Workshop on Black Holes, BPS and Quantum Information@Lisbon, Sep 21, 2021

Wormholes in coupled SYK/NAdS2 and their phase structures

Tokiro Numasawa

Massachusetts Institute of Technology

The University of Tokyo, The Institute for Solid State Physics

THE INSTITUTE FOR SOLID STATE PHYSICS

THE UNIVERSITY OF TOKYO

Based on arXiv:2011.12962 + work in progress

2

Today's focus:

Traversable Wormholes in JT/ Two coupled SYK

[Maldacena-Qi 18]

two coupled SYK

Traversable wormhole =Global AdS2

We generalize to JT with four boundaries/ Four coupled SYK

1. (Traversable) wormholes in 4d and in JT gravity

Wormholes: spacetime structure that connect distant regions.

Spacial Wormholes: Closely related to quantum entanglement
 [Israel, 76] [Maldacena,03] [Ryu-Takayanagi,06] [Raamsdonk,10] [Maldacena-Susskind,13]

ER bridge

Replica

wormholes

Classically they are not traversable because of ANEC (by quantum effect of matters we can break ANEC)

• (Euclidean) Spacetime Wormholes:

A kind of gravitational instanton.

Confusing object in AdS/CFT because they cause correlation of P.F. [Coleman, 88] [Maldacena-Maoz, 04] [Arkani-hamed-Orega-Polchinski, 07]

Recently play an important role in BH information problems [Saad-Shenker-Stanford, 19] [Penington-Shenker-Stanford-Yang, 19] [Almheiri-Hartman-Maldacena-Shaghoulian-Tajdini, 19]

Nearly AdS2 gravity

[Almeiri-Polchinski, 14] [Maldacena-Stanford-Yang, 16]

[Jensen, 16] [Engelosoy-Mertens-Verlinde, 16]

Jackiw-Teitelboim (JT) gravity action

$$I[g_{\mu\nu},\phi] = -\frac{\phi_0}{16\pi G_N} \int \sqrt{g}R - \frac{\phi_0}{8\pi G_N} \int \sqrt{h}K$$
topological
$$-\frac{1}{16\pi G_N} \int \phi\sqrt{g}(R+2) - \frac{1}{8\pi G_N} \int \sqrt{h}\phi_b K + I_m[g,\chi]$$
IT action matter

[Jackiw 85] [Teitelboim 83]

JT action

Boundary condition:

$$ds^{2} = -\frac{du^{2}}{\epsilon^{2}}, \ \phi|_{bdy} \equiv \phi_{b}(u) = \frac{\bar{\phi}_{r}}{\epsilon}$$

$$\text{EOM:} \quad \begin{cases} R+2=0 \quad \longrightarrow \text{AdS}_{2} \\ \nabla_{\mu}\nabla_{\nu}\phi - \nabla^{2}\phi + g_{\mu\nu}\phi = \frac{1}{8\pi G_{N}} \langle T_{\mu\nu}^{mat} \rangle \\ \nabla_{\mu}\nabla_{\nu}\phi - \nabla^{2}\phi + g_{\mu\nu}\phi = \frac{1}{8\pi G_{N}} \langle T_{\mu\nu}^{mat} \rangle \\ \end{cases}$$

$$\text{ex) BH solution:} \quad \int ds^{2} = \left(\frac{2\pi}{\beta}\right)^{2} \frac{-dt^{2} + dX^{2}}{\sinh^{2}\frac{2\pi}{\beta}X} \\ \phi(X) = \frac{2\pi\bar{\phi}_{r}}{\beta\tanh\frac{2\pi}{\beta}X} \\ \langle T_{\mu\nu}^{mat} \rangle = 0 \end{cases}$$

Setup for traversable wormhole in JT gravity (1)

