Wormholes in coupled SYK/NAdS2

and their phase structures

Tokiro Numasawa

Massachusetts Institute of Technology

The University of Tokyo,
The Institute for Solid State Physics
the University of Tokyo

Based on arXiv:2011.12962 + work in progress

Today's focus:

- Traversable Wormholes in JT/ Two coupled SYK

Traversable wormhole =Global AdS2

two coupled SYK

- We generalize to JT with four boundaries/ Four coupled SYK

1. (Traversable) wormholes in 4d and in JT gravity

Wormholes: spacetime structure that connect distant regions.

- Spacial Wormholes: Closely related to quantum entanglement
[Israel, 76][Maldacena,03] [Ryu-Takayanagi,06] [Raamsdonk,10] [Maldacena-Susskind,13]
Classically they are not traversable because of ANEC
(by quantum effect of matters we can break ANEC)
- (Euclidean) Spacetime Wormholes:

A kind of gravitational instanton.
Confusing object in AdS/CFT because they cause correlation of P.F.
[Coleman, 88] [Maldacena-Maoz, 04] [Arkani-hamed-Orega-Polchinski, 07]
Recently play an important role in BH information problems
[Saad-Shenker-Stanford, 19] [Penington-Shenker-Stanford-Yang, 19]
[Almheiri-Hartman-Maldacena-Shaghoulian-Tajdini, 19]

Nearly AdS2 gravity

Jackiw-Teitelboim (JT) gravity action

$$
I\left[g_{\mu \nu}, \phi\right]=-\frac{\frac{\phi_{0}}{16 \pi G_{N}} \int \sqrt{g} R-\frac{\phi_{0}}{8 \pi G_{N}} \int \sqrt{h} K}{-\frac{1}{16 \pi G_{N}} \int \phi \sqrt{g}(R+2)-\frac{1}{8 \pi G_{N}} \int \sqrt{h} \phi_{b} K}+\frac{I_{m}[g, \chi]}{\text { JT action }} \frac{\text { matt }}{\frac{I^{2}}{}}
$$

[Jackiw 85]
[Teitelboim 83]

Boundary condition:

$$
d s^{2}=-\frac{d u^{2}}{\epsilon^{2}},\left.\phi\right|_{b d y} \equiv \phi_{b}(u)=\frac{\bar{\phi}_{r}}{\epsilon}
$$

AdS_{2}

Setup for traversable wormhole in JT gravity (1)

- Consider JT gravity w/two boundary + many matter fields

$$
S=I_{J T}+I_{m}[g, \chi]
$$

introduce double trace deformation for matters [Gao-Jafferis-Wall, 16]
In dual description, we have

$$
H=H_{Q M_{L}}+H_{Q M_{R}}+g \sum^{N} O_{L}^{i}(t) O_{R}^{i}(t)
$$

In SYK case, $\quad H_{Q M} \rightarrow H_{S Y K}^{i=1}=\sum J_{i j k l} \psi^{i} \psi^{j} \psi^{k} \psi^{l} \quad O^{i} \rightarrow \psi^{i}$

- Both reduce to coupled Schwarzian theories

Traversable wormhole =Global AdS2

two coupled SYK

Setup for traversable wormhole in JT gravity (2) [Maldacena-Qi 18]

[Maldacena-Milekhin-Popov 18]

- Explicit traversable wormhole solution with conformal matters

$$
\left\{\begin{array}{l}
d s_{i n}^{2}=d s_{\mathrm{AdS}_{2}}^{2} \quad \text { with }\left.\quad d s_{i n}^{2}\right|_{\text {bdy }}=-\frac{d t^{2}}{\epsilon^{2}} \\
d s_{o u t}^{2}=\frac{-d t^{2}+d x^{2}}{\epsilon^{2}}
\end{array}\right.
$$

CFT: living on both of AdS2 (in) and flat space (out) region boundary condition outside is important to make traversable wormholes

