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Mathematical Phenomenology

® Note patterns then look for an explanation

— Mirror symmetry 1s prototype example

— Knot theory provides another case study

® Use machine learning to train a computer to calculate in hep-th, math

— Black box gives probably approximately correct answers

— So far, we have mainly used ML to 1dentify associations

— Want to bridge this success to new analytic results and methods

® [llustrate technology and then discuss this in a broader context



Dramatis Personae
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Dramatis Personae
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Dramatis Personae

wseso Q& @B

v () (0 =a4 (X100

AOV w(K') = overhand — underhand

Jones polynomial: J(K;q) = AIQM )

J(O;q)

1

Jones (1985)

topological invariant: independent of how the knot is drawn
Question: how to calculate these?

Answer: quantum field theory!




Topological Invariants

¢ On a manifold /M with metric g,,,,, a topological invariant enjoys:

J

MWMWMMMH AAWVH.. .. AMVQ@V — Av

® [n Chern—Simons theory, the operators are Wilson loops

Ur(y) = trg P exp As& A)

B
® The colored Jones polynomial is a knot invariant:

JulDA] Un(K)e'esth - (y, (K))
Jul DA} Up (01)eres (A (U (01))

AN\;A‘NQQ — Qwﬁ.s.\Qﬂl_lwvv —

N .
%2\5”%\3: (ANdA+ SANANA), Ncén\s:E %%E

Witten (1989)



Dramatis Personae

Knot: m&. C mw 1 e

v () (0 =a4 (X100

AOV w(K') = overhand — underhand

(—q7)

Jones polynomial: .J A K; Qv

vev of Wilson loop operator along K in
[ for SU(2) Chern-Simons on S” it (1969

Jo(4159) =q > —q ' +1—q+q°, q=ei+

Hyperbolic volume: volume of S*\ K is another knot invariant

computed from tetrahedral decomposition of knot complement

Thurston (1978)
Mostow (1968)



Topological Invariants

® Volume appears as saddle point in SL(2,C) Chern—Simons theory

Z(M) = \S [DA|[DA] exp ~WS\A.\C + MS\A\i

1 2
:\Aénm\\s:@>§+wm>m>$

t=0+is, t=F—is, L€Z, seC
Z(S3\ K) D exp %an \ K) + ifr CS(S3\ K)
T

® The critical point responsible for this contribution is a flat SL(2, C) valued
connection A, , the geometric conjugate connection:

W(AL) = |%<o§w \ K) + 7 CS(S?\ K)



Dramatis Personae

21 log | Jn (K wy)|

. . Kashaev (1997)
Volume conjecture:  lim = Vol(S® \ K) Murakams x 2 (2001
! n—o0 n Gukov (2005)
271
Wy = € n

In fact, we take n, k — o0

LHS 5.5

Simplest hyperbolic ml g/\

> non-two bridge knot, /ww
n has 18 crossings éw

Vol(S? \ Kg) = 3.474247 . ..

50 100 150 200 250 N

Behavior 1s not monotonic!
Garoufalidis, Lan (2004)



Dramatis Personae

2 log | J, (K wy,

. . Kashaev (
Volume conjecture:  lim )| _ Vol(5° \ K) urskons 3 (2000
! n—o0 n Gukov (2005)
21
83 —_— e n

Khovanov homology: a homology theory H g whose graded Euler characteristic
1s J2(K; q); explains why coefhicients are integers

Khovanov (2000)
Bar-Natan (2002)

log [J2(K; ~1)| . log(rank(H ) — 1) oc Vol(S*\ K)  &oeiier Gooo

13 crossing alternating knots
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Dramatis Personae

neural network
0f an "%

Luigi Pirandello (1921)

For other work on knots and machine learning, see Hughes (2016)
Levitt, Hajij, Sazdanovic (2019)
Gukov, Halverson, Ruehle, Sulkowski (2020)



Feedtorward Neural Networks

Input vector

I1
w1
Zo W o(wyxy + wexs + wsxs + b)
w3 Rosenblatt (1957)
Ta Neuron
1 21 2 12
(YY)
Mathematica 10+
(YY)
° °
o °
. ° °
°
°

Schematic representation of feedforward neural network. The top figure denotes the perceptron (a single neuron),
the bottom, the multiple neurons and multiple layers of the neural network.



