Bootstrapping $\mathcal{N}=2$ SCFTs

Madalena Lemos

Iberian Strings
Lisbon, Jan. 182017

Based on:
1312.5344 w/ C. Beem, P. Liendo, W. Peelaers, L. Rastelli and B. van Rees 1511.07449 w/ P. Liendo
1612.01536 w/ P. Liendo, C. Meneghelli and V. Mitev
1702.xxxxx w/ M. Cornagliotto and V. Schomerus

Outline

(1) The (Super)conformal Bootstrap Program
(2) A solvable subsector
(3) Constraining the space of $\mathcal{N}=2$ SCFTs
(4) $4 d \mathcal{N}=3$ SCFTs
(5) Summary and Outlook

Outline

(1) The (Super)conformal Bootstrap Program
(2) A solvable subsector
(3) Constraining the space of $\mathcal{N}=2$ SCFTs
(4) $4 d \mathcal{N}=3$ SCFTs
(5) Summary and Outlook

The (Super)conformal Bootstrap Program

What is the space of consistent (S)CFTs?

The (Super)conformal Bootstrap Program

What is the space of consistent (S)CFTs?
\rightarrow Maximally supersymmetric theories: well known list of theories

The (Super)conformal Bootstrap Program

What is the space of consistent (S)CFTs?
\rightarrow Maximally supersymmetric theories: well known list of theories
$\rightarrow \mathcal{N}=2$ theories: large known list of theories many lacking a Lagrangian description

The (Super)conformal Bootstrap Program

What is the space of consistent (S)CFTs?
\rightarrow Maximally supersymmetric theories: well known list of theories
$\rightarrow \mathcal{N}=3$ theories: not known to exist until García-Etxebarria and Regalado
$\rightarrow \mathcal{N}=2$ theories: large known list of theories many lacking a Lagrangian description

The (Super)conformal Bootstrap Program

What is the space of consistent (S)CFTs?
\rightarrow Maximally supersymmetric theories: well known list of theories
$\rightarrow \mathcal{N}=3$ theories: not known to exist until García-Etxebarria and Regalado
$\rightarrow \mathcal{N}=2$ theories: large known list of theories many lacking a Lagrangian description

Can we bootstrap specific theories?

The (Super)conformal Bootstrap Program

What is the space of consistent (S)CFTs?
\rightarrow Maximally supersymmetric theories: well known list of theories
$\rightarrow \mathcal{N}=3$ theories: not known to exist until García-Etxebarria and Regalado
$\rightarrow \mathcal{N}=2$ theories: large known list of theories many lacking a Lagrangian description

Can we bootstrap specific theories?
\rightarrow Particularly helpful if theory is uniquely fixed by a set of discrete data
\rightarrow Only tool available for finite N non-Lagrangian theories

The Superconformal Bootstrap

- Various conformal families related by action of supercharges

The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Conformal blocks \rightsquigarrow superconformal blocks

The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Conformal blocks \rightsquigarrow superconformal blocks
- Finite re-organization of an infinite amount of data

The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Conformal blocks \rightsquigarrow superconformal blocks
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?

The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Conformal blocks \rightsquigarrow superconformal blocks
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?
\rightarrow Yes, for $4 d \mathcal{N} \geqslant 2$ [Beem, ML, Liendo, Peelaers, Rastelli, van Rees]

The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Conformal blocks \rightsquigarrow superconformal blocks
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?
\rightarrow Yes, for $4 d \mathcal{N} \geqslant 2$ [Beem, ML, Liendo, Peelaers, Rastelli, van Rees] ($6 d \mathcal{N}=(2,0)$ and $2 d \mathcal{N}=(0,4)$ [Beem, Rastelli, van Rees])

The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Conformal blocks \rightsquigarrow superconformal blocks
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?
\rightarrow Yes, for $4 d \mathcal{N} \geqslant 2$ [Beem, ML, Liendo, Peelaers, Rastelli, van Rees] ($6 d \mathcal{N}=(2,0)$ and $2 d \mathcal{N}=(0,4)$ [Beem, Rastelli, van Rees])