QM
(assume holography)
Ground state in
coupled system

cf): boundary conditions 2d Gravity
$I_{\mathrm{grav}}\left[g_{i j}^{(2)}, \phi\right]+I_{\mathrm{CFT}}\left[g_{i j}^{(2)}, \chi\right]$

Traversable wormhole solution:

$$
\begin{aligned}
& d s^{2}=\frac{-d t^{2}+d \sigma^{2}}{\ell^{2} \sin ^{2} \frac{\sigma}{\ell}}, \quad \phi(\sigma)=\frac{2 \bar{\phi}_{r}}{\pi \ell}\left[\frac{\frac{\pi}{2}-\sigma}{\tan \frac{\sigma}{\ell}}+1\right] \\
& \left\langle T_{++}^{\text {mat }}\right\rangle=\frac{c}{48 \pi \ell^{2}}-\frac{\pi^{2} c}{12(\pi \ell+d)^{2}} \\
& \text { Casimir energy: negative }
\end{aligned} \quad\left(\frac{\pi^{2} c}{48(\pi \ell+d)^{2}}\right. \text { for BCFT) }
$$

ℓ : "wormhole length", dynamically determined by EOM

$$
\ell=\ell\left(\bar{\phi}_{r}, c, d\right)
$$

Alternatively: use variational method (approximate by TFD)
minimize variational energy gives the same ℓ

Theory: 4d gravity + Maxwell + massless Fermions

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{1}{16 \pi G_{N}} R+\frac{1}{4 e^{2}} F_{\mu \nu} F^{\mu \nu}+i \bar{\psi} \not D \psi\right]
$$

near extremal charged BH
$\rightarrow \mathrm{AdS}_{2} \times \mathrm{S}^{2}$ near horizon geometry
\rightarrow appearance of nearly AdS_{2} gravity

$$
\left\{\begin{array}{c}
d s^{2}=-f(r) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2} d \Omega_{2}^{2} \\
f(r)=\left(1-\frac{r_{e}}{r}\right)^{2} \\
F=\frac{Q}{2} \sin \theta d \theta \wedge d \varphi
\end{array}\right.
$$

fermion under magnetic field
\rightarrow Landau degeneracy
$\rightarrow(1+1)$ d fermions on each magnetic line
near horizon dynamics is described by
 Jackiw-Teitelboim gravity + (1+1)d CFT

Two oppositely magnetically charged BH
connection outside gives the direct interaction
\rightarrow make wormholes traversable
[Gao-Jafferis-Wall, 16]
[1) :monopoles + anti-monopoles in flat region
(2) :magnetically charged BH
(3) :Wormhole in JT + CFT

Effectively described by...
(1+1)d CFT living on a circle
dynamical JT gravity turned on red region

$$
I_{\mathrm{grav}}\left[g_{i j}^{(2)}, \phi\right]+I_{\mathrm{CFT}}\left[g_{i j}^{(2)}, \chi\right]
$$

(assume holography)
$=$

4d gravity + Holographic 4d CFT + Maxwell
= Randall-Sundrum II
magnetic field: $\mathrm{AdS}_{5} \rightarrow \mathrm{AdS}_{3} \times \mathrm{R}^{2}$
[D'Hoker-Kraus, 08] 3d Gravity
\rightarrow Jackiw-Teitelboim gravity + (1+1)d holographic CFT
Planck brane

[Almheiri-Mahajan-Maldacena-Zhao, 19]
Filling outside the wormholes, related to topological censorship
[cf: Galloway-Schleich-Witt-Woolgar, 99]
Holographic matter can be thought of geometrization of entanglement

1. Traversable wormholes in 4d and in JT gravity (Review)
2. Two traversable wormholes by 4 coupled JT gravity
3. Relation to Euclidean wormhole: Bra-ket wormhole
4.Conclusion/ Future works

2. Four coupled JT gravities

Motivation:study of two traversable wormhole sectors in 4d:
Two traversable wormholes in 4d

- Model by JT/SYK, study solutions, physical quantities, phase structures etc...
- study the role of Z2 symmetry
- the effect of boundary conditions outside the wormholes

