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Two simple punchlines

1. Heisenberg algebra
[Xn, Pm] = i δn,m

fundamental not only in quantum mechanics
but also in near horizon physics of (higher spin) gravity theories

2. Black hole microstates identified as specific “soft hair” descendants

based on work with
I Hamid Afshar [IPM Teheran]
I Stephane Detournay [ULB]
I Wout Merbis [TU Wien]
I Blagoje Oblak [ULB / ETH]
I Alfredo Perez [CECS Valdivia]
I Stefan Prohazka [TU Wien]
I Shahin Sheikh-Jabbari [IPM Teheran]
I David Tempo [CECS Valdivia]
I Ricardo Troncoso [CECS Valdivia]
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Black hole microstates

Bekenstein–Hawking

SBH =
A

4GN
I Motivation: microscopic understanding of generic black hole entropy

I Microstate counting from CFT2 symmetries (Strominger, Carlip, ...)
using Cardy formula

I Generalizations in 2+1 gravity/gravity-like theories (Galilean CFT,
warped CFT, ...)

I Main idea: consider near horizon symmetries for non-extremal
horizons

I Near horizon line-element with Rindler acceleration a:

ds2 = −2aρ dv2 + 2 dv dρ+ γ2 dϕ2 + . . .

Meaning of coordinates:
I ρ: radial direction (ρ = 0 is horizon)
I ϕ ∼ ϕ+ 2π: angular direction
I v: (advanced) time
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Choices

I Rindler acceleration: state-dependent or chemical potential?

I If state-dependent: need mechanism to fix scale

— suggestion in
1512.08233:

v ∼ v + 2πL

Works technically but physical interpretation difficult

I If : all states in theory have same (Unruh-)temperature

TU =
a

2π

I Work in 3d Einstein gravity in Chern–Simons formulation

ICS = ±
∑
±

k

4π

∫
〈A± ∧ dA± + 2

3A
± ∧A± ∧A±〉

with sl(2) connections A± and k = `/(4GN ) with AdS radius ` = 1
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1512.08233:
v ∼ v + 2πL

Works technically but physical interpretation difficult
I If chemical potential: all states in theory have same

(Unruh-)temperature

TU =
a

2π
suggestion in 1511.08687
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Review of general aspects of boundary conditions (bc’s)

I In any physical theory need bc’s imposed on fields

I In many instances ‘natural’ bc’s suitable
I In gravity ‘natural’ bc’s most unnatural: metric cannot be assumed to

vanish asymptotically
I Instead, metric should approach some suitable class of metrics, like

asymptotically flat or asymptotically (A)dS
I No algorithm determining ‘right’ bc’s — always choice!
I Algorithm exists to check consistency of bc’s
I Local diffeos and gauge trafos fall into three classes:

1. Trafos that violate bc’s (forbidden)
2. Trafos that preserve bc’s and remain pure gauge (trivial)
3. Trafos that preserve bc’s but are not pure gauge at the asymptotic

boundary (asymptotic symmetries)
I Canonical boundary charges (á la Regge–Teitelboim) generate

asympotic symmetries
I Consistency means they are finite, integrable, non-trivial and

conserved (in time)
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AdS3 bc’s

Even restricting to Einstein gravity in three dimensions (with negative
cosmological constant) different choices exist for bc’s and their associated
asymptotic symmetry algebras:

I Brown–Henneaux (1986): two Virasoros (2d conformal algebra)

I Compere–Song–Strominger (2013): Virasoro plus u(1) current algebra

I Troessaert (2013): 2 Virasoros plus 2 u(1) current algebras

I Avery–Poojary–Suryanarayana (2013): Virasoro plus sl(2) current
algebra

I Donnay–Giribet–Gonzalez–Pino (2015): centerless warped conformal

I Afshar–Detournay–DG–Oblak (2015): twisted warped conformal

I DG–Riegler (2016): two sl(2) current algebras (most general case!)

Our near horizon bc’s simpler than any of the above!

Daniel Grumiller — Soft Heisenberg Hair Near horizon boundary conditions 10/31



AdS3 bc’s

Even restricting to Einstein gravity in three dimensions (with negative
cosmological constant) different choices exist for bc’s and their associated
asymptotic symmetry algebras:

I Brown–Henneaux (1986): two Virasoros (2d conformal algebra)

I Compere–Song–Strominger (2013): Virasoro plus u(1) current algebra

I Troessaert (2013): 2 Virasoros plus 2 u(1) current algebras

I Avery–Poojary–Suryanarayana (2013): Virasoro plus sl(2) current
algebra

I Donnay–Giribet–Gonzalez–Pino (2015): centerless warped conformal

I Afshar–Detournay–DG–Oblak (2015): twisted warped conformal

I DG–Riegler (2016): two sl(2) current algebras (most general case!)

