This enforces the following
constraint on the commutator eigenvalues

k̃(n) = An+B , (103)

for some constants A and B, implying that k̃(n) grows at
most linearly in n. We then conclude that this hypothesis
(closure of the algebra) provides a recurrence equation for
the Lanczos coe�cients

2(b2
n+1 � b2

n
) = An+B. (104)

A general solution to this equation is given by (the posi-
tive root)

bn =

r
1

4
An(n� 1) +

1

2
Bn+ C , (105)

with C also being an arbitrary constant. Furthermore,
requiring b0 = 1, which holds for any operator growth,
fixes this constant to C = 0. We see that the hypothesis
does not allow the Lanczos coe�cients to grow faster than
n. It would be interesting to see if imposing the closure
of the algebra at a later level, by allowing the complexity
algebra to include more operators generated by L and B,
still enforces the universal linear bound.
Note that the examples considered earlier all fall within

the simplicity hypothesis. For instance, for SL(2, R) we
have that

L = ↵(L�1 + L1), B = ↵(L�1 � L1), K̃ = 4↵2L0,
(106)
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21

and the two sets of coe�cients are defined as

an = (On|L|On), bn = (An|An)
1/2. (205)

From these expressions we can easily determine the ac-
tion of the Liouvillian in the Krylov basis

L|On) = an|On) + bn+1|On+1) + bn|On�1), (206)

and derive a discrete Schrodinger equation for the wave-
functions

@t�n(t) = i (an�n + bn�n�1 + bn+1�n+1) , (207)

that define the general state

|O(t)) =
X

n

�n|On). (208)

In symmetry setups such as SL(2,R), an’s can e.g. be
naturally associated with eigenvalues of L0.

Appendix B: SL(2, R) subalgebras of Virasoro

In this appendix we want to consider another example
of our symmetry proposal. This is a natural variant of
the SL(2,R) algebra scenario. Namely, instead of the
global part of the conformal group, let us now consider
the Virasoro algebra

[Ln, Lm] = (n�m)Ln+m +
c

12
n(n2 � 1)�n+m,0, (209)

and focus on a di↵erent subset of three generators,
namely L0 and two Virasoro modes Lk and L�k for a
fixed integer k > 0. Using (209), we see these three gen-
erators form a closed algebra since

[Lk, L�k] = 2kL0 +
c

12
k(k2 � 1), (210)

as well as

[L0, L±k] = ⌥kL±k. (211)

By redefining

L̃0 =
1

k

⇣
L0 +

c

24
(k2 � 1)

⌘
, L̃±1 =

1

k
L±k, (212)

this is the standard SL(2, R) algebra (35).
Given this observation, we can consider the following

displacement operator

Dk(⇠) = e⇠L�k�⇠̄Lk . (213)

Using the BCH formula and ⇠ = rei� this can be written
in factorized form

Dk(⇠) = ee
i� tanh(kr)

k L�ke�
2
k log(cosh(kr))(L0+ c

24 (k
2
�1))

⇥ e�e
�i� tanh(kr)

k Lk . (214)

Applying it to the eigenstate |hi satisfying

L0 |hi = h |hi , Lk |hi = 0, (215)

we derive

Dk(⇠) |hi =
1

cosh2hk(kr)

1X

n=0

ein�
tanhn(kr)

n!kn
Ln

�k
|hi .

(216)
where

hk =
1

k

⇣
h+

c

24
(k2 � 1)

⌘
. (217)

Using the following result

hh|Ln

k
Ln

�k
|hi = n!k2n

�(2hk + n)

�(2hk)
, (218)

we can introduce the orthonormal basis

|h, nki ⌘

s
�(2hk)

n!k2n�(2hk + n)
Ln

�k
|hi , (219)

such that

hh, nk|h,mki = �n,m. (220)

We can now write the coherent state (216) in this basis
and obtain

|z, h, ki =
1X

n=0

ein�
tanhn(kr)

cosh2hk(kr)

s
�(2hk + n)

n!�(2hk)
|h, nki .