• Consider JT gravity w/two boundary + many matter fields

 $S = I_{JT} + I_m[g,\chi]$

introduce double trace deformation for matters [Gao-Jafferis-Wall, 16] In dual description, we have N [Maldacena-Stanford-Yang, 17]

$$H = H_{QM_L} + H_{QM_R} + g \sum_{i=1}^{i} O_L^i(t) O_R^i(t)$$

In SYK case, $H_{QM} \to H_{SYK}^{i=1} = \sum_{i=1}^{i} J_{ijkl} \psi^i \psi^j \psi^k \psi^l \qquad O^i \to \psi^i$

Both reduce to coupled Schwarzian theories

Traversable wormhole =Global AdS2

Setup for traversable wormhole in JT gravity (2) [Maldacena-Qi 18]

[Maldacena-Milekhin-Popov 18]

cf): boundary conditions

• Explicit traversable wormhole solution with conformal matters

$$\int ds_{in}^2 = ds_{AdS_2}^2 \quad \text{with} \quad ds_{in}^2|_{bdy} = -\frac{dt}{\epsilon^2}$$
$$ds_{out}^2 = \frac{-dt^2 + dx^2}{\epsilon^2}$$

CFT: living on both of AdS₂ (in) and flat space (out) region

boundary condition outside is important to make traversable wormholes

QM

2d Gravity

Traversable wormhole solution:

$$ds^{2} = \frac{-dt^{2} + d\sigma^{2}}{\ell^{2} \sin^{2} \frac{\sigma}{\ell}}, \quad \phi(\sigma) = \frac{2\bar{\phi}_{r}}{\pi\ell} \left[\frac{\frac{\pi}{2} - \sigma}{\tan \frac{\sigma}{\ell}} + 1\right]$$
$$\langle T_{++}^{mat} \rangle = \frac{c}{48\pi\ell^{2}} - \frac{\pi^{2}c}{12(\pi\ell + d)^{2}}$$
$$Casimir \text{ energy: negative} \qquad \left(\frac{\pi^{2}c}{48(\pi\ell + d)^{2}} \text{ for BCFT}\right)$$

 ℓ : "wormhole length", dynamically determined by EOM $\ell = \ell(\bar{\phi}_r,c,d)$

Alternatively: use variational method (approximate by TFD)

$$\begin{split} E(\ell) &= 2 \times \frac{\pi \phi_r}{4G_N} T_H^2 + \frac{c}{24\ell} - \frac{c\pi}{6(\pi \ell + d)} \ , \ \ell = \frac{1}{2\pi T_H} \\ \hline \text{BH mass} \quad \text{Weyl anomaly} \quad \text{Casimir energy} \end{split}$$

minimize variational energy gives the same ℓ

 $\pi\ell > d$: consequence of achronal ANEC

[Graham Olum 07]

 $\pi\ell$

MS

CFT₂ on flat

Theory: 4d gravity + Maxwell + massless Fermions

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{16\pi G_N} R + \frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu} + i\bar{\psi} D \psi \right]$$

near extremal charged BH \rightarrow AdS₂×S² near horizon geometry \rightarrow appearance of nearly AdS₂ gravity

fermion under magnetic field \rightarrow Landau degeneracy \rightarrow (1+1) d fermions on each magnetic line

near horizon dynamics is described by Jackiw-Teitelboim gravity + (1+1)d CFT

[Almheiri-Engerhardt-Marolf-Maxfield, 19] [Maldacena, 20]

$$\int ds^2 = -f(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega_2^2$$
$$f(r) = \left(1 - \frac{r_e}{r}\right)^2$$
$$F = \frac{Q}{2}\sin\theta d\theta \wedge d\varphi$$

Two oppositely magnetically charged BH

connection outside gives the direct interaction \rightarrow make wormholes traversable

[Gao-Jafferis-Wall, 16]

- 1:monopoles + anti-monopoles in flat region
- 2 :magnetically charged BH
- ③ :Wormhole in JT + CFT

Effectively described by...