Near the joint points

time

Three different descriptions

3d gravity

QM

three solutions:

There are several ways to connect :

Wormhole solution:
$\int d s^{2}=\frac{-d t^{2}+d \sigma^{2}}{\ell^{2} \sin ^{2} \frac{\sigma}{\ell}}$
$\phi(\sigma)=\frac{2 \bar{\phi}_{r}}{\pi \ell}\left[\frac{\frac{\pi}{2}-\sigma}{\tan \frac{\sigma}{\ell}}+1\right]$

L-R wormhole

1-2 wormhole
symmetric solution:

symmetric solution (no wormhole, only matter entanglement)

Wormhole solution with Holographic matters:

Both of CFT $_{\text {LR }}$ and CFT_{12} are holographic

$$
\begin{aligned}
\left\langle T_{++}^{12}\right\rangle & =\frac{c_{12}}{48 \pi \ell^{2}}-\frac{\pi^{2} c_{12}}{12\left(\pi \ell+d_{12}\right)^{2}} \\
\left\langle T_{++}^{L R}\right\rangle & =\frac{c_{L R}}{48 \pi \ell^{2}}-\frac{\pi^{2} c_{L R}}{48\left(\pi \ell+d_{L R}\right)^{2}}
\end{aligned}
$$

changing boundary conditions and phase transition (1):

We can compute energy in each solution:

Parameter: central charges CLR, C12
$\mathrm{CLR}+\mathrm{C}_{12}=\mathrm{C}_{\text {tot }}: k e p t$, change CLR change ℓ, then change energy E

Theory has Z_{2} symmetry at CLR $=C_{12}$
Z_{2} symmetry is broken at $\mathrm{CLR}=\mathrm{C}_{12}$ point

changing boundary conditions and phase transition (2):

part of CFTLR becomes BCFT [Callan, Rubakov...]
C_{12} :kept, $\mathrm{CLR}^{j}+\mathrm{CLR}^{\text {s }}=\mathrm{CLR}: k e p t$, change $\mathrm{CLR}^{\mathrm{j}}$

CLR ${ }^{\text {s }}$: central charge of BCFT
Phase transition at $\mathrm{CLR}^{\mathrm{j}}=\mathrm{C}_{12}$

Connection to Bubble of wormholes:

Bubble of wormhole

[Fabinger-Horava,00]

"Half of bubble of nothing [Witten,82] "

Tachyonic E ${ }_{8}$ string and its condensation were also constructed
[Horava-Keeler,07]

our case:

JT brane 2d wormhole

cf) wormhole from entangled tachyonic strings
[Jafferis-Schneider,21]

1. Traversable wormholes in 4d and in JT gravity (Review)
2. Two traversable wormholes by 4 coupled JT gravity
3. Relation to Euclidean wormhole: Bra-ket wormhole
4.Conclusion/ Future works

3. Relation to Euclidean wormhole: Bra-ket wormhole interpretation

First remember the open closed duality in CFT

closed string

open string

Similarly, in QFT coupled to holographic defect

"open channel"
= partition function of CFT coupled to QML and QMr
$\mathcal{H}=\mathcal{H}_{\mathrm{CFT}_{2}}^{\text {line }} \otimes \mathcal{H}_{\mathrm{QM}_{L}} \otimes \mathcal{H}_{\mathrm{QM}_{R}}$

"closed channel"
= overlap of
gravitationally prepared state

$$
\mathcal{H}=\mathcal{H}_{\mathrm{CFT}_{2}}^{\text {cylinder }}
$$

3. Bra-ket wormhole interpretation

start from traversable wormhole, exchange (Euclidean) time and space

2d gravity 3d gravity
 QM

wormhole connects bra and ket [cf: Page, 86]

$$
|\Psi\rangle \sim \int \mathcal{D} J Z_{J T}[J(x)] e^{-\frac{\tau}{2} H_{C F T}}|J(x)\rangle_{C F T}
$$

wick rotation $\tau=i t$ in 2d gravity description

3d gravity description

[cf:Cooper-Rozali-Swingle-
Raamsdonk-Waddell-Wakeham, 18]

four coupled case:

QM description

prepare a state $\left|\Psi_{12}\right\rangle \in \mathcal{H}_{C F T_{12}} \otimes \mathcal{H}_{C F T_{12}}$
$\left\langle\Psi_{12} \mid \Psi_{12}\right\rangle=Z \sim e^{-L E} \rightarrow$ smaller energy in traversable wormholes picture dominate

four coupled case:

3d Gravity
bra-ket wormhole state

dominant for $c_{L R}<c_{12}$

four coupled case:

no bra-ket wormhole state

dominant for $c_{L R}>c_{12}$
two closed universe annihilate in Euclidean regime

3d Gravity

"2d gravity description"

TFD state with $\quad \beta=2\left(\pi \ell+d_{12}\right)$

Effect of projection by boundary states:

Wick rotation of the phase transition (1)

$$
\begin{aligned}
& \left\langle B_{c_{12 s}}^{L}, B_{c_{12^{s}}}^{R} \mid \Psi_{12}\right\rangle \\
\in & \mathcal{H}_{C F T_{12}^{j}} \otimes \mathcal{H}_{C F T_{12}^{j}}
\end{aligned}
$$

Partial projection onto boundary states $|B\rangle \sim \prod\left|\psi_{x}\right\rangle$ for $\mathrm{CFT}_{12} \mathrm{~s}$

- Maybe sum over final state ~ average, wormhole appears
- It will be interesting to consider projection on Hawking radiations [cf: Marolf-Maxfield, 20]

Effects of entangling operations:

Wick rotation of the phase transition (2)
$C_{L R}+C_{12}=C_{\text {tot }}:$ kept,\quad Entangling operation

Partially entangling two side = projection onto

Entangling operation

$c_{L R}<c_{12}$
26

$$
c_{L R}>c_{12}
$$

Embed holographic states to free field Hilbert spaces:

"partially doubly holographic"

states in $\mathcal{H}_{C F T_{B}} \otimes \mathcal{H}_{C F T_{B}}$

[cf:"Holo-ween" Simidzija-Raamsdonk, 20]

- Take $\mathrm{CFT}_{\mathrm{B}}$ to be bunch of free fields (or Ising CFTs)
\rightarrow realize holographic states in free fields Hilbert sp.
cf: JT gravity with auxiliary system
[Penington-Stanford-Shenker-Yang 19]

$$
\rho_{R} \rightarrow\left|\rho_{R}\right\rangle=\sum\left\langle\psi_{i} \mid \psi_{j}\right\rangle_{B}|i\rangle_{R} \otimes|j\rangle_{R} \in \mathcal{H}_{a u x} \otimes \mathcal{H}_{a u x}
$$

Entanglement entropy and Replica wormholes:

Entanglement entropy between two side is calculated using RT formula for states in non-holographic CFTs

Replica wormhole will justify this calculation
n=3 Renyi Entropy

Replica wormhole

No wormhole
N Majorana fermions

$$
\left\{\psi_{i}, \psi_{j}\right\}=\delta_{i j} \quad\left(\operatorname{dim} \mathcal{H}=2^{\frac{N}{2}}\right)
$$

Hamiltonian: $H_{S Y K}=i^{\frac{q}{2}}$

$$
\sum_{i_{1}<i_{2}<\cdots<i_{q}} J_{i_{1} i_{2} \cdots i_{q}} \psi_{i_{1}} \psi_{i_{2}} \cdots \psi_{i_{q}}
$$

Lagrangian: $L=\psi_{i}(\tau) \partial_{\tau} \psi_{i}(\tau)-i^{\frac{q}{2}} \sum_{i_{1}<i_{2}<\cdots<i_{q}} J_{i_{1} \cdots i_{q}} \psi_{i_{1}} \cdots \psi_{i_{q}}$