- Step 1: Solve this subsector

The Superconformal Bootstrap

- Various conformal families related by action of supercharges
- Conformal blocks \rightsquigarrow superconformal blocks
- Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing equations?
\rightarrow Yes, for $4 d \mathcal{N} \geqslant 2$ [Beem, ML, Liendo, Peelaers, Rastelli, van Rees] ($6 d \mathcal{N}=(2,0)$ and $2 d \mathcal{N}=(0,4)$ [Beem, Rastelli, van Rees])

- Step 1: Solve this subsector
- Step 2: Full blown numerics for the rest

Outline

(1) The (Super)conformal Bootstrap Program
(2) A solvable subsector
(3) Constraining the space of $\mathcal{N}=2$ SCFTs
(4) $4 d \mathcal{N}=3$ SCFTs
(5) Summary and Outlook

Chiral algebra

Organize operators in representations of superconformal algebra
$\left\{\mathcal{O}_{\Delta,\left(j_{1}, j_{2}\right),}\right\}$

Chiral algebra

Organize operators in representations of superconformal algebra
$\{\mathcal{O}_{\Delta,\left(j_{1}, j_{2}\right)}, \underbrace{R}_{S U(2)_{R}} \underbrace{r}_{U(1)_{r}}\}$

Chiral algebra

Organize operators in representations of superconformal algebra
$\{\mathcal{O}_{\Delta,\left(j_{1}, j_{2}\right)}, \underbrace{R}_{S U(2)_{R}} \underbrace{r}_{U(1)_{r}}\}$
Claim
\rightarrow Pick a plane $\mathbb{R}^{2} \in \mathbb{R}^{4}$

Chiral algebra

Organize operators in representations of superconformal algebra
$\{\mathcal{O}_{\Delta,\left(j_{1}, j_{2}\right)}, \underbrace{R}_{S U(2)_{R}} \underbrace{r}_{U(1)_{r}}\}$
Claim
\rightarrow Pick a plane $\mathbb{R}^{2} \in \mathbb{R}^{4}$
\rightarrow Restrict to operators with $\Delta=2 R+j_{1}+j_{2}$

Chiral algebra

Organize operators in representations of superconformal algebra
$\{\mathcal{O}_{\Delta,\left(j_{1}, j_{2}\right)}, \underbrace{R}_{S U(2)_{R}} \underbrace{r}_{U(1)_{r}}\}$
Claim
\rightarrow Pick a plane $\mathbb{R}^{2} \in \mathbb{R}^{4}$
\rightarrow Restrict to operators with $\Delta=2 R+j_{1}+j_{2}$

$$
\left\langle\mathcal{O}_{1}^{I_{1}}\left(z_{1}, \bar{z}_{1}\right) \ldots \mathcal{O}_{n}^{I_{n}}\left(z_{n}, \bar{z}_{n}\right)\right\rangle
$$

Chiral algebra

Organize operators in representations of superconformal algebra
$\{\mathcal{O}_{\Delta,\left(j_{1}, j_{2}\right)}, \underbrace{R}_{S U(2)_{R}} \underbrace{r}_{U(1)_{r}}\}$
Claim
\rightarrow Pick a plane $\mathbb{R}^{2} \in \mathbb{R}^{4}$
\rightarrow Restrict to operators with $\Delta=2 R+j_{1}+j_{2}$

$$
u_{l_{1}}\left(\bar{z}_{1}\right) \ldots u_{I_{n}}\left(\bar{z}_{n}\right)\left\langle\mathcal{O}_{1}^{I_{1}}\left(z_{1}, \bar{z}_{1}\right) \ldots \mathcal{O}_{n}^{I_{n}}\left(z_{n}, \bar{z}_{n}\right)\right\rangle
$$