(221)
To connect with the Lanczos approach we first notice
that

L0 |h, nki = (h+ nk) |h, nki ,
L�k |h, nki = k

p
(n+ 1)(2hk + n) |h, (n+ 1)ki ,

Lk |h, nki = k
p

n(2hk + n� 1) |h, (n� 1)ki . (222)

This structure now allows us to define the Liouvillian and
Krylov basis

Lk = ↵(L�k + Lk), |On) = |h, nki , (223)

together with the Lanczos coe�cients

bn = k↵
p

n(2hk + n� 1). (224)

Let us point out that Hamiltonians of the type (223)
also appeared recently in [102] but the more precise link
remains to be understood.
These coe�cients satisfy the algebraic relation

b2
n+1 � b2

n
= 2k2↵2(hk + n). (225)

For large n they grow as

bn ' k↵n+ k↵
2hk � 1

2
+O(1/n). (226)
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Non-universal: Composite operators, more general initial states

Auto-correlator becomes a 4pt function -> OTOC, Spectral Form Factors
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In quantum optics it is useful (physical) to work with two-mode representation of
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Finally, for standard Heisenberg-Weyl symmetry we
generically have

HHW = an̂+ bâ† + câ+ d1, (131)

with arbitrary constants a, b, c, d. The classical Hamilto-
nian is then

HHW = ar2 + r(be�i� + cei�) + d, (132)

and the equations follow

r0(t) = � i

2
(be�i�(t) � cei�(t)),

�0(t) = �a� 1

2r
(be�i�(t) + cei�(t)). (133)

Setting � = �⇡/2 as well as a = 0 and b = c = ↵ (or
r = ↵t) corresponds to motion of a particle on this phase
space with Hamiltonian HHW = ↵(a† + a).

We conclude that the operator wavefunctions consid-
ered earlier, including the example of SYK, can be simply
mapped to classical motions i.e., solutions of the classical
Hamilton equations of motion in the appropriate gener-
alized coherent state phase space. The classical Hamil-
tonians above follow directly by taking the expectation
value in the generalized coherent states of our proposed
form of the Liouvillian L = ↵(L+ + L�). This way, we
can not only think about operator growth geometrically
but also naturally regard unitary Liouvillian evolution as
a quantum circuit

|O(t)) = eiLt|O). (134)

With this results in mind, let us return to Nielsen’s
approach. In this framework, after assigning a particular
(highly non-unique) cost function to the instantaneous
gates, one can estimate the computational complexity of
the task by finding the length of the minimal geodesic in
the geometry of unitaries. The ambiguity in the cost
functions somewhat parallels the freedom in choosing
the inner product to turn the operator algebra into a
Hilbert space. However, the geodesic length is not ob-
viously related to the operator complexity. Naively, one
is tempted to identify the information geometry (Fubini-
Study metric) with Nielsen’s metric, but as we saw before
the geodesic length between the origin and ⇢ = 2↵t (at
fixed � = ⇡/2) grows only linearly in time. Indeed, as we
saw before, it is the phase space Volume in the Fubini-
Study metric that Krylov complexity measures.

Still, one can interpret Krylov complexity in terms of
a geodesic length. This fact comes from the universal re-
lation between the F1 norm and Krylov complexity (see
(258) in Appendix D). Indeed, for phase-space displace-
ments in the angular direction we have

F1 = |hz|�zi| = KOd�, (135)

This can be interpreted as the Nielsen complexity, defined
with F1 cost functions [47, 73, 85, 86], of the circuit that

takes us from trajectory (⇢ = 2↵t,� = ⇡/2) to a nearby
geodesic with (⇢ = 2↵t,� = ⇡/2 + ��). This in turn
is very closely related to the definition of classical chaos
that we discussed in the introduction.

VII. QUANTUM INFORMATION TOOLS FOR
OPERATOR GROWTH

This last section is devoted to contrasting the evolution
of Krylov complexity with more conventional quantum
information tools. For this, we step again on the con-
nection between operator dynamics and coherent states.
More concretely, a certain two-mode representation of
the displacement operator will allow us to derive a den-
sity matrix associated with the evolving operator. Then,
instead of quantifying complexity with expectation values
of operators, such as the Krylov complexity, we will ex-
plore it with di↵erent quantum information tools. As new
outcomes, we will discuss traces of the operator growth
in entanglement measures, define a notion of operator
proper temperature that connects to the physics of black
holes and to quantum optics. This last outcome will sug-
gest a way to contrast these theoretical problems with
experiments.
Below we will concentrate on the “chaotic” example of

