Aspects of Holographic Complexity

Federico Galli **INFN & ICS-CNR Florence**

20 September, 2021

Based on work with A. Bernamonti, F. Bigazzi, D. Billo, L. Faggi, J. Hernandez, R. Myers, S. Ruan, J. Simón PRL 123 (2019) no.8 081601 & J. Phys. A: Math. Theor. 53 (2020) 294002 + arXiv: 2108.09281

H2020 **MSCA COFUND** G.A. 754496

Introduction

Quantum Information & AdS/CFT

Interplay between quantum information and holography has led to a fruitful bulk-boundary dialogue

$$S_A = \operatorname{Min} \frac{\operatorname{Area}(\gamma_A)}{4G_N}$$

Spacetime geometry ~ entanglement

$$|\text{TFD}\rangle = \sum_{n} e^{-\frac{\beta E_n}{2}} |n\rangle_L \otimes |$$

Computational complexity: how hard it is to implement a task?

Quantum Circuit Complexity

How difficult is it to prepare a particular target state?

Given a simple reference state (unentangled), how hard it is to prepare a target state acting with a unitary constructed from a set of generators of elementary gates

Complexity quantifies the cost of the optimal circuit generating U_T

Nielsen's geometric approach

Continuum representation of unitary transformations

$$U(\sigma) = \overleftarrow{\mathcal{P}} \exp\left[-i \int_0^\sigma ds H(s)\right]$$

$$H(s) = \sum Y^{I}(s) \mathcal{O}_{I}$$

$$(Control function$$

Associates a cost to each trajectory in the space of unitaries

$$\mathcal{C}\left(|\Psi_T\rangle\right) \equiv \operatorname{Min} \int_0^1 ds \, F(U, Y^I)$$

Complexity: globally cost-minimizing trajectory in the space of unitaries

[Nielsen et al.]

ST FUNCTION

Classical mechanic problem with F playing the role of the Lagrangian

Form of F generally not fixed, but usually one requires

- 1. Smoothness
- 2. Positivity
- 3. Triangle inequality

Examples:

$$\begin{split} F_1(U,Y^I) &= \sum_I |Y^I| \quad \sim \text{ counting Gates} \qquad F_\kappa(U,Y^I) = \sum_I |Y^I|^\kappa \\ F_2(U,Y^I) &= \sqrt{\sum_I (Y^I)^2} \qquad \text{Riemannian} \quad \text{Riemannian} \quad \text{Riemannian} \quad \text{Riemannian} \quad \text{Same circuit as } \mathcal{F}_2 \end{split}$$

Cost Function

QFT Complexity

Approach á la Nielsen adapted to free QFT:

- UV regularization δ (lattice): family of coupled harmonic oscillators
- Gates built from a finite number N of simple generators \mathcal{O} yielding a closed algebra
- Optimal circuit: geodesic problem in the resulting geometry

 $0\rangle$ vacuum [Jefferson,Myers] α coherent state [Guo,Hernandez,Myers,Ruan] $|TFD\rangle$ [Chapman, Eisert, Hackl, Heller, Jefferson, Marrochio, Myers] [Jefferson, Myers]

Other interesting approaches

[Chapman, Heller, Marrochio, Pastawski] [Caputa,Kundu,Miyaji,Takayanagi,Watanabe] [Caputa,Magan]

. . .

Holographic dual of the complexity of a target state $|\Psi_T\rangle$ on a boundary Cauchy slice Σ

Complexity = Volume of the extremal bulk hypersurface \mathcal{B} anchored at the boundary on Σ

$$C_{\rm V} = \max_{\partial \mathcal{B} = \Sigma} \frac{V(\mathcal{B})}{G_N \ell_{\rm bulk}}$$

$$\int_{\mathcal{A}_{\rm C}} \int_{\mathcal{B}_{\rm U} \subset \mathcal{K}} \int_{\mathcal{S} \subset \mathcal{A} \subset \mathcal{A} \subset \mathcal{A}} \int_{\mathcal{B}_{\rm U} \subset \mathcal{K}} \int_{\mathcal{S} \subset \mathcal{A} \subset \mathcal$$

[Susskind, Stanford]

Complexity = Action evaluated on the Wheeler-DeWitt patch

$$\mathcal{C}_A(\Sigma) = \frac{I_{\rm WDW}}{\pi}$$

 I_{WDW} imposing variational principle for Dirichlet BCs on WDW patch

$$I_{\rm WDW} = I_{Bulk} + I_{GHY} + I_{\kappa} + I_{CT}$$

[Brown,Roberts,Susskind,Swingle,Zhao]