Our near horizon bc’s simpler than any of the above!

Daniel Grumiller — Soft Heisenberg Hair Near horizon boundary conditions 10/31



AdS3 bc’s

Even restricting to Einstein gravity in three dimensions (with negative
cosmological constant) different choices exist for bc’s and their associated
asymptotic symmetry algebras:

I Brown–Henneaux (1986): two Virasoros (2d conformal algebra)

I Compere–Song–Strominger (2013): Virasoro plus u(1) current algebra

I Troessaert (2013): 2 Virasoros plus 2 u(1) current algebras

I Avery–Poojary–Suryanarayana (2013): Virasoro plus sl(2) current
algebra

I Donnay–Giribet–Gonzalez–Pino (2015): centerless warped conformal

I Afshar–Detournay–DG–Oblak (2015): twisted warped conformal

I DG–Riegler (2016): two sl(2) current algebras (most general case!)

Our near horizon bc’s simpler than any of the above!

Daniel Grumiller — Soft Heisenberg Hair Near horizon boundary conditions 10/31



AdS3 bc’s

Even restricting to Einstein gravity in three dimensions (with negative
cosmological constant) different choices exist for bc’s and their associated
asymptotic symmetry algebras:

I Brown–Henneaux (1986): two Virasoros (2d conformal algebra)

I Compere–Song–Strominger (2013): Virasoro plus u(1) current algebra

I Troessaert (2013): 2 Virasoros plus 2 u(1) current algebras

I Avery–Poojary–Suryanarayana (2013): Virasoro plus sl(2) current
algebra

I Donnay–Giribet–Gonzalez–Pino (2015): centerless warped conformal

I Afshar–Detournay–DG–Oblak (2015): twisted warped conformal

I DG–Riegler (2016): two sl(2) current algebras (most general case!)

Our near horizon bc’s simpler than any of the above!

Daniel Grumiller — Soft Heisenberg Hair Near horizon boundary conditions 10/31



Explicit specification of our bc’s in diagonal gauge

Standard trick: partially fix gauge

A± = b−1
± (ρ)

(
d+a±(x0, x1)

)
b±(ρ)

with some group element b ∈ SL(2) depending on radius ρ with δb = 0

Drop ± decorations in most of talk

Manifold topologically a cylinder or torus, with radial coordinate ρ and
boundary coordinates (x0, x1) ∼ (v, ϕ)

I Standard AdS3 approach: highest weight gauge

a ∼ L+ + L(x0, x1)L− b(ρ) = exp (ρL0)

sl(2): [Ln, Lm] = (n−m)Ln+m, n,m = −1, 0, 1
I For near horizon purposes diagonal gauge useful:

a ∼ J (x0, x1)L0

I Precise boundary conditions (ζ: chemical potential):

a = (J dϕ+ ζ dv) L0 δa = δJ dϕL0

and b = exp (1
ζ L+) · exp (ρ2 L−). (assume constant ζ for simplicity)
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Near horizon metric

Using
gµν = 1

2

〈(
A+
µ −A−µ

) (
A+
ν −A−ν

)〉

yields (f := 1 + ρ/(2a))

ds2 = −2aρf dv2 + 2 dv dρ− 2ωa−1 dϕdρ

+ 4ωρf dv dϕ+
[
γ2 + 2ρ

a f(γ2 − ω2)
]

dϕ2

state-dependent functions J ± = γ ± ω, chemical potentials ζ± = −a± Ω
Neglecting rotation terms (ω = 0) yields Rindler plus higher order terms:

ds2 = −2aρ dv2 + 2 dv dρ+ γ2 dϕ2 + . . .

Comments:

I Recover desired near horizon metric

I Rindler acceleration a indeed state-independent
I Two state-dependent functions (γ, ω) as usual in 3d gravity
I γ = γ(ϕ): “black flower”
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ds2 = −2aρ dv2 + 2 dv dρ+ γ2 dϕ2 + . . .