Chiral algebra

Organize operators in representations of superconformal algebra
$\{\mathcal{O}_{\Delta,\left(j_{1}, j_{2}\right)}, \underbrace{R}_{S U(2)_{R}} \underbrace{r}_{U(1)_{r}}\}$
Claim
\rightarrow Pick a plane $\mathbb{R}^{2} \in \mathbb{R}^{4}$
\rightarrow Restrict to operators with $\Delta=2 R+j_{1}+j_{2}$

$$
u_{I_{1}}\left(\bar{z}_{1}\right) \ldots u_{I_{n}}\left(\bar{z}_{n}\right)\left\langle\mathcal{O}_{1}^{I_{1}}\left(z_{1}, \bar{z}_{1}\right) \ldots \mathcal{O}_{n}^{I_{n}}\left(z_{n}, \bar{z}_{n}\right)\right\rangle=f\left(z_{i}\right)
$$

\rightarrow Meromorphic!

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent \mathbb{Q}

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q}+\mathcal{S}$

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q}+\mathcal{S}$
\rightarrow Cohomology at the origin \Rightarrow non-empty classes

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q}+\mathcal{S}$
\rightarrow Cohomology at the origin \Rightarrow non-empty classes $\Delta=2 R+j_{1}+j_{2}$

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q}+\mathcal{S}$
\rightarrow Cohomology at the origin \Rightarrow non-empty classes $\Delta=2 R+j_{1}+j_{2}$
- On plane

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q}+\mathcal{S}$
\rightarrow Cohomology at the origin \Rightarrow non-empty classes $\Delta=2 R+j_{1}+j_{2}$
- On plane

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q}+\mathcal{S}$
\rightarrow Cohomology at the origin \Rightarrow non-empty classes $\Delta=2 R+j_{1}+j_{2}$
- On plane

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q}+\mathcal{S}$
\rightarrow Cohomology at the origin \Rightarrow non-empty classes $\Delta=2 R+j_{1}+j_{2}$
- On plane

\rightarrow twisted translations $u_{l}(\bar{z})$

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q}+\mathcal{S}$
\rightarrow Cohomology at the origin \Rightarrow non-empty classes $\Delta=2 R+j_{1}+j_{2}$
- On plane

\rightarrow twisted translations $u_{l}(\bar{z})$
\hookrightarrow diagonal subalgebra $\overline{\mathfrak{S H}}_{2} \times \mathfrak{s u}(2)_{R}$ is \mathbb{Q} exact

Chiral algebra

Why?

- Subsector $=$ Cohomology of nilpotent $\mathbb{Q} \sim \mathcal{Q}+\mathcal{S}$
\rightarrow Cohomology at the origin \Rightarrow non-empty classes $\Delta=2 R+j_{1}+j_{2}$
- On plane

\rightarrow twisted translations $u_{l}(\bar{z})$
\hookrightarrow diagonal subalgebra $\overline{\mathfrak{s}}_{2} \times \mathfrak{s u}(2)_{R}$ is \mathbb{Q} exact
$\rightarrow h=R+j_{1}+j_{2}$

Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

$$
Q^{\prime}=\left[\begin{array}{c}
Q \\
\tilde{Q}^{\star}
\end{array}\right], \quad \tilde{Q}^{\prime}=\left[\begin{array}{c}
\tilde{Q} \\
-Q^{\star}
\end{array}\right]
$$

Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

$$
Q^{\prime}=\left[\begin{array}{c}
Q \\
\tilde{Q}^{\star}
\end{array}\right], \quad \tilde{Q}^{\prime}=\left[\begin{array}{c}
\tilde{Q} \\
-Q^{\star}
\end{array}\right]
$$

$$
u_{l}=(1, \bar{z})
$$

Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

$$
\begin{aligned}
& Q^{\prime}=\left[\begin{array}{c}
Q \\
\tilde{Q}^{\star}
\end{array}\right], \quad \tilde{Q}^{\prime}=\left[\begin{array}{c}
\tilde{Q} \\
-Q^{\star}
\end{array}\right] \\
& u_{l}=(1, \bar{z}) \\
& q(z, \bar{z})=u_{l} Q^{\prime}=Q(z, \bar{z})+\bar{z} \tilde{Q}^{\star}(z, \bar{z}), \\
& \tilde{q}(z, \bar{z})=u_{l} \tilde{Q}^{\prime}=\tilde{Q}(z, \bar{z})-\bar{z} Q^{\star}(z, \bar{z})
\end{aligned}
$$

Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

$$
\begin{gathered}
Q^{\prime}=\left[\begin{array}{c}
Q \\
\tilde{Q}^{\star}
\end{array}\right], \quad \tilde{Q}^{\prime}=\left[\begin{array}{c}
\tilde{Q} \\
-Q^{\star}
\end{array}\right] \\
u_{l}=(1, \bar{z}) \\
q(z, \bar{z})=u_{l} Q^{\prime}=Q(z, \bar{z})+\bar{z} \tilde{Q}^{\star}(z, \bar{z}), \\
\tilde{q}(z, \bar{z})=u_{l} \tilde{Q}^{\prime}=\tilde{Q}(z, \bar{z})-\bar{z} Q^{\star}(z, \bar{z}) \\
\rightarrow q(z, \bar{z}) \tilde{q}(0) \sim \bar{z} \tilde{Q}^{\star}(z, \bar{z}) \tilde{Q}(0) \sim \frac{\bar{z}}{z \bar{z}}=\frac{1}{z}
\end{gathered}
$$

Chiral algebra

Which operators are in the cohomology?
\rightarrow Stress tensor $T_{\mu \nu}$

Chiral algebra

Which operators are in the cohomology?
\rightarrow Stress tensor $T_{\mu \nu} \rightsquigarrow$ superdescendant

Chiral algebra

Which operators are in the cohomology?
\rightarrow Stress tensor $T_{\mu \nu} \rightsquigarrow$ superdescendant
\rightarrow Stress tensor supermultiplet

Chiral algebra

Which operators are in the cohomology?
\rightarrow Stress tensor $T_{\mu \nu} \rightsquigarrow$ superdescendant
\rightarrow Stress tensor supermultiplet $\Rightarrow 2 d$ stress tensor

Chiral algebra

Which operators are in the cohomology?
\rightarrow Stress tensor $T_{\mu \nu} \rightsquigarrow$ superdescendant
\rightarrow Stress tensor supermultiplet $\Rightarrow 2 d$ stress tensor

$$
T(z) T(0) \sim-12 \frac{c_{4 d} / 2}{z^{4}}+2 \frac{T(0)}{z^{2}}+\frac{\partial T(0)}{z}+\ldots,
$$

Chiral algebra

Which operators are in the cohomology?
\rightarrow Stress tensor $T_{\mu \nu} \rightsquigarrow$ superdescendant
\rightarrow Stress tensor supermultiplet $\Rightarrow 2 d$ stress tensor

$$
T(z) T(0) \sim-12 \frac{c_{4 d} / 2}{z^{4}}+2 \frac{T(0)}{z^{2}}+\frac{\partial T(0)}{z}+\ldots,
$$

\hookrightarrow Global $\mathfrak{s l}_{2}$ enhances to Virasoro

Chiral algebra

Which operators are in the cohomology?
\rightarrow Stress tensor $T_{\mu \nu} \rightsquigarrow$ superdescendant
\rightarrow Stress tensor supermultiplet $\Rightarrow 2 d$ stress tensor

$$
T(z) T(0) \sim-12 \frac{c_{4 d} / 2}{z^{4}}+2 \frac{T(0)}{z^{2}}+\frac{\partial T(0)}{z}+\ldots,
$$

\hookrightarrow Global $\mathfrak{s l}_{2}$ enhances to Virasoro
$\hookrightarrow c_{2 d}=-12 c_{4 d}$