SL(2,R), and focus on the time dependence of the dif-
ferent quantities, comparing their growth with Krylov
complexity. Most of these results hold for other coherent
states as well and here we only survey the most impor-
tant findings. Further details with non-chaotic examples
will be described in [87].
We start by representing the SL(2,R) generators in

terms of two oscillator modes as

L�1 = a†1a
†

2, L1 = a1a2, L0 =
1

2
(a†1a1 + a†2a2 + 1),

(136)
where the creation a†

i
and annihilation ai operators sat-

isfy the Weyl-Heisenberg algebra. In this representa-
tion, the displacement operator D(⇠) becomes the stan-
dard two-mode squeezing operator frequently used in
theoretical as well as experimental quantum optics, see
e.g. [88]. Then we consider the so-called k-photon
added/subtracted states

|z, ki ⌘ N (a2)
kS(⇠) |0, 0i , (137)

in which there is a di↵erence of k-excitations between the
two modes. Using the standard Bogoliubov transforma-
tion we can expand this state in the two oscillator Fock
space basis as

|z, ki = (1� |z|2)
k+1
2

1X

n=0

zn

s
�(k + 1 + n)

n!�(k + 1)
|n+ k, ni .

(138)

In this representation we can derive “density matrix of the operator” (?)
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In the amplitudes of this state we recognise those of the
SL(2,R) coherent states. One just needs to perform the
identification k+1 = ⌘ = 2h, while the phase space coor-
dinates z’s remain unchanged. In this squezeed represen-
tation, the coherent states are entangled states. Also, in
this form, the Krylov basis is the standard two-oscillator
Fock space

|On) = |n+ k, ni = (a†1)
n+k

p
(n+ k)!

(a†2)
n

p
n!

|0, 0i . (139)

In this two-mode representation, we can think about
the operator wavefunction |O(t)) as a “perturbed” ther-
mofield double state. Tracing out the second oscillator
we arrive at the following density matrix

⇢(k)1 = Tr2 (|z, ki hz, k|) =
1X

n=0

�n |n+ ki hn+ k| . (140)

Its eigenvalues are precisely the probabilities in the
Krylov basis

�n = |'n(t)|2 =
�(2h+ n)

n!�(2h)
(1� |z|2)2h|z|2n, (141)

where we remind that in order to describe operator
growth we need to assign z = i tanh(↵t).

This description of the operator growth process allows
us to assign a “proper temperature” to the operator. To
this end, and for simplicity, we analyze the special case
of k = 0 (or h = 1/2). Then defining

e��(t)! = tanh2(↵t), (142)

the mixed state ⇢(k)1 is just the thermal state of the har-
monic oscillator with inverse temperature �(t). This is a
temperature T (t) = 1/�(t) naturally associated with op-
erator growth. At large times we find that this operator
temperature behaves as

T (t) ���!
↵t�1

e2↵t

4
, (143)

growing exponentially fast with the right Lyapunov expo-
nent. Quite interestingly, this is the expected behaviour
of proper temperatures/energies of infalling perturba-
tions into a black hole, which is just universally con-
trolled by the near-horizon redshift, determined by the
time-time component of the black hole metric.

This density matrix representation of the operator
growth also allows us to explore it using tools from quan-
tum information. First of all, the K-entropy, defined in

[26], is just the standard von-Neumann entropy of ⇢(k)1 ,
now appearing as an entanglement entropy

SO = �
X

n

|'n|2 log(|'n|2), (144)

between the two modes of the squeezed state. The an-
alytic answer is obtained, for example, by setting k = 0
and and it grows linearly at late times

SO = 2 log (cosh(⇢))� 2 log (tanh(⇢)) sinh2(⇢) ' 2↵t,
(145)

with a proportionality factor equal to the Lyapunov
exponent. This behaviour is reminiscent of that of a
Kolmogorov-Sinai entropy, whose rate of growth is up-
per bounded by the sum of Lyapunov exponents.
More generically we can compute Renyi entropies

S(q)
O

=
1

1� q
log

 
X

n

|'n|2q
!
, (146)

and for k = 0 these are given by

S(q)
O

=
1

q � 1
log
�
cosh2q(↵t)(1� tanh2q(↵t))

�
. (147)

One more interesting quantity that has been studied
recently in various contexts [89–91] is the capacity of en-
tanglement

CO = lim
q!1

q2@2
q

h
(1� q)S(q)

O

i
. (148)

In particular, in [91] it was shown to be a useful new
probe of local operators. For k = 0, we can easily com-
pute it analytically from (147) and it becomes

CO = sinh2(2↵t)(log(tanh(↵t)))2. (149)

This way, capacity of entanglement also grows for early
times ↵t ' 0 as

CO ' 4↵2t2 log(↵t)2, (150)

but then saturates to 1 exponentially fast as t ! 1 (with
twice the Lyapunov exponent)

CO ���!
↵t�1

1� 4

3
e�4↵t. (151)