(1+1)d CFT living on a circle

dynamical JT gravity turned on red region

Filling outside the wormholes, related to topological censorship [cf: Galloway-Schleich-Witt-Woolgar, 99]

Holographic matter can be thought of geometrization of entanglement

- 1. Traversable wormholes in 4d and in JT gravity (Review)
- 2. Two traversable wormholes by 4 coupled JT gravity
- 3. Relation to Euclidean wormhole: Bra-ket wormhole
- **4.Conclusion/ Future works**

2. Four coupled JT gravities

Motivation:study of two traversable wormhole sectors in 4d: Two traversable wormholes in 4d

- Model by JT/SYK, study solutions, physical quantities, phase structures etc...
 - study the role of Z2 symmetry
 - the effect of boundary conditions outside the wormholes

Near the joint points

three solutions:

Wormhole solution with Holographic matters:

changing boundary conditions and phase transition (1):

We can compute energy in each solution:

Change of Magnetic field configuration by changing distance

Parameter: central charges C_{LR} , C_{12} $C_{LR} + C_{12} = C_{tot}$:kept, change C_{LR} change ℓ , then change energy E

Theory has Z_2 symmetry at $C_{LR} = C_{12}$ Z_2 symmetry is broken at $C_{LR} = C_{12}$ point

changing boundary conditions and phase transition (2):

part of CFT_{LR} becomes BCFT [Callan, Rubakov...]

 C_{12} :kept, $C_{LR}^{j} + C_{LR}^{s} = C_{LR}$:kept, change C_{LR}^{j}

CLR^s : central charge of BCFT

Phase transition at $C_{LR}^{j} = C_{12}$

Connection to Bubble of wormholes:

Bubble of wormhole

Tachyonic E₈ string and its condensation were also constructed [Horava-Keeler,07]

- 1. Traversable wormholes in 4d and in JT gravity (Review)
- 2. Two traversable wormholes by 4 coupled JT gravity
- 3. Relation to Euclidean wormhole: Bra-ket wormhole
- **4.Conclusion/ Future works**

3. Relation to Euclidean wormhole: Bra-ket wormhole interpretation

Similarly, in QFT coupled to holographic defect

"open channel"

= partition function of CFT coupled to QML and QMR

$$\mathcal{H} = \mathcal{H}_{\mathrm{CFT}_2}^{\mathrm{line}} \otimes \mathcal{H}_{\mathrm{QM}_L} \otimes \mathcal{H}_{\mathrm{QM}_R}$$

"closed channel"

= overlap of
gravitationally prepared state

$$\mathcal{H} = \mathcal{H}_{\mathrm{CFT}_2}^{\mathrm{cylinder}}$$

[cf: Chen-Gorbenko-Maldacena, 20]

20

3. Bra-ket wormhole interpretation

start from traversable wormhole, exchange (Euclidean) time and space

four coupled case:

QM description

prepare a state $|\Psi_{12}\rangle \in \mathcal{H}_{CFT_{12}} \otimes \mathcal{H}_{CFT_{12}}$

 $\langle \Psi_{12} | \Psi_{12} \rangle = Z \sim e^{-LE} \rightarrow$ smaller energy in traversable wormholes picture dominate

four coupled case:

bra-ket wormhole state

dominant for $c_{LR} < c_{12}$

four coupled case:

no bra-ket wormhole state

3d Gravity

dominant for $c_{LR} > c_{12}$

two closed universe annihilate in Euclidean regime

"2d gravity description"

TFD state with $\beta = 2(\pi \ell + d_{12})$

- Maybe sum over final state ~ average, wormhole appears
- It will be interesting to consider projection on Hawking radiations [cf: Marolf-Maxfield,20]

[Qi,21]

Effects of entangling operations:

Embed holographic states to free field Hilbert spaces:

states in $\mathcal{H}_{CFT_B}\otimes\mathcal{H}_{CFT_B}$

- Take CFT_B to be bunch of free fields (or Ising CFTs)
 - \rightarrow realize holographic states in free fields Hilbert sp.