Neural Network

(s Y — {vr, . on)
J;, €T

(J, . T — 777

J eTe

Jones polynomials are represented as 18-vectors
Jx = (min, max, coeffs, 0, ...,0)

‘Two layer neural network in Mathematica

foldic) = Yo (W§ - o (W3 - Jic +5p) + 53
Input Layer Output Layer a

Hidden Layer 1 Hidden Layer 2

S 100 Logistic sigmoids for the hidden layers

J 100 x 18 100 x 100 > 1 :
a=1 o
12000 hyperparameters o(r) = l+e 2 mﬁ . VJ, Kar, Parrikar (2019)
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Prediction from Neural Network

trained on 10% of the 313,209 knots up to 15 crossings

VJ, Kar, Parrikar (2019)



Result

v, = f(J;) + small corrections

e J; does not uniquely identify a knot

e.g., 41 and K11n19 have same Jones polynomial, different volumes

e 174,619 unique Jones polynomials

2.83% average spread in volumes for a Jones polynomial
Intrinsic mitigation against overfitting

® Same applies to 1,701,913 hyperbolic knots up to 16 crossings
(database compiled from Knot Atlas and SnapPy)

VJ, Kar, Parrikar (2019)



Result

v, = f(J;) + small corrections

Neural network does better than more refined topological invariants

weak coupling limit of

: : : SL(2,C) Chern—Simons
Beyond the volume conjecture in Chern—Simons

strong coupling limit of
Jones polynomial (quantum) <—— volume (classical) SU(2)

Failed experiments (e.g, learning Chern—Simons invariant) also teach us
something — maybe about the need for underlying homology theory

. 2mi/n
lim 27 log J,(K;e )

n— 00 n

¢f Galabi—Yau Hodge numbers,
line bundle cohomology, etc.

= Vol($* \ K) + 27%i CS(S% \ K)

VJ, Kar, Parrikar (2019)



Result

v, = f(J;) + small corrections

Universal Approximation Theorem: feedforward neural network, sigmoid
activation function, single hidden layer with finite number of neurons can
approximate continuous functions on compact subsets of R"

Cybenko (1989)
Hornik (1991)

Surprise here is simplicity of architecture that does the job

We want a noet machine learning knot result



Entr’acte

v, = f(J;) + small corrections

We seek to reverse engineer the neural network
to obtain an analytic expression for
the volume as a function of the Jones polynomial

To interpret the formula, we use machinery of
analytically continued Chern-Simons theory



Towards the Volume Conjecture

2 log | Jn (K wn)|

® 'The volume conjecture:  lim = Vol(5° \ K)
n— 00 n
J5(I: e277%)]
20000 -
15000 F
I (K-
-600 -400 -200 200 400 600

® 11,921 colored Jones polynomials at n = 3



150 A

100 A

50 1

—100

-150 -100 =50 0 50 100

Volumes

Volume 1s learnable from coeflicients

Chern—Simons invariant probably is not

150

30

lim 27 log J, (K wy)

n—oo mn

= Vol(S$% \ K)
+27%i CS(S° \ K)

-0..
Chern Simons Invariants
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1.07

20 25 30

10 15
Volumes

1.10 + 0.00061V35

10 15 20 % 30
Volumes

140 4
120 4

100

Coeflicients scale with volume

Coe

0.51 + 0.036V?

thcients

5 10 15 20 % 30
Volumes

—0.76 + 0.00034V3%

10 15 20 % 30
Volumes

in_ ~ _Qli

1.08 + 0.0058V>4

20

20 % 30

10 15
Volumes

0.00008V*3

200 4

10 15 20 % 30
Volumes

as power law

10 4
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|Cy

20 4

200

1.47 4+ 0.0012V34

20 25 30

10 15
Volumes

—5.10 + 0.0000028V°3

10 15 20 % 30
Volumes



No Degrees Needed

® Suppose we drop the degrees and provide only the coetficients; Jones
polynomial is no longer recoverable from the mput vector

® Results are unchanged!