Comments:
I Recover desired near horizon metric

I Rindler acceleration a indeed state-independent
I Two state-dependent functions (γ, ω) as usual in 3d gravity
I γ = γ(ϕ): “black flower”
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Canonical boundary charges

I Canonical boundary charges non-zero for large trafos that preserve
boundary conditions

I Zero mode charges: mass and angular momentum

Background independent result for Chern–Simons yields

Q[η] =
k

4π

∮
dϕη(ϕ)J (ϕ)

I Finite
I Integrable
I Conserved
I Non-trivial

Meaningful near horizon boundary
conditions and non-trivial theory!
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Near horizon symmetry algebra

I Near horizon symmetry algebra = all near horizon boundary
conditions preserving trafos, modulo trivial gauge trafos

Most general trafo

δεa = dε+ [a, ε] = O(δa)

that preserves our boundary conditions for constant ζ given by

ε = ε+L+ + ηL0 + ε−L−

with
∂vη = 0

implying
δεJ = ∂ϕη

I Expand charges in Fourier modes

J±n =
k

4π

∮
dϕeinϕJ ± (ϕ)

I Near horizon symmetry algebra[
J±n , J

±
m

]
= ±1

2knδn+m, 0

[
J+
n , J

−
m

]
= 0

Two û(1) current algebras with non-zero levels
I Much simpler than CFT2, warped CFT2, Galilean CFT2, etc.
I Map

P0 = J+
0 + J−0 Pn = i

kn (J+
−n + J−−n) if n 6= 0 Xn = J+

n − J−n
yields Heisenberg algebra (with Casimirs X0, P0)

[Xn, Xm] = [Pn, Pm] = [X0, Pn] = [P0, Xn] = 0

[Xn, Pm]= iδn,m if n 6= 0
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Two û(1) current algebras with non-zero levels
I Much simpler than CFT2, warped CFT2, Galilean CFT2, etc.
I Map

P0 = J+
0 + J−0 Pn = i

kn (J+
−n + J−−n) if n 6= 0 Xn = J+

n − J−n
yields Heisenberg algebra (with Casimirs X0, P0)

[Xn, Xm] = [Pn, Pm] = [X0, Pn] = [P0, Xn] = 0

[Xn, Pm]= iδn,m if n 6= 0

Daniel Grumiller — Soft Heisenberg Hair Near horizon boundary conditions 14/31



Brief list of generalizations

Heisenberg algebras as near horizon symmetries arise not only in AdS3

Einstein gravity, but also in ...

I ... flat space Einstein gravity in three dimensions
Afshar, DG, Merbis, Perez, Tempo, Troncoso ’16

I ... higher spin gravity in three dimensions
DG, Perez, Prohazka, Tempo, Troncoso ’16

I ... higher derivative gravity in three dimensions
Setare, Adami ’16

I ... general relativity (in four dimensions)
Afshar, DG, Sheikh-Jabbari ’16

Conclusions about near horizon symmetry algebra fairly general!
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Near horizon Hilbert space

I Denote “near horizon” generators with calligraphic letters

I Near horizon algebra (conveniently rescaled)

[J ±n , J ±m ] = 1
2 n δn,−m

I Near horizon Hilbert space: define vacuum by highest weight
conditions

J ±n |0〉 = 0 for all n ≥ 0.

I Construct near horizon Virasoro through standard Sugawara
construction

L±n ≡
∑
p∈Z

:J ±n−p J ±p :

I Get Virasoro algebra with central charge 1

[L±n ,L±m] = (n−m)L±n+m + 1
12(n3 − n)δn,−m

[L±n ,J ±m ] = −mJ ±n+m

I Call this “near horizon symmetry algebra” (note: independent from `)
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Soft hair

I Generic descendant of vacuum:

|Ψ({n±i })〉 =
∏
{n±i >0}

(
J +

−n+
i

J −−n−i
)
|0〉

with set of positive integers {n±i > 0}

I Near horizon Hamiltonian H ∼ J +
0 + J −0 commutes with near

horizon symmetry algebra

I Descendants of vacuum have zero energy; dubbed “soft hair” (same
true for descendants of black holes)

I Immediate issue for entropy: infinite soft hair degeneracy!