[Penington-Stanford-Shenker-Yang 19]

$$\rho_R \to |\rho_R\rangle = \sum \langle \psi_i |\psi_j\rangle_B |i\rangle_R \otimes |j\rangle_R \in \mathcal{H}_{aux} \otimes \mathcal{H}_{aux}$$

Entanglement entropy and Replica wormholes:

Entanglement entropy between two side is calculated using RT formula for states in non-holographic CFTs

Replica wormhole will justify this calculation

n=3 Renyi Entropy

Replica wormhole

No wormhole

SYK model: [Sacho

[Sachdev-Ye 93] [Kitaev 14,15]

 $N \text{ Majorana fermions} \qquad \{\psi_i, \psi_j\} = \delta_{ij} \quad (\dim \mathcal{H} = 2^{\frac{N}{2}})$ Hamiltonian: $H_{SYK} = i^{\frac{q}{2}} \sum_{i_1 < i_2 < \cdots < i_q} J_{i_1 i_2 \cdots i_q} \psi_{i_1} \psi_{i_2} \cdots \psi_{i_q}$ with $\langle J_{i_1 i_2 \cdots i_q} \rangle_J = 0$ and $\langle J^2_{i_1 i_2 \cdots i_q} \rangle_J = \frac{\mathcal{J}^2(q-1)!}{q(2N)^{q-1}}$ Lagrangian: $L = \psi_i(\tau) \partial_\tau \psi_i(\tau) - i^{\frac{q}{2}} \sum_{i_1 < i_2 < \cdots < i_q} J_{i_1 \cdots i_q} \psi_{i_1} \cdots \psi_{i_q}$

- $\cdot \ {\rm Solvable}$ in the large N limit
- \cdot Exact diagonalization at fine $\,N\,$
- Have the same low energy action with 2d dilaton gravity

[Maldacena-Stanford, 16] [Maldacena-Stanford-Yang, 16]

Conformal Symmetry and its breaking in SYK:

After disorder average and Hubbard-Stratonovich type transformation, we obtain

$$\begin{split} S[G,\Sigma] &= N \left[\log \operatorname{Pf}(\partial_{\tau} - \Sigma) - \int d\tau_{1} \int d\tau_{2}\Sigma(\tau_{1},\tau_{2})G(\tau_{1},\tau_{2}) - \frac{\mathcal{J}^{2}}{q}G(\tau_{1},\tau_{2})^{q} \right] \\ \text{At large } N \text{, } (G,\Sigma) \text{ is classical. EOM is } \int \operatorname{for } G(\tau_{1},\tau_{2}) = \frac{1}{N} \langle \psi_{i}(\tau_{1})\psi_{i}(\tau_{2}) \rangle \\ \left\{ \begin{array}{l} \partial_{\mathcal{I}_{1}}G(\tau_{1},\tau_{2}) - \int d\tau'\Sigma(\tau_{1},\tau')G(\tau',\tau_{2}) = \delta(\tau_{1} - \tau_{2}) \\ \Sigma(\tau_{1},\tau_{2}) = \frac{\mathcal{J}^{2}}{q}G(\tau_{1},\tau_{2})^{q-1} \end{array} \right. \\ \left\{ \begin{array}{l} G(\tau_{1},\tau_{2}) \rightarrow [f'(\tau_{1})f'(\tau_{2})]^{\Delta}G(f(\tau_{1}),f(\tau_{2})) \\ \Sigma(\tau_{1},\tau_{2}) \rightarrow [f'(\tau_{1})f'(\tau_{2})]^{1-\Delta}\Sigma(f(\tau_{1}),f(\tau_{2})) \end{array} \right. \right. \\ \left. \begin{array}{l} \Delta = \frac{1}{q} \end{array} \right. \end{split}$$

→ solutions with power low: $G(\tau_1, \tau_2) = \frac{c_\Delta}{|\mathcal{J}(\tau_1 - \tau_2)|^{2\Delta}}$ spontaneously break conformal symmetry

• UV $\partial_{\tau_1} G(\tau_1, \tau_2)$ term breaks conformal (=reparametrization) symmetry leading explicit breaking effect is described by the action

$$S = -\frac{N\alpha_S}{\mathcal{J}} \int \{f(\tau), \tau\} , \qquad \{f(\tau), \tau\} = \frac{f'''(\tau)}{f'(\tau)} - \frac{3}{2} \left(\frac{f''(\tau)}{f'(\tau)}\right)^2$$

dynamics are captured by AdS2 with finite cutoff (t(u), z(u))