WDW patch: domain of dependence of a bulk slice anchored to Σ

[Lehner, Myers, Poisson, Sorkin]

ensures invariance under reparametrization of null directions

Holographic complexity proposals reproduce a number of desirable properties

- probe the interior of black holes
- reproduce the expected late time complexity linear growth
- switchback effect

Interesting similarities and points of contact with (free) QFT results, for instance in the structure of leading UV divergences

$$\mathcal{C}_{A/V} \sim \mathcal{C}_{\kappa=2}$$

$$\sim rac{\operatorname{Vol}(\Sigma)}{\delta^{d-1}}$$

Still have a very partial understanding

- General QFT formulation still lacking
- Understanding of holographic observables far from being exhaustive
- Incomplete map between the two sides

classical bulk fields

First Law of Holographic Complexity

A. Bernamonti, FG, J. Hernandez, R. Myers, S. Ruan and J. Simón PRL 123 (2019) no.8 081601 & J. Phys. A: Math. Theor. 53 (2020) 294002

Complexity Variations

How complexity varies under a small change of the target state

 $\delta \mathcal{C} \equiv \mathcal{C}(|\Psi_T + \delta \Psi\rangle) - \mathcal{C}(|\Psi_T\rangle)$

Why?

- Focus on the dependence of complexity on the target state
- May remove some ambiguities and yield sharper implications for holographic complexity
- Properties of new observables
- Variations often better observables (finite, physical implications...)

First Law of Complexity

Using the analogy of Nielsen's approach to classical mechanics:

• 1st order variation

$$\delta \mathcal{C} = p_a \delta x^a$$
 with $p_a = \frac{\partial}{\partial}$

• 2nd order variation

$$\delta \mathcal{C} = \frac{1}{2} \delta p_a \delta x^a \Big|_{s=1} \quad \text{with} \quad \delta p_a$$

Only contributions from the endpoint

Caveat: assumes perturbed optimal circuit stays close to the original optimal circuit

Holographic Framework

 $|\Psi_T\rangle = |0\rangle$

Vacuum

$$|\varepsilon \alpha_j \rangle = \mathrm{e}^{\varepsilon \sum D(\alpha_j)} |0\rangle \qquad \qquad l$$

where a few modes $\{j\}$ are given classical expectation value with amplitude α_j

$$\langle \varepsilon \alpha_j | \phi | \varepsilon \alpha_j \rangle = \varepsilon \sum \left(\alpha_j u_j + \alpha_j^* u_j^* \right) \equiv \varepsilon \phi_{cl}$$

$$|\Psi_T + \delta \Psi\rangle = |\varepsilon \alpha_j\rangle$$

Coherent state

$$\sum_{n} \left(u_n(y^\mu)a_n + u_n^*(y^\mu)a_n^\dagger \right)$$

$$D(\alpha_j) = \alpha_j a_j^{\dagger} - \alpha_j^* a_j$$
 displacement op.

Holographic Framework

 $|\epsilon \alpha_i\rangle$ are also coherent states in the boundary CFT corresponding to excitations of the vacuum by the dual generalized free field operator \mathcal{O}_{Δ} and its descendants

- Quantum circuit technology in QFT [Jefferson, Myers] applied to coherent states [Guo,Hernandez,Myers,Ruan] can be equivalently applied in the bulk
- Simple classical gravity description suitable to evaluate holographic complexity

 $|\Psi_T\rangle = |0\rangle$ $|\Psi_T +$

Global AdS q_0

Spherically symmetric perturbations and perturbatively in the amplitude \mathcal{E} of the coherent state

$$\delta\Psi\rangle = |\varepsilon\alpha_j\rangle$$

 $(q_0 + \varepsilon^2 \delta q, \varepsilon \phi_{cl})$

CA Variation

The terms contributing a finite piece

 $\delta I = \delta I_{EH} + \delta I_{\kappa} + \delta I_{CT} + \delta I_{\phi}$

- Counterterm is essential for cancellation
- Not a general feature (non spherical setups, excited target state, ...)