Chiral algebra

Which operators are in the cohomology?
\rightarrow Flavor symmetries current multiplet

Chiral algebra

Which operators are in the cohomology?
\rightarrow Flavor symmetries current multiplet
\hookrightarrow Affine Kac Moody current algebra

$$
J^{a}(z) J^{b}(0) \sim-\frac{k_{4 d} / 2 \delta^{a b}}{z^{2}}+i f^{a b c} \frac{J^{c}(0)}{z}+\ldots
$$

Chiral algebra

Which operators are in the cohomology?
\rightarrow Flavor symmetries current multiplet
\hookrightarrow Affine Kac Moody current algebra

$$
J^{a}(z) J^{b}(0) \sim-\frac{k_{4 d} / 2 \delta^{a b}}{z^{2}}+i f^{a b c} \frac{J^{c}(0)}{z}+\ldots,
$$

$\hookrightarrow k_{2 d}=-\frac{k_{4 d}}{2}$

Chiral algebra

Which operators are in the cohomology?
\rightarrow Flavor symmetries current multiplet
\hookrightarrow Affine Kac Moody current algebra

$$
J^{a}(z) J^{b}(0) \sim-\frac{k_{4 d} / 2 \delta^{a b}}{z^{2}}+i f^{a b c} \frac{J^{c}(0)}{z}+\ldots,
$$

$\hookrightarrow k_{2 d}=-\frac{k_{4 d}}{2}$

What is the space of consistent SCFTs?

4d $\mathcal{N}=2$ SCFTs with a flavor symmetry
$\langle T T T T\rangle, \quad\left\langle J^{a} J^{b} J^{c} J^{d}\right\rangle,\left\langle T T J^{a} J^{b}\right\rangle$

What is the space of consistent SCFTs?

4d $\mathcal{N}=2$ SCFTs with a flavor symmetry
$\langle T T T T\rangle, \quad\left\langle J^{a} J^{b} J^{c} J^{d}\right\rangle, \quad\left\langle T T J^{a} J^{b}\right\rangle$

- Block decomposition:
$\sum_{\mathcal{O}_{2 d}} \lambda_{\mathcal{O}_{2 d}}^{2}$

What is the space of consistent SCFTs?

4d $\mathcal{N}=2$ SCFTs with a flavor symmetry
$\langle T T T T\rangle, \quad\left\langle J^{a} J^{b} J^{c} J^{d}\right\rangle, \quad\left\langle T T J^{a} J^{b}\right\rangle$

- Block decomposition:

$\rightarrow \lambda_{\mathcal{O}_{2 d}}^{2}$

What is the space of consistent SCFTs?

4d $\mathcal{N}=2$ SCFTs with a flavor symmetry
$\langle T T T T\rangle,\left\langle J^{a} J^{b} J^{c} J^{d}\right\rangle,\left\langle T T J^{a} J^{b}\right\rangle$

- Block decomposition:

$\rightarrow \lambda_{\mathcal{O}_{2 d}}^{2} \rightsquigarrow \lambda_{\mathcal{O}_{4 d}}^{2}$
assumptions: interacting theory, unique stress tensor

What is the space of consistent SCFTs?

4d $\mathcal{N}=2$ SCFTs with a flavor symmetry
$\langle T T T T\rangle,\left\langle J^{a} J^{b} J^{c} J^{d}\right\rangle,\left\langle T T J^{a} J^{b}\right\rangle$

- Block decomposition:

$\rightarrow \lambda_{\mathcal{O}_{2 d}}^{2} \rightsquigarrow \lambda_{\mathcal{O}_{4 d}}^{2} \underbrace{\geqslant}_{4 d \text { unitarity }} 0$
assumptions: interacting theory, unique stress tensor

What is the space of consistent SCFTs?