The physical interpretation of this saturation (“thermal-
isation”) is not yet clear to us but it indicates that not all
the probes must necessarily grow/decay (linearly or ex-
ponentially) in order to extract certain universal features
from their evolution.
Related to entanglement entropy, a useful measure of

“quantumness” of a state considered in quantum optics
is entanglement negativity [92]. For operator growth, it
can be written in terms of the operator wavefunctions as

EN (⇢) = 2 log

 
X

n

|'n|
!
. (152)

In the simplest case with k = 0, it becomes precisely

EN (⇢) = 2↵t, (153)
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In the amplitudes of this state we recognise those of the
SL(2,R) coherent states. One just needs to perform the
identification k+1 = ⌘ = 2h, while the phase space coor-
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This allows to study and compare more conventional QI tools  
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temperature T (t) = 1/�(t) naturally associated with op-
erator growth. At large times we find that this operator
temperature behaves as

T (t) ���!
↵t�1

e2↵t

4
, (143)

growing exponentially fast with the right Lyapunov expo-
nent. Quite interestingly, this is the expected behaviour
of proper temperatures/energies of infalling perturba-
tions into a black hole, which is just universally con-
trolled by the near-horizon redshift, determined by the
time-time component of the black hole metric.

This density matrix representation of the operator
growth also allows us to explore it using tools from quan-
tum information. First of all, the K-entropy, defined in

[26], is just the standard von-Neumann entropy of ⇢(k)1 ,
now appearing as an entanglement entropy
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between the two modes of the squeezed state. The an-
alytic answer is obtained, for example, by setting k = 0
and and it grows linearly at late times

SO = 2 log (cosh(⇢))� 2 log (tanh(⇢)) sinh2(⇢) ' 2↵t,
(145)

with a proportionality factor equal to the Lyapunov
exponent. This behaviour is reminiscent of that of a
Kolmogorov-Sinai entropy, whose rate of growth is up-
per bounded by the sum of Lyapunov exponents.
More generically we can compute Renyi entropies
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One more interesting quantity that has been studied
recently in various contexts [89–91] is the capacity of en-
tanglement
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In particular, in [91] it was shown to be a useful new
probe of local operators. For k = 0, we can easily com-
pute it analytically from (147) and it becomes

CO = sinh2(2↵t)(log(tanh(↵t)))2. (149)

This way, capacity of entanglement also grows for early
times ↵t ' 0 as

CO ' 4↵2t2 log(↵t)2, (150)

but then saturates to 1 exponentially fast as t ! 1 (with
twice the Lyapunov exponent)
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The physical interpretation of this saturation (“thermal-
isation”) is not yet clear to us but it indicates that not all
the probes must necessarily grow/decay (linearly or ex-
ponentially) in order to extract certain universal features
from their evolution.
Related to entanglement entropy, a useful measure of

“quantumness” of a state considered in quantum optics
is entanglement negativity [92]. For operator growth, it
can be written in terms of the operator wavefunctions as
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In the simplest case with k = 0, it becomes precisely

EN (⇢) = 2↵t, (153)

16

In the amplitudes of this state we recognise those of the
SL(2,R) coherent states. One just needs to perform the
identification k+1 = ⌘ = 2h, while the phase space coor-
dinates z’s remain unchanged. In this squezeed represen-
tation, the coherent states are entangled states. Also, in
this form, the Krylov basis is the standard two-oscillator
Fock space
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In this two-mode representation, we can think about
the operator wavefunction |O(t)) as a “perturbed” ther-
mofield double state. Tracing out the second oscillator
we arrive at the following density matrix
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Its eigenvalues are precisely the probabilities in the
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In the simplest case with k = 0, it becomes precisely
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K-Entropies and negativity show a linear growth with time       
Capacity saturates to 1 at late times (all sensitive to the rate     ) ↵
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Conclusions and Open Problems 

• Krylov Complexity is a new (good) candidate for operator complexity in QFTs

Thank You! Stay Tuned!

• Symmetry: New angle on the Liouvillian and Lanczos coefficients

• Geometric interpretation with many “desired” features of “complexity”

• Growth of Lanczos Coefficients? Math Proof? Bieberbach?

• Higher and lower dimensional CFT? Virasoro, Matrix Models, LLM?

• Generalized Coherent States and other Lie groups? (Integrable/Chaotic?)

• Connection with Holography? First Law? Bulk Momentum? Near Horizon 
Geom?

• QI tools for the operator growth? Two-mode representation (ER=EPR)?