- reparametrization is spontaneously broken by each geometry (cutoff) - configuration space: (g_{µν}, φ) dilaton~ "entropion" ds²_{bdy} = du²/(ε²), φ_{bdy} = φ_b = φ_r/(ε)
- JT gravity action breaks explicitly the reparametrization symmetry

$$\frac{\delta I_{\text{grav}}}{\delta \phi} = 0 \quad \& \quad \frac{\delta I_{\text{grav}}}{\delta g_{\mu\nu}} = 0 \quad \longrightarrow \quad I = \frac{1}{\epsilon^2} - \phi_r \int \{t(u), u\}$$

Four coupled SYK model: definition

The model:

$$H = H_{SYK}^{1L} + H_{SYK}^{1R} + H_{SYK}^{2L} + H_{SYK}^{2R}$$
$$+ i\mu_{LR}(\psi^{1L}\psi^{1R} + \psi^{2L}\psi^{2R})$$
$$+ i\mu_{12}(\psi^{1L}\psi^{2L} - \psi^{1R}\psi^{2R})$$

$$H_{SYK} = \sum J_{ijkl} \psi^i \psi^j \psi^k \psi^l$$

- Can be viewed as coupled Maldacena-Qi models
- \cdot Model two traversable wormholes in SYK
- \cdot "Duality" LR \leftrightarrow 12 , which is $~\mathbb{Z}_2$ symmetry at $~\mu_{12}=\mu_{LR}$

• Order parameter: $S^{dif} = \frac{1}{2}(S^{11}_{LR} + S^{22}_{LR}) + \frac{1}{2}(S^{12}_{LL} - S^{12}_{RR})$, $S^{\alpha\beta}_{AB} = -2i\psi^{\alpha}_{A}\psi^{\beta}_{B}$

• Introducing collective fields $G_{AB}^{\alpha\beta}(\tau_1,\tau_2) = \langle \psi_A^{\alpha}(\tau_1)\psi_B^{\beta}(\tau_2) \rangle$ and $\Sigma_{AB}^{\alpha\beta}(\tau_1,\tau_2)$

Large N equations are (numerically) solvable

Solutions of the model:

Property of the hopping terms (per an SYK fermion on each site):

$$\begin{split} H_{M} &= +i\mu_{LR}(\psi^{1L}\psi^{1R} + \psi^{2L}\psi^{2R}) + i\mu_{12}(\psi^{1L}\psi^{2L} - \psi^{1R}\psi^{2R}) \\ \\ \text{Using the Jordan-Wigner transformation} \\ \psi_{1L} &= \sigma_{x} \otimes \mathbb{I} \text{ , } \psi_{1R} = \sigma_{y} \otimes \mathbb{I} \text{ , } \psi_{2R} = -\sigma_{z} \otimes \sigma_{y} \text{ , } \psi_{2R} = \sigma_{z} \otimes \sigma_{x} \\ \\ \text{mapping to two cite XY model} \end{split}$$

$$H_M = -\frac{1}{2}\mu_{LR}(\sigma_z \otimes \mathbb{I} + \mathbb{I} \otimes \sigma_z) - \frac{1}{2}\mu_{12}(\sigma_y \otimes \sigma_y - \sigma_x \otimes \sigma_x)$$

Ground state: $|G(\mu_{LR}, \mu_{12})\rangle = \cos \frac{\theta}{2} |\uparrow\uparrow\rangle - \sin \frac{\theta}{2} |\downarrow\downarrow\rangle$, $\tan \theta = \frac{\mu_{12}}{\mu_{LR}}$

In particular, the ground state is unique.