4d $\mathcal{N}=2$ SCFTs with a flavor symmetry
$\langle T T T T\rangle, \quad\left\langle J^{a} J^{b} J^{c} J^{d}\right\rangle, \quad\left\langle T T J^{a} J^{b}\right\rangle$

- Block decomposition:

$\rightarrow \lambda_{\mathcal{O}_{2 d}}^{2} \rightsquigarrow \lambda_{\mathcal{O}_{4 d}}^{2} \underbrace{\geqslant}_{4 d \text { unitarity }} 0 \Rightarrow$ New unitarity bounds
assumptions: interacting theory, unique stress tensor

Outline

(1) The (Super)conformal Bootstrap Program
(2) A solvable subsector
(3) Constraining the space of $\mathcal{N}=2$ SCFTs
(4) $4 d \mathcal{N}=3$ SCFTs
(5) Summary and Outlook

$4 d \mathcal{N}=2$ SCFTs with E_{6} flavor symmetry

[Beem, ML, Liendo, Peelaers, Rastelli, van Rees] [ML, Liendo]

$4 d \mathcal{N}=2$ SCFTs with E_{6} flavor symmetry

[Beem, ML, Liendo, Rastelli, van Rees]

Outline

(1) The (Super)conformal Bootstrap Program
(2) A solvable subsector
(3) Constraining the space of $\mathcal{N}=2$ SCFTs
(4) $4 d \mathcal{N}=3$ SCFTs
(5) Summary and Outlook

$4 d \mathcal{N}=3$ SCFTs

4d $\mathcal{N}=3$ SCFTs
\rightarrow Non-trivial interacting theories
[García-Etxebarria, Regalado] [Aharony, Tachikawa]

$4 d \mathcal{N}=3$ SCFTs

4d $\mathcal{N}=3$ SCFTs
\rightarrow Non-trivial interacting theories
[García-Etxebarria, Regalado] [Aharony, Tachikawa]
\rightarrow Non-Lagrangian, isolated

$4 d \mathcal{N}=3$ SCFTs

4d $\mathcal{N}=3$ SCFTs
\rightarrow Non-trivial interacting theories
[García-Etxebarria, Regalado] [Aharony, Tachikawa]
\rightarrow Non-Lagrangian, isolated
\rightarrow No flavor symmetry

$4 d \mathcal{N}=3$ SCFTs

4d $\mathcal{N}=3$ SCFTs
\rightarrow Non-trivial interacting theories
[García-Etxebarria, Regalado] [Aharony, Tachikawa]
\rightarrow Non-Lagrangian, isolated
\rightarrow No flavor symmetry
$\rightarrow c=a$

$4 d \mathcal{N}=3$ SCFTs

4d $\mathcal{N}=3$ SCFTs
\rightarrow Non-trivial interacting theories
[García-Etxebarria, Regalado] [Aharony, Tachikawa]
\rightarrow Non-Lagrangian, isolated
\rightarrow No flavor symmetry
$\rightarrow c=a$
\rightarrow Just another SCFT

$4 d \mathcal{N}=3$ SCFTs

4d $\mathcal{N}=3$ SCFTs
\rightarrow Non-trivial interacting theories
[García-Etxebarria, Regalado] [Aharony, Tachikawa]
\rightarrow Non-Lagrangian, isolated
\rightarrow No flavor symmetry
$\rightarrow c=a$
\rightarrow Just another SCFT

Chiral algebra

- $4 d \mathcal{N} \geqslant 3$: some of the extra supercharges commute with \mathbb{Q}

Chiral algebra

- $4 d \mathcal{N} \geqslant 3$: some of the extra supercharges commute with \mathbb{Q}
$\hookrightarrow 4 d \mathcal{N}=4 \Rightarrow 2 d$ "small" $\mathcal{N}=4$ chiral algebra