[Hashemi, Jafari, Naseh]

CA Variation

- Variation completely determined by the matter
- Purely $O(\varepsilon^2)$ contribution
- Scale independent: UV finite and independent of ℓ_{CT}
- \bullet

 $\delta \mathcal{C}_A = \frac{\delta I_\phi}{\pi} = -\frac{\varepsilon^2}{64\pi G_N} \int_{\partial WDW} d\lambda \, d^{d-1} \Omega \, \sqrt{\gamma} \, \partial_\lambda \phi_{cl}^2$

Irrespectively of the cancellations, variation of each contribution to the action is localized on the boundary of undeformed WDW patch

$$\delta \mathcal{V} = \mathcal{V}_{\max}[g_0 + \varepsilon^2 \delta g] - \mathcal{V}_{\max}$$

$$\delta \mathcal{C}_V = \frac{\delta \mathcal{V}}{G_N \ell} = \frac{1}{(d \ell)^2}$$

- Purely $O(\varepsilon^2)$ contribution
- Scale independent and UV finite
- Expressed in terms of the bulk stress tensor

CV Variation

 $\frac{\varepsilon^2}{d-1)G_N\ell} \int_{t_{\Sigma}} \sqrt{h} \cos \rho^2 T_{tt}^{bulk}$

See also [Belin,Lewkowycz,Sarosi] [Jacobson,Visser]

CA-CV Comparison

Multi-mode coherent state $\phi_{cl} = \sum_{\{j\}} 2 \alpha_j \cos(\omega_j t) e_j(\rho)$ $\omega_j = 2j + \Delta$

$$\delta \mathcal{C}_A = \varepsilon^2 \sum_{\{j,k\}} \alpha_j \alpha_k \left[\cos \omega_j t \ c \right]$$
$$\delta \mathcal{C}_V = \varepsilon^2 \sum_{\{j,k\}} \alpha_j \alpha_k \left[\cos \omega_j t \ c \right]$$

- Same functional oscillatory structure
- Mode mixing
- Scale independent coefficients C_{ij}, S_{ij}

 $\cos\omega_k t \, C^A_{jk} + \sin\omega_j t \, \sin\omega_k t \, S^A_{jk} \big]$

 $\cos\omega_k t \, C_{jk}^V + \sin\omega_j t \, \sin\omega_k t \, S_{jk}^V \big]$

CA-CV Comparison

• Different structure for the coefficients:

Different behaviour for CA and CV under perturbations Similar conclusion to what found for "perturbations" given by defects

[Chapman,Ge,Policastro] [Braccia,Cotrone,Tonni]

QFT Complexity Variation

Extension of the coherent states analysis of [Guo,Hernandez,Myers,Ruan] to general Gaussian states with non-vanishing first momenta

$$\delta \mathcal{C}_{\kappa=2} = \mathcal{C}_{Coh} - \mathcal{C}_{GS} = \varepsilon^2 \sum_{\{j\}} \alpha_j^2 [\cos^2 \omega_j t C_j^{\kappa=2} + \sin^2 \omega_j t S_j^{\kappa=2}]$$

- Purely $O(\varepsilon^2)$ contribution
- Similar oscillatory structure as the holographic $\delta C_{A/V}$
- Diagonal: no mode mixing
- and trajectory

$$C_{j}^{\kappa=2} = \frac{\log \frac{\omega_{j}}{\rho}}{\omega_{j} - \rho} f_{j}^{2},$$

$$\int_{\substack{\kappa \in \text{FERENCE}\\\text{STATE}}} F_{\text{STATE}} \int_{\substack{\kappa \in \text{SCALE}}} F_{\text{STATE}} f_{j}^{2},$$

• Dependence on various scales of the circuit models: memory of initial state

$$S_{j}^{\kappa=2} = C_{j}^{\kappa=2} \frac{\omega_{j}^{3}}{\mu f_{j}^{4}}$$

$$\int G_{\text{ATE}}$$

$$SGLE$$

• $\delta \mathcal{C} \sim \varepsilon^2 \alpha^2 \Rightarrow p_a \delta x^a |_{s=1} = 0$

coherent state directions are orthogonal to the direction along the circuit preparing the CFT vacuum

- lacksquare $\partial WDW = end of the quantum circuit?$
- \bullet cost functions?

Holographic complexity variation: localized on the boundary of the WDW patch.