I Note: descendants have positive eigenvalues of L±0

L±0 |Ψ({n±i )}〉 =
∑
i

n±i |Ψ({n±i })〉 ≡ E
±
Ψ |Ψ({n±i })〉

I Will exploit this property to provide cut-off on soft hair spectrum!
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Asymptotic Hilbert space

I Our algebra in original form

[J±n , J
±
m] = k

2 n δn,−m

I Map to asymptotic Virasoro algebra through twisted Sugawara
construction

[L±n , J
±
m] = −mJ±n+m + ik2 m

2 δn,−m

Note to experts: twist-term follows uniquely from mapping our
connection into highest weight gauge

I Get asymptotic Virasoro with Brown–Henneaux central charge

[L±n , L
±
m] = (n−m)L±n+m + c

12 n
3 δn,−m

where c = 6k = 3`/(2GN ) in large k-limit
I Algebra gets twisted

[L±n , J
±
m] = −mJ±n+m + ik2 m

2 δn,−m
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Proposed map between near horizon and asymptotic generators

I Suggestive proposal (see Bañados 9811162)

cL±0 = L±0 − 1
24

I Consistency of algebras then implies

J±n =
1√
6
J ±nc , n 6= 0

I Even though Jn and Jn algebras isomorphic, near horizon algebra has
more generators than asymptotic one due to relation above, namely
Jm with m 6= nc

I Relation between J0 and J0 also induced by above, but not needed
I Main point: use eigenvalues of asymptotic generators L±0 (essentially

mass and angular momentum of BTZ) to provide cut-off on soft hair
spectrum

〈L±0 〉BTZ = ∆± 〈L±n6=0〉BTZ = 0

I Microstates = all states in near horizon Hilbert space obeying
equations above
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I Relation between J0 and J0 also induced by above, but not needed
I Main point: use eigenvalues of asymptotic generators L±0 (essentially

mass and angular momentum of BTZ) to provide cut-off on soft hair
spectrum

〈L±0 〉BTZ = ∆± 〈L±n6=0〉BTZ = 0

I Microstates = all states in near horizon Hilbert space obeying
equations above
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Horizon fluffs as microstates
We are now ready to identify all BTZ microstates

I Vector space VB of BTZ microstates defined by

〈B′|L±n6=0|B〉 = 0 ∀B,B′ ∈ VB

I All BTZ microstates (“horizon fluffs”) are then of the form

|B({n±i })〉 = N{n±i }
∏

{0<n±i 6=nc}

(
J +

−n+
i

J −−n−i
)
|0〉

subject to 〈L±0 〉BTZ = ∆±

I This is the key result
I Normalization constant N{n±i } fixed by compatibility:

〈B′|L±0 |B〉 = ∆±δB,B′

I Useful observation:

∆± = 〈B|L±0 |B〉 ≈
1

c
〈B|L±0 |B〉 =

1

c

∑
i

n±i =
1

c
E±B
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Microstate counting

I Problem of counting microstates now reduced to combinatorics

I Count all horizon fluffs with same energy E±B
I Mathematically, reduces to number p(N) of ways positive integer N

partitioned into positive integers

I Work semi-classically, i.e., in limit of large N

I Problem above solved long ago by Hardy and Ramanujan

p(N)
∣∣
N�1

' 1

4N
√

3
exp

(
2π

√
N

6

)
I Number of BTZ microstates: p(E+

B ) · p(E−B )

I Result for entropy:

S = ln p(E+
B ) + ln p(E−B ) = 2π

(√
c∆+

6
+

√
c∆−

6

)
+ . . .

I Agrees with Bekenstein–Hawking and Cardy formula
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Relations to previous approaches

I Carlip ’94: conceptually very close; main difference: Carlip stresses
near horizon Virasoro, while we exploit near horizon Heisenberg

I Strominger, Vafa ’96: string construction of microstates that relies on
BPS/extremality

I Strominger ’97: exploits Cardy formula for microstate counting, but
does not identify microstates

I Mathur ’05: fuzzballs, like horizon fluffs, do not have horizon; we need
only semi-classical near horizon description, not full quantum gravity

I Donnay, Giribet, Gonzalez, Pino ’15: near horizon bc’s (fixed Rindler)
with centerless warped algebra

I Afshar, Detournay, DG, Oblak ’15: near horizon bc’s (varying Rindler)
and null compactification with twisted warped algebra

I Hawking, Perry, Strominger ’16: introduced notion of “soft hair”, but
did not attempt microstate counting

I Afshar, Detournay, DG, Merbis, Perez, Tempo, Troncoso ’16:
introduced near horizon bc’s we use; did not attempt construction of
microstates (but does Cardy-type of counting)
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Generalization to four dimensions

Compare with near horizon construction of Donnay, Giribet, Gonzalez, Pino ’15

I Near horizon algebra similar to but different from BT-BMS4:

[Y±n , Y±m] = (n−m)Y±n+m

[Y+
l , T(n,m)] = −n T(n+l,m)

[Y−l , T(n,m)] = −m T(n,m+l)

I Intriguing algebraic observation: introducing again

[J ±n , J ±m ] = 1
2 n δn,−m = −[K±n , K±m]

recovers 4d algebra above by “Sugawara construction”

T(n,m) =
(
J +
n +K+

n

)(
J −m +K−m

)
Y±n =

∑
p∈Z

(
J ±n−p +K±n−p

)(
J ±p −K±p

)
I Making AKVs in DGGP state-dependent to leading order relates their

canonical boundary charges to Heisenberg boundary charges
I Proves existence of soft Heisenberg hair in 4d
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Microstates of non-extremal Kerr?

Main challenge: how to provide (controlled) cut-off on soft hair spectrum
in four dimensions?
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Thanks for your attention!

H. Afshar, D. Grumiller and M.M. Sheikh-Jabbari “Near Horizon Soft
Hairs as Microstates of Three Dimensional Black Holes,” 1607.00009.

H. Afshar, S. Detournay, D. Grumiller, W. Merbis, A. Perez,
D. Tempo and R. Troncoso “Soft Heisenberg hair on black holes in
three dimensions,” Phys.Rev. D93 (2016) 101503(R); 1603.04824.

Thanks to Bob McNees for providing the LATEX beamerclass!
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Map to asymptotic variables

I Usual asymptotic AdS3 connection with chemical potential µ:

Â = b̂−1
(

d+â
)
b̂ âϕ = L+ − 1

2 LL−
b̂ = eρL0 ât = µL+ − µ′L0 +

(
1
2 µ
′′ − 1

2 Lµ
)
L−

I Gauge trafo â = g−1 (d+a) g with

g = exp (xL+) · exp (−1
2JL−)

where ∂vx− ζx = µ and x′ − J x = 1
I Near horizon chemical potential transforms into combination of

asymptotic charge and chemical potential!

µ′ − J µ = −ζ
I Asymptotic charges: twisted Sugawara construction with near horizon

charges
L = 1

2J
2 + J ′

I Get Virasoro with non-zero central charge δL = 2Lε′ + L′ε− ε′′′
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Â = b̂−1
(

d+â
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Remarks on asymptotic and near horizon variables

I Asymptotic spin-2 currents fulfill Virasoro algebra, but charges obey
still Heisenberg algebra

δQ = − k

4π

∮
dϕε δL = − k

4π

∮
dϕη δJ

Reason: asymptotic “chemical potentials” µ depend on near horizon
charges J and chemical potentials ζ

I Our boundary conditions singled out: whole spectrum compatible
with regularity

I For constant chemical potential ζ: regularity = holonomy condition

µµ′′ − 1
2µ
′ 2 − µ2L = −2π2/β2

Solved automatically from map to asymptotic observables; reminder:

µ′ − J µ = −ζ L = 1
2J

2 + J ′

Near horizon boundary conditions natural for near horizon observer
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On compatibility with AdS3/CFT2

Punchline: our proposal is Bohr-type quantization of spectrum

I Unitary representations of Virasoro algebra span Hilbert space HVir

I Gravity side, asymptotically: HVir splits into HBTZ, HConic and HAdS

I Only states in HBTZ captured by twisted Sugawara construction
I States in HBTZ labelled by two positive numbers (L±0 ) and set of

integers (Virasoro excitations)
I Gravity side, near horizon: soft hair Hilbert space HNH includes all

soft hair descendants of vacuum labeled by set of integers
I HNH contained in HVir

I CFT side: expected to have discrete set of primaries
I HCFT contained in HVir

I Our proposal: HNH = HCFT

I Example ([Lunin], Maldacena, Maoz ’02): states in HCFT

corresponding to conic spaces discrete family L±0 = −rk/4 (r = 0:
massless BTZ, r = k: global AdS, 0 < r < k: spectral flow)

I Spectral flow and discrete conic spaces generated by J ±r
(r = 1, 2, . . . c− 1), the “horizon fluffs”
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On log corrections

I Semi-classically
S = S0 + # · lnS0 +O(1)

I Carlip ’00:

SBTZ = SBH −
3

2
· lnSBH +O(1)

I Naive application of Hardy–Ramanujan

S = SBH − 2 · lnSBH +O(1)

I Mismatch in coefficients; not sure yet if bug or feature
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