Chiral algebra

- $4 d \mathcal{N} \geqslant 3$: some of the extra supercharges commute with \mathbb{Q}
$\hookrightarrow 4 d \mathcal{N}=4 \Rightarrow 2 d$ "small" $\mathcal{N}=4$ chiral algebra
$\hookrightarrow 4 d \mathcal{N}=3 \Rightarrow 2 d \mathcal{N}=2$ chiral algebra [Nishinaka, Tachikawa]

Chiral algebra

- $4 d \mathcal{N} \geqslant 3$: some of the extra supercharges commute with \mathbb{Q}
$\hookrightarrow 4 d \mathcal{N}=4 \Rightarrow 2 d$ "small" $\mathcal{N}=4$ chiral algebra
$\hookrightarrow 4 d \mathcal{N}=3 \Rightarrow 2 d \mathcal{N}=2$ chiral algebra [Nishinaka, Tachikawa]
2d $\mathcal{N}=2$ Stress tensor $\langle\mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J}\rangle$
\rightarrow Local, interacting $\mathcal{N}=3$ SCFT

Chiral algebra

- $4 d \mathcal{N} \geqslant 3$: some of the extra supercharges commute with \mathbb{Q}
$\hookrightarrow 4 d \mathcal{N}=4 \Rightarrow 2 d$ "small" $\mathcal{N}=4$ chiral algebra
$\hookrightarrow 4 d \mathcal{N}=3 \Rightarrow 2 d \mathcal{N}=2$ chiral algebra [Nishinaka, Tachikawa]
$2 d \mathcal{N}=2$ Stress tensor $\langle\mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J}\rangle$
\rightarrow Local, interacting $\mathcal{N}=3$ SCFT

$$
c_{4 d} \geqslant \frac{13}{24} \text { [Cornagliotto, ML, Schomerus] }
$$

Chiral algebra

- $4 d \mathcal{N} \geqslant 3$: some of the extra supercharges commute with \mathbb{Q}
$\hookrightarrow 4 d \mathcal{N}=4 \Rightarrow 2 d$ "small" $\mathcal{N}=4$ chiral algebra
$\hookrightarrow 4 d \mathcal{N}=3 \Rightarrow 2 d \mathcal{N}=2$ chiral algebra [Nishinaka, Tachikawa]
2d $\mathcal{N}=2$ Stress tensor $\langle\mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J}\rangle$
\rightarrow Local, interacting $\mathcal{N}=3$ SCFT

$$
c_{4 d} \geqslant \frac{13}{24} \text { [Cornagliotto, ML, Schomerus] }
$$

\hookrightarrow Not saturated by any known SCFT

Chiral algebra

- $4 d \mathcal{N} \geqslant 3$: some of the extra supercharges commute with \mathbb{Q}
$\hookrightarrow 4 d \mathcal{N}=4 \Rightarrow 2 d$ "small" $\mathcal{N}=4$ chiral algebra
$\hookrightarrow 4 d \mathcal{N}=3 \Rightarrow 2 d \mathcal{N}=2$ chiral algebra [Nishinaka, Tachikawa]
2d $\mathcal{N}=2$ Stress tensor $\langle\mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J}\rangle$
\rightarrow Local, interacting $\mathcal{N}=3$ SCFT

$$
c_{4 d} \geqslant \frac{13}{24} \text { [Cornagliotto, ML, Schomerus] }
$$

\hookrightarrow Not saturated by any known SCFT smallest interacting $c_{4 d}=\frac{15}{12}$

Chiral algebra

- $4 d \mathcal{N} \geqslant 3$: some of the extra supercharges commute with \mathbb{Q}
$\hookrightarrow 4 d \mathcal{N}=4 \Rightarrow 2 d$ "small" $\mathcal{N}=4$ chiral algebra
$\hookrightarrow 4 d \mathcal{N}=3 \Rightarrow 2 d \mathcal{N}=2$ chiral algebra [Nishinaka, Tachikawa]
$2 d \mathcal{N}=2$ Stress tensor $\langle\mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J}\rangle$
\rightarrow Local, interacting $\mathcal{N}=3$ SCFT

$$
c_{4 d} \geqslant \frac{13}{24} \text { [Cornagliotto, ML, Schomerus] }
$$

\hookrightarrow Not saturated by any known SCFT smallest interacting $c_{4 d}=\frac{15}{12}$
\hookrightarrow Similar bounds in $\mathcal{N}=4$ and $\mathcal{N}=2$ saturated by known SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]