Neural network predictions - 2.28% relative error

Hyperbolic volume

- 101

5 10 15 20 25 30
Prediction from neural network

N.B.: we have switched to Python & using GPU-Tensorflow with Keras wrapper
two hidden layers, 100 neurons/layer, ReL.u activation, mean squared loss, Adam optimizer



Jones Evaluations

Physics in Ghern—Simons theory that leads to volume conjecture may also
be responsible for information in J5(K; q)

Consider evaluations of Jones polynomial at roots of unity
In particular, fix r € Z and evaluate j, := J2(kK; mmﬂ%\?ﬁvv

The input vector
vin = (Re(Jp), Im(jg ), - - -, Re(J{ (r42) 21 ) Im(J] (r42) 21 )

does not degrade neural network performance

In fact, we only need to feed in the magnitudes: Vin = ([Jol, -+ [J|(r4+2)/2)])

Consistent with degrees not mattering



Layer-wise Relevance Propagation

® 'To determine which inputs carry the most weight, propagate backward
starting from output layer employing a conservation property

®—0,
O =0 « @
O——0

output

®
RN

AIERY

Montavon et al. (2019)

e (ompute relevance score for a neuron using activations, weights, and biases

et NG WA N, Y R =1
[ ™1 Lk k k

ﬁ\ \A
th .
77" neuron in layer m — 1




Layer-wise Relevance Propagation

r=4 r=>5 r=6 r=7

Each column 1s a single input corresponding to evaluations of the Jones

2m7Lp

polynomial at phases e™+2 , 0<2p<r+2, peZ

"Ten different knots

We show the relevances (red 1s most relevant) and notice that the same imput
features light up



Relevant Phases

r | Error Relevant roots Fractional levels | Error (relevant roots)
3 | 3.48% edmi/5 5 3.8%
4 | 6.66% —1 0 6.78%
5 | 3.48% eSmi/T : 3.38%
6 | 2.94% e3mi/4 1 2,0 3%
7 | 5.37% e5mi/9 : 5.32%
8 | 2.50% e3mi/5  eAmi/5 _q 3. 1,0 2.5%
9 | 2.74% e87i/11  l0mi/11 3.4 2.85%
10 | 3.51% e2mi/3 o5mi/6 1 1, 2,0 4.39%
11 | 2.51% 8mi/13  o10mi/13 - p12mi/13 28,4 2.44%
12 | 2.39% ebmi/T 6mi/T 1 240 2.75%
13 | 2.52% e2mi/3  gAmif5 e ldmi/15 1,14, 2.43%
14 | 2.58% e3mi/4 eTmi/8 2, 2,0 2.55%
15 | 2.38% mSi\:v mEﬁ.\:u o 16mi/17 mu wu W 2.4%
16 | 2.57% e2mi/3  Tmi/9 8mi/9 ] 1,240 2.45%
17 | 2.65% mii\ﬁ maﬁ.\gu m&ﬂ.hﬁ wu mv w 2.46%
18 | 2.49% edmi/5 9mi/10 1,20 2.52%
19 | 2.45% | e2™i/3 16m/21  obmi/T  o20mi/21 1,8, 1 L 2.43%
20 | 2.79% | 8/ dImi/1L  10mi/11 - _q 3 3. 10 2.4%
27

o
.
g
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Phenomenological Function

Via(K) = 6.2010g(6.77 + | Jo( K ;exp(37i/4))|) — 0.94

35 1

30

10 -

2.86% error

10°

10?

- 101

10°

50

100

150

200

| Jo( K exp(3mi/4))|

250 300 350

® Parameters fixed via curve fitting routines in Mathematica



Phenomenological Function

Vis(K) = 4.8910g(1.91 + | Jo( K :exp(4mi/5))|) + 0.63

10°
471
Ww=es
102
1
k = —
2
m.—:_
3.33% error
10

100 200 300 400 500 600 700 800
| Jo( K exp(dmi/5))|

® Parameters fixed via curve fitting routines in Mathematica



Phenomenological Function

371
4

V3,4(S° \ K) = 6.20log(|.Jo(K; €™ )| + 6.77) — 0.94

2.86% error comparedto 2.28% error for neural network
2

corresponds to Chern—Simons level k£ = —

3

Parameters ot fit robust as a function of crossing number

10

10 - " 91

8 1 o

o
1
o

parameters
|
(=]
o
)
error

|
N
o

-30 4 4 .

