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Introduction



Quantum Information & AdS/CFT

Interplay between quantum information and holography has led to a fruitful
bulk-boundary dialogue
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Computational complexity: how hard it is to implement a task?



Quantum Circuit Complexity

How difficult is it to prepare a particular target state?

Given a simple reference state (unentangled), how hard it is to prepare a target state
acting with a unitary constructed from a set of generators of elementary gates

‘\IJR> @ iy | ... 8i 8i, |\IJT>

(ATE

A

(/ GCATE 1€ I/ CENTERATOR
gr = €

Complexity quantifies the cost of the optimal circuit generating U



Nielsen’s geometric approach

[Nielsen et al.]

Continuum representation of unitary transformations
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Associates a cost to each trajectory in the space of unitaries
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C(|Ur)) = Min/ol ds F(U, Y1)

Complexity: globally cost-minimizing trajectory in the space of unitaries



Cost Function

Classical mechanic problem with F' playing the role of the Lagrangian

Form of F' generally not fixed, but usually one requires

1. Smoothness
2. Positivity
3. Triangle inequality

Examples:
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QFT Complexity

Approach a la Nielsen adapted to free QFT: [Jefferson,Myers]
« UV regularization o (lattice): family of coupled harmonic oscillators

« Gates built from a finite number /N of simple generators O yielding a closed algebra

 Optimal circuit: geodesic problem in the resulting geometry

‘ O) vacuum [Jefferson,Myers]

| 0() coherent state [Guo,Hernandez,Myers,Ruan]

| TFD) [Chapman,Eisert,Hackl,Heller,Jefferson,Marrochio,Myers]

Other interesting approaches

Chapman,Heller,Marrochio,Pastawski]
Caputa,Kundu,Miyaji, Takayanagi,Watanabe]
Caputa,Magan]




Holographic Complexity

Holographic dual of the complexity of a target state |¥,) on a boundary Cauchy slice 2.

Complexity = Volume of the extremal bulk hypersurface B

Susskind, Stanford
anchored at the boundary on X [Susskind, Stanford]
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Holographic Complexity

Complexity = Action evaluated on the Wheeler-DeWitt patch [Brown,Roberts,Susskind,Swingle,Zhao]

Lwp domain of
Ca(X) = WOW dependence of a bulk slice
(s anchored to >

Iypw imposing variational principle for Dirichlet BCs on WDW patch  [Lehner, Myers, Poisson, Sorkin]
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ensures invariance under reparametrization of null directions



Holographic Complexity

Holographic complexity proposals reproduce a number of desirable properties

* probe the interior of black holes
* reproduce the expected late time complexity linear growth

e switchback effect

Interesting similarities and points of contact with (free) QFT results, for instance in the
structure of leading UV divergences
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Holographic Complexity

Still have a very partial understanding

* General QFT formulation still lacking
* Understanding of holographic observables far from being exhaustive

* |Incomplete map between the two sides

(g,{¢p})  classical bulk fields
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First Law of Holographic Complexity

A. Bernamonti, FG, J. Hernandez, R. Myers, S. Ruan and J. Simon
PRL 123 (2019) no.8 081601 & J. Phys. A: Math. Theor. 53 (2020) 294002



Complexity Variations

How complexity varies under a small change of the target state

0C = C(|Tr + 6T)) — C(|Tr))

Why?

* Focus on the dependence of complexity on the target state

 May remove some ambiguities and yield sharper implications for
holographic complexity

* Properties of new observables

* Variations often better observables (finite, physical implications...)



First Law of Complexity

_ _ , , VARIATION oF
Using the analogy of Nielsen's approach to classical mechanics: oP,:', )T: Z TRA | ETOLY X8
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Only contributions from the endpoint

Caveat: assumes perturbed optimal circuit stays close to the original optimal circuit



Holographic Framework

W) = 10) Wt +0¥) = |ea;)
Vacuum Coherent state

Given an AdS bulk scalar  ¢(y*) = )  (un(y")an + u},(y*)al)

ea) = ef 2= D)) D(aj) = ozja;f- — asa; displacement op.

where a few modes {j} are given classical expectation value with amplitude a;

(eaj|dlea;) = 62 (ovju; + a;'fu;f) = £Qy



Holographic Framework

| eaj) are also coherent states in the boundary CFT corresponding to excitations of the

vacuum by the dual generalized free field operator Oa and its descendants

* Quantum circuit technology in QFT [Jefferson,Myers] applied to coherent states
[Guo,Hernandez,Myers,Ruan] can be equivalently applied in the bulk

* Simple classical gravity description suitable to evaluate holographic complexity

Ur) = 0) Ur +6V) = |eay)
Global AdS ¢ (90 +€%8g,eda)