- Solvable in the large N limit
- Exact diagonalization at fine N
- Have the same low energy action with 2d dilaton gravity
[Maldacena-Stanford, 16] [Maldacena-Stanford-Yang, 16]

Conformal Symmetry and its breaking in SYK:

After disorder average and Hubbard-Stratonovich type transformation, we obtain

$$
S[G, \Sigma]=N\left[\log \operatorname{Pf}\left(\partial_{\tau}-\Sigma\right)-\int d \tau_{1} \int d \tau_{2} \Sigma\left(\tau_{1}, \tau_{2}\right) G\left(\tau_{1}, \tau_{2}\right)-\frac{\mathcal{J}^{2}}{q} G\left(\tau_{1}, \tau_{2}\right)^{q}\right]
$$

At large $N,(G, \Sigma)$ is classical. EOM is for $G\left(\tau_{1}, \tau_{2}\right)=\frac{1}{N}\left\langle\psi_{i}\left(\tau_{1}\right) \psi_{i}\left(\tau_{2}\right)\right\rangle$

$$
\left\{\begin{array}{l}
\partial_{\tau_{1}} G\left(\tau_{1}, \tau_{2}\right)-\int d \tau^{\prime} \Sigma\left(\tau_{1}, \tau^{\prime}\right) G\left(\tau^{\prime}, \tau_{2}\right)=\delta\left(\tau_{1}-\tau_{2}\right) \\
\Sigma\left(\tau_{1}, \tau_{2}\right)=\frac{\mathcal{J}^{2}}{q} G\left(\tau_{1}, \tau_{2}\right)^{q-1}
\end{array}\right.
$$

conformal sym:

$$
\left\{\begin{array}{l}
G\left(\tau_{1}, \tau_{2}\right) \rightarrow\left[f^{\prime}\left(\tau_{1}\right) f^{\prime}\left(\tau_{2}\right)\right]^{\Delta} G\left(f\left(\tau_{1}\right), f\left(\tau_{2}\right)\right), \quad \Delta=\frac{1}{q} \\
\Sigma\left(\tau_{1}, \tau_{2}\right) \rightarrow\left[f^{\prime}\left(\tau_{1}\right) f^{\prime}\left(\tau_{2}\right)\right]^{1-\Delta} \Sigma\left(f\left(\tau_{1}\right), f\left(\tau_{2}\right)\right)
\end{array}\right.
$$

\rightarrow solutions with power low: $G\left(\tau_{1}, \tau_{2}\right)=\frac{c_{\Delta}}{\left|\mathcal{J}\left(\tau_{1}-\tau_{2}\right)\right|^{2 \Delta}}$ spontaneously break conformal symmetry

- UV $\partial_{\tau_{1}} G\left(\tau_{1}, \tau_{2}\right)$ term breaks conformal (=reparametrization) symmetry leading explicit breaking effect is described by the action

$$
S=-\frac{N \alpha_{S}}{\mathcal{J}} \int\{f(\tau), \tau\}, \quad\{f(\tau), \tau\}=\frac{f^{\prime \prime \prime}(\tau)}{f^{\prime}(\tau)}-\frac{3}{2}\left(\frac{f^{\prime \prime}(\tau)}{f^{\prime}(\tau)}\right)^{2}
$$

Relation to JT gravity:

dynamics are captured by AdS2 with finite cutoff $(t(u), z(u))$

- reparametrization is spontaneously broken by each geometry (cutoff)
- configuration space: $\left(g_{\mu \nu}, \phi\right)$ "entropion"

$$
d s_{\mathrm{bdy}}^{2}=\frac{d u^{2}}{\epsilon^{2}}, \quad \phi_{\mathrm{bdy}}=\phi_{b}=\frac{\phi_{r}}{\epsilon}
$$

- JT gravity action breaks explicitly the reparametrization symmetry

$$
\frac{\delta I_{\mathrm{grav}}}{\delta \phi}=0 \quad \& \quad \frac{\delta I_{\mathrm{grav}}}{\delta g_{\mu \nu}}=0 \quad \rightarrow \quad I=\frac{1}{\epsilon^{2}}-\phi_{r} \int\{t(u), u\}
$$