L I
1T 0 oo
a

10 11 12 13 14 15 16 10 11 12 13 14 15
crossing number crossing number



e Bestfitto V(x) = alog(|Jo(K;e™)| +b)+c at x = 2.3

mean absolute error (%)

Best Phase

k
100 20 10 5 2 1 0
1 1 1 1 1 1 1
—.Nl ® 929 20 o0 ® o 00 % 0 0 0 9 0 o o
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mean absolute error (%)

e Bestfitto V(x) = alog(|Jo(K;e™)| +b)+c at x = 2.3

Best Phase

k
100 20 10 5 2 1 0
—.N - ® 9 20 o0 0 00 % 0 0 ® 9 0o L]
Plateau .
10 4 B
E
8 - O
6
X




Best Phase

k
100 20 10 5 2 1 0
12 - ® 29 o0 o0 ® 0 00 % 0 0 0 9 0o o
Plateau . A./\AI ]
273 M@HWG
10 - . Ww=¢e?
: .3
o 84 O
e
=
Z A7 N
c G- .o Dunfield (2000)
«Q o
]
: : Jo(K;—1)
’ e : phase in accord with
1 OJ . volume conjecture
;
X

e Bestfitto V(x) = alog(|Jo(K;e™)| +b)+c at x = 2.3



Chern—Simons Theory

Recall that Scg = W tr A\» AN dA + W\» ANAN \@

%ﬁ..\/\a Mw

Under the gauge transformation A4, — ¢ 'A,9+ g '9,9 ,

k 1

DMQmH o &w&mt% A@:S. A@:mvmlkbv + wﬂ. @Hmtbmpwvmbﬂmbmvv

Associated to large gauge transformations, we recognize the winding

1 Voo —la  1g
~ 242 \ dx ePtr (970,99~ 1099 ' 0pg) € Z

w(g)
This implies that the level k& € Z

So what does fractional level mean?

. . H_.
In Abelian Chern—Simons theory, can make sense of £k = 3 foome (2019)



Analytic CGontinuation

We can analytically continue the level

Appeal to Morse theory; the integration cycle C used to compute path
integral 1s decomposed 1n terms of Lefschetz thimbles

The validity of the volume conjecture amounts to statement that geometric
conjugate connection A+ contributes to SU(2) path integral in

neighborhood of =" - L_1 atlarge k

N.B.: for the Jones polynomial, n =2, =k

As 7 1s varied, analytically continued integration cycle can pick up
contributions from new critical points or lose current ones; these are Stokes
phenomena that occur along Stokes lines in complex 7 plane

Witten (2010)



Analytic CGontinuation

For integer k, even if A4 saddle is present in integration cycle, it cancels
with another saddle

For general k, the leading contribution of the two saddles is e!W(A+) (1 — e*™F)

This survives in semi-classical limit v — 1, k£ — o

te, WA+ (1 — 27 to path integral from pair of SL(2, C) critical points

after analytic continuation

Volume conjecture essentially states that this behavior occurs for geometric
conjugate connection for every knot at n = k + 2

Witten (2010)



Hypothesis

The approximation formula works well for levels &
for which A+ makes a contribution to the
Chern-Simons path integral, and its accuracy
increases with fraction of knots in dataset
that receive such a contribution



mean absolute errar (%)

10 1

T'he Shape of "T'hings

100 20 10 5 2 1
1 1 1 1 1 L

P
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T'he Shape of Things

Plateau: k£ > 2
Vol(S° \ K) = (Vol(5° \ K))

this gives 11.97% error for knots up to 16 crossings

corresponds to latent correlations in the dataset

. 3
Minimum: near k = w or vy = M

Lefschetz thimbles contain geometric conjugate SL(2,C)
connection we expect in semiclassical limit for most knots

. 2
Dip: koAw

knots retain geometric conjugate connection even as k < 1 or 7 > 1

this is explanation for observation that log |Jo(K; —1)| oc Vol(S® \ K)

Dunfield (2000)



Ramp:

Spike:

T'he Shape of Things

2 : : :
3 < k <2 1nterpolating regime
knots lose access to geometric conjugate connection |
3 2 . . . \
at k= 5 or v = 3 the geometric conjugate connection of 44 enters
Witten (2010)

near k=1

at integer values of level with k + 1 > n | the path integral receives

contributions only from SU(2) valued critical points
i.e., no analytic continuation is necessary

because we lose knowledge of the geometric conjugate connection,
the error becomes high

Conclusion: geometric conjugate connection is crucial to success of

approximation formula



A Better Formula

e Our reverse engineered function gave 2.86% error compared to

2.28% error for neural network; the latter is essentially intrinsic

® (an we do better with a formula? If so, how much better?