Solutions of the model:

Including SYK terms first focus on $\mu_{12} = \mu_{LR}$

small $\mu_{12} = \mu_{LR}$:

They have 3 solutions: LR-wormhole, 12-wormhole and symmetric

• Actually \mathbb{Z}_2 symmetry is broken by wormhole solutions

(connection = entanglement = wormhole)

larger $\mu_{12} = \mu_{LR}$:

3 solutions coincide around $\mu_{LR} \approx 0.154$, symmetry is restored Symmetry breaking is strongly coupled phenomena

General parameters: fixed μ_{LR}

- we can study wormhole solutions for $\mu_{LR} \neq \mu_{12}$
- because of instability, we cannot reach the symmetric solutions
- $\boldsymbol{\cdot}$ for $\;\mu_{LR}\ll\mu_{12}\;$, L-R wormhole disappears
- True ground state + metastable entangled state

Order parameters:

- we can study the order parameter and check that they acquires a vev
- seeing correlation
 - ~ entanglement pattern

Effective potential:

Evaluating the action $S_E/N \approx \beta V_{\rm eff}(G, \Sigma)$

for non-solutions gives an effective potential

one slice:

Instability = Tachyonic nature of the symmetric solution is manifest

Relation to double well potential :

Two classical vacua (LR wormhole $\approx |+\rangle$, 12 -wormhole $\approx |-\rangle$) Tachyon saddle (symmetric saddle) At finite N (=Planck const), no symmetry breaking

$$\begin{bmatrix} |0\rangle = |+\rangle + |-\rangle & \longleftarrow \mathbb{Z}_2 \text{ even} \\ |1\rangle = |+\rangle - |-\rangle & \longleftarrow \mathbb{Z}_2 \text{ odd}$$

Energy difference: $\Delta E \propto e^{-S_{\text{inst}}}$

Some Lessons from four coupled SYK/NAdS2:

- wormhole connection pattern = Z₂ symmetry breaking maybe related to the idea that graviton = NG boson? [Kraus-Tomboulis,02] (cf: Scalar in gravity multiplet = coset models)
- LR-wormhole phase: $H_{MQ_{LR}^1} + H_{MQ_{LR}^2} + \mu H_{int}^{12}$ is a good description (string theory : \exists duality frame w/ (super) gravity , depend on solutions)
- Tachyonic solution: condensation makes wormholes
 imply condensation of entangled gas = wormholes
 [Jafferis-Schneider,21]
- Z₂ symmetry: gauged in the bulk and spectrum should be complete $(|LR\rangle + |12\rangle, |LR\rangle - |12\rangle \rightarrow |LR\rangle$ and $|12\rangle$ should be included) = even = odd

sum over wormholes \leftrightarrow Z₂ charge completeness [Polchinski,03] (cf: some over SL(2,R) orbits for partition functions in 3d gravity) [Dijkraaf-Maldacena-Moore-Verlinde,00] [Maloney-Witten,07]

- 1. Traversable wormholes in 4d and in JT gravity (Review)
- 2. Two traversable wormholes by 4 coupled JT gravity
- 3. Bra-ket wormhole interpretation
- **4.Conclusion/ Future works**

4.Conclusion

- We constructed four coupled SYK/ Jackiw-Teitelboim gravity (2k coupled of this type is straightforward)
- Both have two gapped ground state. Z₂ symmetry at special point is broken by wormhole configurations. Symmetric saddle is unstable in SYK.
- There is a first order phase transition, which exchanges wormhole configurations. In bra-ket wormhole interpretation, the transition is caused by Projection/Entangling operation.
- We basically studied the effect of cutting/connecting outside the wormholes

Future works

- We do not understand the role of Z₂ symmetry in bra-ket wormhole picture.
- Showing instability of symmetric saddles in JT gravity side.
- Bra-ket wormholes in SYK model side.
- Projection by boundary states causes phase transition and that helps the bra-ket factorization. Projection by energy eigenstates does not manifestly factorize. Should we include bra-ket wormholes in string/Mtheory?
- Effect of measurements on Hawking radiations in evaporating BHs.
- Bra-ket wormhole can also be considered in de Sitter gravity.
 Its generalization to many de Sitter.