Diagonal vs mixed terms: holographic complexity may require more complicated

Complexity with Rotation

A. Bernamonti, F. Bigazzi, D. Billo, L. Faggi and FG arXiv: 2108.09281

Motivations

- Mostly highly symmetric setups, mainly planar or spherically symmetric.
 Systems with rotation so far less understood
- Extra parameters and gravitational features to test complexity
- Interesting limits to probe, e.g., rotation with critical (speed of light) velocity
- Few holographic results: deserve to be studied further and extended (see later)
- QFT Nielsen's circuit complexity?

$$|rTFD\rangle = \frac{1}{\sqrt{Z\left(\beta,\Omega\right)}} \sum_{n} e^{-\frac{\beta}{2}\left(E_n + \Omega J_n\right)} |E_r|$$

Rotating TFD

Simple model: two copies of a free boson on a circle

$$|rTFD\rangle = \frac{1}{\sqrt{Z\left(\beta,\Omega\right)}} \sum_{n} e^{-\frac{\beta}{2}\left(E_{n} + \Omega J_{n}\right) - it\left(E_{n} + \Omega J_{n}\right)} |E_{n}, J_{n}\rangle_{L} |E_{n}, J_{n}\rangle_{R}$$

Particle number simultaneously labels Hamiltonian and momentum eigenstates

$$H = \int_{-\frac{L}{2}}^{\frac{L}{2}} dx \ \frac{\pi^2}{2} + \frac{m^2}{2} \phi^2 + \frac{1}{2} (\partial_x \phi)^2 = \sum_k \omega_k \left(a_k^{\dagger} a_k + \frac{1}{2} \right) \qquad \qquad J = -\int_{-\frac{L}{2}}^{\frac{L}{2}} dx \ \pi \partial_x \phi = \sum_k p_k \left(a_k^{\dagger} a_k + \frac{1}{2} \right)$$

Rotating TFD

Gaussian state: factorizes into single-mode rotating TFD states

$$|rTFD\rangle = \otimes |rTFD\rangle_k \qquad |rTFD\rangle_k = \frac{1}{\sqrt{Z_k(\beta,\Omega)}} \sum_n e^{-\left(\frac{\beta}{2} + it\right)(\omega_k + \Omega p_k)(n + \frac{1}{2})} |n\rangle_{k,L} |n\rangle_{k,R}$$

can be written as TFD state with no rotation and mode-dependent effective temperature and time

$$|rTFD(\beta,t)\rangle_{k} = \frac{1}{\sqrt{Z_{k}(\beta,\Omega)}} \sum_{n} e^{-\left(\frac{\beta}{2}+it\right)(\omega_{k}+|\Omega p_{k})(n+\frac{1}{2})} |n\rangle_{k,L} |n\rangle_{k,R} = \frac{1}{\sqrt{Z_{k}(\beta_{k})}} \sum_{n} e^{-\left(\frac{\beta_{k}}{2}+it_{k}\right)\omega_{k}(n+\frac{1}{2})} |n\rangle_{k,L} |n\rangle_{k,R} = |TFD(\beta_{k},t_{k})\rangle_{k}$$
with $\beta_{k} = \beta \left(1+\Omega \frac{p_{k}}{\omega_{k}}\right) \qquad t_{k} = t \left(1+\Omega \frac{p_{k}}{\omega_{k}}\right) \qquad \beta_{k} \text{ non-negative for } \Omega < 1$

$$|rTFD(\beta,t)\rangle_{k} = \frac{1}{\sqrt{Z_{k}(\beta,\Omega)}} \sum_{n} e^{-\left(\frac{\beta}{2}+it\right)(\omega_{k}+|\Omega p_{k})(n+\frac{1}{2})} |n\rangle_{k,L} |n\rangle_{k,R} = \frac{1}{\sqrt{Z_{k}(\beta_{k})}} \sum_{n} e^{-\left(\frac{\beta_{k}}{2}+it_{k}\right)\omega_{k}(n+\frac{1}{2})} |n\rangle_{k,L} |n\rangle_{k,R} = |TFD(\beta_{k},t_{k})\rangle_{k}$$
with $\beta_{k} = \beta \left(1+\Omega \frac{p_{k}}{\omega_{k}}\right) \qquad t_{k} = t \left(1+\Omega \frac{p_{k}}{\omega_{k}}\right) \qquad \beta_{k} \text{ non-negative for } \Omega < 1$

Rotating TFD state can be given an effective description in terms of non-rotating TFD states