Spherically symmetric perturbations and perturbatively in the amplitude £
of the coherent state

C

D

go +€70g

S ¢cl




CA Variation

O(&2) (— background fields on
0T = I[go +€°0g,e0a] —Igo] =" dIwpw + Iswpw deformed WDW

,\fields variations on
undeformed WDW

The terms contributing a finite piece

0l =0lgpy + 0l + 0lcT + 014

e Counterterm is essential for cancellation

*, 5 ]gravity _ O |
* Not a general feature (hon spherical setups,

excited target state, ...)
[Hashemi,Jafari,Naseh]



CA Variation
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Variation completely determined by the matter
Purely O(e?) contribution

Scale independent: UV finite and independent of £

Irrespectively of the cancellations, variation of each contribution to the
action is localized on the boundary of undeformed WDW patch



CV Variation

0V = Vmax|go + 5259] — Vmax|90] = 0Vgi, + Vs£u

0g on undeformed
surface at ¢ty

Gnl |

) 82
5 h QTbulk
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. Purely O(e?) contribution
e Scale independent and UV finite

* Expressed in terms of the bulk stress tensor

extremal surface

See also

[Belin,Lewkowycz,Sarosi]
[Jacobson,Visser]



CA-CV Comparison

Multi-mode coherent state  ®c; = Z 2 aj cos(w;t) ej(p) w;j =27+ A
{7}

6C 4 = &2 Z QL Oty [COS w;t coswgt Cﬁﬂ + sinw;t sin wyt Sﬁc]
17,k}

6Cy = &7 Z QL Oty [cos w;t coswgt C% + sinw;t sin wyt Sﬁ}
17,k}

 Same functional oscillatory structure

* Mode mixing

- Scale independent coefficients C;;, S;;



CA-CV Comparison

e Different structure for the coefficients:
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Different behaviour for CA and CV under perturbations

Similar conclusion to what found for “perturbations” given by defects [Chapman,Ge,Policastro]
[Braccia,Cotrone, Tonni]



QFT Complexity Variation

Extension of the coherent states analysis of [Guo,Hernandez,Myers,Ruan] to general Gaussian
states with non-vanishing first momenta

0Cr—2 = Ccon — Cas =€ Y a’[cos® witCF=> + sin® w;tSF =7
{4}

. Purely O(e?) contribution

« Similar oscillatory structure as the holographic 0C,y

* Diagonal: no mode mixing

* Dependence on various scales of the circuit models: memory of initial state
and trajectory
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Remarks

6C ~ e?a® = p6x*|s=1 = 0

coherent state directions are orthogonal to the direction along the circuit
preparing the CFT vacuum

Holographic complexity variation: localized on the boundary of the WDW patch.
JOWDW = end of the quantum circuit?

Diagonal vs mixed terms: holographic complexity may require more complicated
cost functions?

ox?

Pa



Complexity with Rotation

A. Bernamonti, F. Bigazzi, D. Billo, L. Faggi and FG
arXiv: 2108.09281



Motivations

* Mostly highly symmetric setups, mainly planar or spherically symmetric.
Systems with rotation so far less understood

* Extra parameters and gravitational features to test complexity

* Interesting limits to probe, e.g., rotation with critical (speed of light) velocity

* Few holographic results: deserve to be studied further and extended (see later)

* QFT Nielsen’s circuit complexity?
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Rotating TFD

Simple model: two copies of a free boson on a circle

rTFD) = > e 2 (Ent Q) —t(Ent Q)| g TN BT Ve

VZ(8,0) 5

Particle number simultaneously labels Hamiltonian and momentum eigenstates
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Rotating TFD

Gaussian state: factorizes into single-mode rotating TFD states

1 : 1
"T’TFD> — @‘TTFD>]<; ‘rTFD>k — Ze_(§+2t)(wk+ ka)(n+§)|n>k,L|n>k,R

can be written as TFD state with no rotation and mode-dependent effective
temperature and time

1 ' 1 1 —( Lk ) wr (n+ L
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with bk =10 (1 + () p—k> ty =1 (1 + Qp—k) Bk non-negative for € < 1

Wi W

Rotating TFD state can be given an effective description in terms of non-rotating TFD states



Rotating TFD Complexity

TFD circuit complexity: £x=2 optimal circuit does not mix modes and complexity obtained as
the sum of complexities evaluated for each mode separately

Cr=2 = iZlogQ (fé” + \/( é+)>2 — 1) + log? (fé) + \/( é‘))Q — 1)
k

cosh 2, + = | M= sinh 2a; cos wit Xk =3 log (1 - ﬁwk/2>

,
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[Chapman,Eisert,Hackl,Heller,Jefferson,Marrochio,Myers]