® Define a new error measure

variance of (actual volume — predicted volume)

0.|
variance of volumes in dataset

[suggested to us in correspondence with Fischbacher, Miinkler]

o-measure 1s shift/rescaling invariant

® (an ask what fraction of variance 1s left unexplained



A Better Formula

variance of (actual volume — predicted volume)
g —

variance of volumes in dataset

® By this measure, the neural network gives 0 = 0.033

while our functional approximation gives ¢ = (0.068

® If we just assign the average volume to every knot in the dataset, 0 = 1 ;
this corresponds to plateau

® 'There is room for improvement, but it 1s remarkable that a function with
only three fit parameters works so well



Other Experiments

Ditterent representations of Jones polynomial work just as well

Khovanov polynomial predicts volume with 97.2% accuracy;
HOMFLY-PT polynomial does less well with 93.9% accuracy

q+qt

Jo (K q) = = P(K;q ', q"? —q'/?)

Chern—Simons invariant does not look to be learnable from Jones
polynomial 1n various experiments

Symbolic regression using PySR gives formulae with 96.6% accuracy,

but not so interpretable Cranmer, et al. (2020)



Prospectus

Inequalities a la volume-ish theorem using analytically continued Chern—
Simons theory; investigate this for higher colors as well

Use numerics to study Stokes phenomena in Chern—Simons theory

Monotonic version of the volume conjecture

Relations between other topological invariants

Better understanding of what problems are machine learnable 1n
mathematics and physics — failed experiments may teach us something!

Reverse engineer other machine learned results



Smooth Poincaré in 4d

Conjecture: A four manifold with homotopy type S* is diffeomorphic to S*

Freedman proved it 1s homeomorphic

Does S* admit exotic smooth structures?

The Rasmussen s-invariant cannot be used to detect counterexamples

Find topologically slice knots that are not slice

Freedman, Gompf, Morrison, Walker (2010)
Manolescu, Piccirillo(2021)

Perhaps ML can assist in 1dentitying further interesting knots

Craven, Hughes, VJ, Kar



A View to Holography

Beautitul recent work by Hashimoto, et al.

Train on lattice data for chiral condensate vev vs. quark mass

Obtain metric from parameters in neural network and follow AdS/QCD
dictionary despite not being in large-N limit

Predict form of quark—antiquark potential

Hashimoto, Sugishita, Tanaka, Tomiya (2018)
Hashimoto (2019)
Akutagawa, Hashimoto, Sugimoto (2020)

. . : Chen, He, Lal, Zaz (2020)
Investigations in CFT , (2021)

Kuo, Seif, Lundgren, Whitsitt, Hafezi
Kantor, Niarchos, Papageorgakis (2021)

Look at interesting black hole datasets



Predicted mass (MeV, Log Scale)

Constituent quark mass = QCD binding energy

= amount of energy to add to spontaneously emit meson containing given valence quark

Baryons and Mesons
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The neural network is doing something else!

Measured mass (MeV, Log Scale)

9.7% error
8.7% error

Gal, VJ, Mayorga Pefia, Mishra (2020)

u : 336 MeV
d : 340 MeV
s : 486 MeV
c: 1550 MeV

b: 4730 MeV




'1'he Future

Machine learning identifies associations

Want to convert this to analytics — u.e., how does a machine learn?

What problems in physics and mathematics are machine learnable?

Can a machine do interesting science?



hep-th
® Use machine learning to classify papers into arXiv categories

® 65% success at exact subject, 87% success at formal vs. phenomenology

® Mapping words to vectors contextually, we discover syntactic identities

Paris — France + Italy = Rome

king — man + woman = queen

He, VJ, Nelson (2018)



hep-th
Use machine learning to classify papers into arXiv categories

65%0 success at exact subject, 87% success at formal vs. phenomenology

Mapping words to vectors contextually, we discover syntactic identities

Paris — France + Italy = Rome

king — man 4+ woman = queen

An 1dea generating machine for hep-th:

symmetry + black hole = Killing
symmetry + algebra = group
black hole + QCD = plasma

spacetime + inflation = cosmological constant

string theory + Calabi— Yau = M —theory + G-

He, VJ, Nelson (2018)



String Data
string_data 2017 (Northeastern)

string_data 2018 (LMU, Munich)

Physics [ 1 ML (Microsoft)

string_data 2020 (CERN)

NSF Institute for Artificial Intelligence and Fundamental
Interactions, 2020-present (Harvard, MIT, Northeastern, Tufts)

string_data 2021 (Wits) 1

string_data 2022 (Turing Institute)
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