Rotating TFD Complexity

the sum of complexities evaluated for each mode separately

$$\mathcal{C}_{\kappa=2} = \frac{1}{4} \sum_{k} \log^2 \left(f_k^{(+)} + \sqrt{\left(f_k^{(+)}\right)^2 - 1} \right) + \log^2 \left(f_k^{(-)} + \sqrt{\left(f_k^{(-)}\right)^2 - 1} \right)$$

$$f_{k}^{(\pm)} = \frac{1}{2} \left(\underbrace{\mu}_{\omega_{k}} + \frac{\omega_{k}}{\mu} \right) \cosh 2\alpha_{k} \pm \frac{1}{2} \left(\underbrace{\mu}_{\omega_{k}} - \frac{\omega_{k}}{\mu} \right) \sinh 2\alpha_{k} \cos \omega_{k} t \qquad \alpha_{k} = \frac{1}{2} \log \left(\frac{1 + e^{-\beta \omega_{k}/2}}{1 - e^{-\beta \omega_{k}/2}} \right)$$

$$\bigwedge \text{REFERENCE STATE SCALE} \qquad \text{[Chapman Eisert Hack] Heller Jefferson Marroch}$$

Consequence: we can estimate the complexity of the rotating TFD state as the sum of complexity of single mode TFD states each with inverse temperature β_k and time t_k

TFD circuit complexity: $F_{\kappa=2}$ optimal circuit does not mix modes and complexity obtained as

[Chapman, Eisert, Hackl, Heller, Jefferson, Marrochio, Myers]

Time Dependence

Time variation $C_{\kappa=2}(t) - C_{\kappa=2}(0)$

- Low temperature: zero mode dominated
- Oscillations vs holographic linear increase: L-R moving d.o.f. propagating freely on the circle. Periodicity:

$$t \sim t + \frac{L}{2|k|(1\pm\Omega)}$$

• High T: amplitude of different modes become comparable

Complexity of Formation

$$\Delta \mathcal{C}_{\kappa=2} = \mathcal{C}\left(|rTFD\rangle\right) - \mathcal{C}\left(|0\rangle_L|0\rangle_R\right) = 2\sum \operatorname{arctanh}^2 e^{-\beta_k \omega_k/2}$$

High temperature and critical angular velocity $\Omega \rightarrow 1$ divergences:

$$\Delta \mathcal{C}_{\kappa=2} \sim \frac{7\zeta(3)}{2\pi} \frac{T}{1-\Omega^2} - \frac{1}{2}\log^2 T + \dots \qquad \text{as} \quad T \to \infty$$
$$\Delta \mathcal{C}_{\kappa=2} \sim \frac{7\zeta(3)}{4\pi} \frac{T}{1-\Omega} - \frac{1}{2}\log^2 \frac{1}{1-\Omega} + \dots \qquad \text{as} \quad \Omega \to 1$$

- Scale independent
- Positive defined

Holography: Review

The first estimates of late time holographic complexity growth rate -before complete understanding of action contributions of null boundaries- was given in [Brown,Roberts,Susskind,Swingle,Zhao][Cai,Ruan,Wang,Yang,Peng]

$$\lim_{t \to \infty} \frac{d\mathcal{C}}{dt} \sim (I$$

Lower dimensional case revisited in [Auzzi, Baiguera, Nardella et al.]: full time dependence of CV and CA growth rate

- Counterterm was not included: does it play any role?
- cost of preparing vacuum?

$$M - \Omega_+ J) - (M - \Omega_- J)$$

• Complexity of formation i.e., cost of preparing the rotating state as compared to the

Rotating BTZ

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}\left(d\varphi - \omega(r)\right)$$

$$f(r) = \frac{(r^2 - r_+^2)(r^2 - r_-^2)}{r^2} \qquad M$$

$$\omega(r) = \frac{r_+ r_-}{r^2} \qquad \qquad T$$

Revisited time dependence of holographic complexity taking into account all terms in the WDW action

- Inclusion of counterterm does not alter qualitative behaviour lacksquare
- Expected late time linear growth

$$\lim_{t \to \infty} \frac{dC}{dt} \sim M - \Omega J$$

 $(t) dt^2$

$$= \frac{r_{+}^{2} + r_{-}^{2}}{8} \qquad J = \frac{r_{+}r_{-}}{4}$$
$$= \frac{r_{+}^{2} - r_{-}^{2}}{2\pi r_{+}} \qquad \Omega = \frac{r_{-}}{r_{+}}$$

J < M

0

Rotating BTZ

To compare with the QFT results focus on complexity of formation $\Delta C = C(t = 0) - 2C_{AdS}$

 Ω dependence:

included

 $\Delta C \sim \frac{T}{1 - \Omega} \log \frac{\mathbf{1}}{1 - \Omega}$

- Without countertem, same form but opposite sign
- Extra log factor as compared to QFT divergence