Conseqguence: we can estimate the complexity of the rotating TFD state as the sum of
complexity of single mode TFD states each with inverse temperature Ok and time ¢«



Time Dependence

Time variation Cu.—2(t) — C.—2(0)

* Low temperature: zero mode dominated

* Oscillations vs holographic linear increase: L-R moving
d.o.f. propagating freely on the circle. Periodicity:

L

t ~ 14
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* High T: amplitude of different modes become comparable
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Complexity of Formation

ACr—o =C (‘T‘TFDD —C (‘O>L‘O>R) — 9 Zarctanh%_ﬁk“’fm

ACkz ACy. * Scale independent
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High temperature and critical angular velocity 2 — 1 divergences:
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Holography: Review

The first estimates of late time holographic complexity growth rate -before complete

understanding of action contributions of null boundaries- was given in
[Brown,Roberts,Susskind,Swingle,Zhao][Cai,Ruan,Wang,Yang,Peng]

t—oo dt

Lower dimensional case revisited in [Auzzi,Baiguera,Nardella et al.]: full time dependence of
CV and CA growth rate

* Counterterm was not included: does it play any role?

 Complexity of formation i.e., cost of preparing the rotating state as compared to the
cost of preparing vacuum?



Rotating B1Z

d 2
ds® = — f(r)dt* - fz;“) -2 (do — w(r) dt)”
(r2 —r3)(r? — r2) 2
f(T) — 2 M = 3 J = 4
2 2
_T+T_ _T_I_—’I“_ Q:T—_
w(r) N r? b= 27T7“_|_ T+

Revisited time dependence of holographic complexity taking into
account all terms in the WDW action

* |Inclusion of counterterm does not alter qualitative behaviour
* Expected late time linear growth

lim gwM—QJ

t—oo dt
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Rotating B1Z

To compare with the QFT results focus on complexity of formation AC = C(t = 0) — 2Caaqs

(2 dependence:

JT ACV(tb=O) T ACA(tb=O)
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 CA and CV have the same 2 — 1 divergences when the counterterm is
included

T 1

AC’Nl_Qlog

* Without countertem, same form but opposite sign

* Extralog factor as compared to QFT divergence



Rotating B1Z

1 dependence:
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* Matching linear behaviour for CV and CA only when counterterm is included

» Same linear divergence as for free QFT complexity at high T

* |n tension with the hypothesis of a third law of holographic complexity:
finite complexity of formation at zero T vs logarithmic divergence of higher dimensional
charged and Myers-Perry black holes CarmiChapmanMarrochioMyersSugishita]

AlBalushi,Hennigar,Kunduri,Mann]



Holography: Review

Higher dimensional rotating black holes: much harder technical task

Notable exception: odd-dimensional Myers-Perry AdS black holes with equal angular
momenta in each orthogonal plane [AlBalushi,Hennigar,Kunduri,Mann]

Highlighted connection between holographic complexity and thermodynamic volume in the
large black hole limit 7+ > ¢

* complexity of formation controlled by the thermodynamic volume

0O _ D—2
AC ~ SlOg T —+ fV_I_D_l

* |late time growth rate

dC

t—oo dt
[Couch,Fischler,Nguyen]



Kerr-AdS4
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educed symmetry but some partial progress



Kerr-AdS4

Recent analysis of null hypersurfaces [AlBalushi,Mann]: implicit description of the WDW patch

Precise treatment of the late time limit of the CA growth rate

* Only non-vanishing contributions: EH term and null-null joints
at the past and future tips of the WDW patch

* Reproduces expected answer [Cai,Ruan,Wang,Yang,Peng]

, dCA Ti_rg_ ‘|‘€2(T+—T_)
lim m—— =

t—oo  dt 2G N (0?2 — a?)

= (M —QJ)— (M —Q_J)

* Proportional to the difference of thermodynamic volumes in the 0=m/2
large black hole limit o > ¢



Kerr-AdS4

CV complexity of formation evaluated numerically
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* Diverges at high T and for critical angular velocity 2 — 1

 Compatibility with the claim of [AIBalushi,Hennigar,Kunduri,Mann] on the scaling of the
complexity of formation with the thermodynamic volume

* Unable to test it independently. Scaling of S and V fixed in the region of parameters
corresponding to physical solutions (extremal solutions have superluminal rotation)



Remarks

Map between rotating and non-rotating TFD in simple scalar toy model

Holographic complexity: counterterm essential to match CA and CV behaviour
for rotating BTZ black holes

Qualitative agreement between QFT and holographic complexity results in the
high temperature and critical angular velocity limit

QFT complexity of formation scale independent while CA depends on the
counterterm scale



Thank you!