Four coupled SYK model: definition

The model:

$$
\begin{aligned}
H=H_{S Y K}^{1 L}+ & H_{S Y K}^{1 R}+H_{S Y K}^{2 L}+H_{S Y K}^{2 R} \\
& +i \mu_{L R}\left(\psi^{1 L} \psi^{1 R}+\psi^{2 L} \psi^{2 R}\right) \\
& +i \mu_{12}\left(\psi^{1 L} \psi^{2 L}-\psi^{1 R} \psi^{2 R}\right)
\end{aligned}
$$

$H_{S Y K}=\sum J_{i j k l} \psi^{i} \psi^{j} \psi^{k} \psi^{l}$

- Can be viewed as coupled Maldacena-Qi models
- Model two traversable wormholes in SYK

- "Duality" $\mathrm{LR} \leftrightarrow 12$, which is \mathbb{Z}_{2} symmetry at $\mu_{12}=\mu_{L R}$
- Order parameter: $\quad S^{d i f}=\frac{1}{2}\left(S_{L R}^{11}+S_{L R}^{22}\right)+\frac{1}{2}\left(S_{L L}^{12}-S_{R R}^{12}\right), \quad S_{A B}^{\alpha \beta}=-2 i \psi_{A}^{\alpha} \psi_{B}^{\beta}$
- Introducing collective fields $G_{A B}^{\alpha \beta}\left(\tau_{1}, \tau_{2}\right)=\left\langle\psi_{A}^{\alpha}\left(\tau_{1}\right) \psi_{B}^{\beta}\left(\tau_{2}\right)\right\rangle$ and $\quad \Sigma_{A B}^{\alpha \beta}\left(\tau_{1}, \tau_{2}\right)$

Large N equations are (numerically) solvable

Solutions of the model:

Property of the hopping terms (per an SYK fermion on each site):

$$
H_{M}=+i \mu_{L R}\left(\psi^{1 L} \psi^{1 R}+\psi^{2 L} \psi^{2 R}\right)+i \mu_{12}\left(\psi^{1 L} \psi^{2 L}-\psi^{1 R} \psi^{2 R}\right)
$$

Using the Jordan-Wigner transformation

$$
\psi_{1 L}=\sigma_{x} \otimes \mathbb{I}, \quad \psi_{1 R}=\sigma_{y} \otimes \mathbb{I}, \quad \psi_{2 R}=-\sigma_{z} \otimes \sigma_{y}, \quad \psi_{2 R}=\sigma_{z} \otimes \sigma_{x}
$$

mapping to two cite $X Y$ model

$$
H_{M}=-\frac{1}{2} \mu_{L R}\left(\sigma_{z} \otimes \mathbb{I}+\mathbb{I} \otimes \sigma_{z}\right)-\frac{1}{2} \mu_{12}\left(\sigma_{y} \otimes \sigma_{y}-\sigma_{x} \otimes \sigma_{x}\right)
$$

Ground state: $\left|G\left(\mu_{L R}, \mu_{12}\right)\right\rangle=\cos \frac{\theta}{2}|\uparrow \uparrow\rangle-\sin \frac{\theta}{2}|\downarrow \downarrow\rangle, \quad \tan \theta=\frac{\mu_{12}}{\mu_{L R}}$
In particular, the ground state is unique.