• CA and CV have the same $\Omega \rightarrow 1$ divergences when the counterterm is

$$\log \frac{1}{1-\Omega}$$

Rotating BTZ

T dependence:

- Matching linear behaviour for CV and CA only when counterterm is included
- Same linear divergence as for free QFT complexity at high T
- In tension with the hypothesis of a *third law of holographic complexity*: finite complexity of formation at zero T vs logarithmic divergence of higher dimensional charged and Myers-Perry black holes [CarmiChapmanMarrochioMyersSugishita]

S [CarmiChapmanMarrochioMyersSugishita] [AlBalushi,Hennigar,Kunduri,Mann]

Holography: Review

Higher dimensional rotating black holes: much harder technical task

momenta in each orthogonal plane [AlBalushi,Hennigar,Kunduri,Mann]

large black hole limit $r_+ \gg \ell$

complexity of formation controlled by the thermodynamic volume

$$\Delta \mathcal{C} \sim S \log \frac{\Omega}{T} + \tilde{f} V_{+}^{\frac{D-2}{D-1}}$$

• late time growth rate

$$\lim_{t \to \infty} \frac{d\mathcal{C}}{dt} \sim P\left(V_+ - V_-\right)$$

- Notable exception: odd-dimensional Myers-Perry AdS black holes with equal angular

Highlighted connection between holographic complexity and thermodynamic volume in the

[Couch, Fischler, Nguyen]

Kerr-AdS4

$$ds^{2} = -\frac{\Delta}{\rho^{2}} \left(dt - \frac{a}{\Xi} \sin^{2} \theta d\varphi \right)^{2} + \frac{\rho^{2}}{\Delta} dr^{2} + \frac{\rho^{2}}{\Delta_{\theta}} d\theta^{2} + \frac{\Delta_{\theta}}{\rho^{2}} \sin^{2} \theta \left(a dt - \frac{r^{2} + a^{2}}{\Xi} d\varphi \right)^{2}$$

$$\Delta = (r^2 + a^2) \left(1 + \frac{r^2}{\ell^2} \right) - 2mr \qquad \Delta_\theta = 1 - \frac{a^2}{\ell^2} \phi$$
$$\rho^2 = r^2 + a^2 \cos^2 \theta \qquad \qquad \Xi = 1 - \frac{a^2}{\ell^2}$$

$$M = \frac{m}{G_N \Xi^2} \qquad J = aM$$
$$\Omega = \frac{a}{\ell} \frac{r_+^2 + \ell^2}{r_+^2 + a^2} \qquad T = \frac{r_+}{4\pi \left(r_+^2 + a^2\right)} \left(1 + \frac{a^2}{\ell^2} + 3\frac{r_+^2}{\ell^2} - \frac{a^2}{r_+^2}\right)$$

Reduced symmetry but some partial progress

 $\cos^2 \theta$

Recent analysis of null hypersurfaces [AlBalushi,Mann]: implicit description of the WDW patch

Precise treatment of the late time limit of the CA growth rate

- Only non-vanishing contributions: EH term and null-null joints at the past and future tips of the WDW patch
- Reproduces expected answer [Cai,Ruan,Wang,Yang,Peng] lacksquare

$$\lim_{t \to \infty} \pi \frac{dC_{\rm A}}{dt} = \frac{r_+^3 - r_-^3 + \ell^2 \left(r_+ - r_-\right)}{2 G_N \left(\ell^2 - a^2\right)} = (M - \ell^2)$$

Proportional to the difference of thermodynamic volumes in the lacksquarelarge black hole limit $r_+ \gg \ell$

 $\Omega_+J) - (M - \Omega_-J)$

Kerr-AdS4

CV complexity of formation evaluated numerically

- Diverges at high T and for critical angular velocity $\Omega \rightarrow 1$
- complexity of formation with the thermodynamic volume

• Compatibility with the claim of [AlBalushi,Hennigar,Kunduri,Mann] on the scaling of the

• Unable to test it independently. Scaling of S and V fixed in the region of parameters corresponding to physical solutions (extremal solutions have superluminal rotation)

- Map between rotating and non-rotating TFD in simple scalar toy model
- Holographic complexity: counterterm essential to match CA and CV behaviour for rotating BTZ black holes
- Qualitative agreement between QFT and holographic complexity results in the high temperature and critical angular velocity limit
- QFT complexity of formation scale independent while CA depends on the counterterm scale

Remarks