Solutions of the model:

Including SYK terms \quad first focus on $\mu_{12}=\mu_{L R}$
small $\mu_{12}=\mu_{L R}$:

- They have 3 solutions: LR-wormhole, 12-wormhole and symmetric
- Actually \mathbb{Z}_{2} symmetry is broken by wormhole solutions

(connection = entanglement $=$ wormhole $)$
larger $\mu_{12}=\mu_{L R}$:
3 solutions coincide around $\mu_{L R} \approx 0.154$, symmetry is restored Symmetry breaking is strongly coupled phenomena

General parameters: fixed $\mu_{L R}$

- we can study wormhole solutions for $\mu_{L R} \neq \mu_{12}$
- because of instability, we cannot reach the symmetric solutions
- for $\mu_{L R} \ll \mu_{12}$, L-R wormhole disappears
- True ground state + metastable entangled state

Fitting for $\mu_{W_{L R}}$

Order parameters:

- we can study the order parameter and check that they acquires a vev
- seeing correlation
~ entanglement pattern

Effective potential:

Evaluating the action $S_{E} / N \approx \beta V_{\text {eff }}(G, \Sigma)$ for non-solutions gives an effective potential one slice:

$$
\left\{\begin{array}{l}
G(\tau)=s G_{W H_{L R}}(\tau)+t G_{W H_{12}}(\tau)+u G_{s y m}(\tau), s+t+u=1 \\
\Sigma(\tau)=J^{2} G(\tau)^{q-1}
\end{array}\right.
$$

Instability = Tachyonic nature of the symmetric solution is manifest

Relation to double well potential :

Two classical vacua (LR wormhole $\approx|+\rangle$, 12 -wormhole $\approx|-\rangle$)
Tachyon saddle (symmetric saddle)
At finite N (=Planck const), no symmetry breaking

$$
\left\{\begin{array}{lll}
|0\rangle=|+\rangle+|-\rangle & \longleftarrow & \mathbb{Z}_{2}
\end{array} \quad \text { even }, ~=\mathbb{Z}_{2} \quad\right. \text { odd }
$$

Energy difference: $\Delta E \propto e^{-S_{\text {inst }}}$

Some Lessons from four coupled SYK/NAdS2:

- wormhole connection pattern $=Z_{2}$ symmetry breaking
maybe related to the idea that graviton = NG boson? [Kraus-Tomboulis,02] (cf: Scalar in gravity multiplet = coset models)
- LR-wormhole phase: $H_{\mathrm{MQ}_{L R}^{1}}+H_{\mathrm{MQ}_{L R}^{2}}+\mu H_{i n t}^{12}$ is a good description (string theory : \exists duality frame $\mathrm{w} /$ (super) gravity, depend on solutions)
- Tachyonic solution: condensation makes wormholes imply condensation of entangled gas = wormholes
[Jafferis-Schneider,21]
- Z_{2} symmetry: gauged in the bulk and spectrum should be complete $(|L R\rangle+|12\rangle,|L R\rangle-|12\rangle \rightarrow|L R\rangle$ and $|12\rangle$ should be included) = even = odd
sum over wormholes $\leftrightarrow \mathbf{Z}_{2}$ charge completeness [Polchinski,03] (cf: some over $\operatorname{SL}(2, R)$ orbits for partition functions in 3d gravity)

1. Traversable wormholes in 4d and in JT gravity (Review)
2. Two traversable wormholes by 4 coupled JT gravity
3. Bra-ket wormhole interpretation

4.Conclusion/ Future works

4.Conclusion

- We constructed four coupled SYK/ Jackiw-Teitelboim gravity (2 k coupled of this type is straightforward)
- Both have two gapped ground state. Z_{2} symmetry at special point is broken by wormhole configurations. Symmetric saddle is unstable in SYK.
- There is a first order phase transition, which exchanges wormhole configurations. In bra-ket wormhole interpretation, the transition is caused by Projection/Entangling operation.
- We basically studied the effect of cutting/connecting outside the wormholes

Future works

- We do not understand the role of Z_{2} symmetry in bra-ket wormhole picture.
- Showing instability of symmetric saddles in JT gravity side.
- Bra-ket wormholes in SYK model side.
- Projection by boundary states causes phase transition and that helps the bra-ket factorization. Projection by energy eigenstates does not manifestly factorize. Should we include bra-ket wormholes in string/Mtheory?
- Effect of measurements on Hawking radiations in evaporating BHs.
- Bra-ket wormhole can also be considered in de Sitter gravity. Its generalization to many de Sitter.