Outline

(1) The (Super)conformal Bootstrap Program
(2) A solvable subsector
(3) Constraining the space of $\mathcal{N}=2$ SCFTs
(4) $4 d \mathcal{N}=3$ SCFTs
(5) Summary and Outlook

Summary and Outlook

\rightarrow New constraints on the space of allowed $\mathcal{N} \geqslant 2$ SCFTs

Summary and Outlook

\rightarrow New constraints on the space of allowed $\mathcal{N} \geqslant 2$ SCFTs
\rightarrow Can the numerical bootstrap complement these?

Summary and Outlook

\rightarrow New constraints on the space of allowed $\mathcal{N} \geqslant 2$ SCFTs
\rightarrow Can the numerical bootstrap complement these?
\hookrightarrow Need more superconformal blocks

Summary and Outlook

\rightarrow New constraints on the space of allowed $\mathcal{N} \geqslant 2$ SCFTs
\rightarrow Can the numerical bootstrap complement these?
\hookrightarrow Need more superconformal blocks
Numerically solving theories?
\rightarrow Bounds select special set of theories, can we solve them?

Summary and Outlook

\rightarrow New constraints on the space of allowed $\mathcal{N} \geqslant 2$ SCFTs
\rightarrow Can the numerical bootstrap complement these?
\hookrightarrow Need more superconformal blocks

Numerically solving theories?

\rightarrow Bounds select special set of theories, can we solve them?
\rightarrow Is there an exotic "minimal" $\mathcal{N}=3$ SCFT with $c=\frac{13}{24}$?

Summary and Outlook

\rightarrow New constraints on the space of allowed $\mathcal{N} \geqslant 2$ SCFTs
\rightarrow Can the numerical bootstrap complement these?
\hookrightarrow Need more superconformal blocks

Numerically solving theories?

\rightarrow Bounds select special set of theories, can we solve them?
\rightarrow Is there an exotic "minimal" $\mathcal{N}=3$ SCFT with $c=\frac{13}{24}$?
\hookrightarrow Need more superconformal blocks

Summary and Outlook

\rightarrow New constraints on the space of allowed $\mathcal{N} \geqslant 2$ SCFTs
\rightarrow Can the numerical bootstrap complement these?
\hookrightarrow Need more superconformal blocks

Numerically solving theories?

\rightarrow Bounds select special set of theories, can we solve them?
\rightarrow Is there an exotic "minimal" $\mathcal{N}=3$ SCFT with $c=\frac{13}{24}$?
\hookrightarrow Need more superconformal blocks
\rightarrow Can we reach the "minimal" known $\mathcal{N}=3$ SCFT $c=\frac{15}{12}$?

Summary and Outlook

\rightarrow New constraints on the space of allowed $\mathcal{N} \geqslant 2$ SCFTs
\rightarrow Can the numerical bootstrap complement these?
\hookrightarrow Need more superconformal blocks

Numerically solving theories?

\rightarrow Bounds select special set of theories, can we solve them?
\rightarrow Is there an exotic "minimal" $\mathcal{N}=3$ SCFT with $c=\frac{13}{24}$?
\hookrightarrow Need more superconformal blocks
\rightarrow Can we reach the "minimal" known $\mathcal{N}=3$ SCFT $c=\frac{15}{12}$? [ML, Liendo, Meneghelli, Mitev]

Summary and Outlook

\rightarrow New constraints on the space of allowed $\mathcal{N} \geqslant 2$ SCFTs
\rightarrow Can the numerical bootstrap complement these?
\hookrightarrow Need more superconformal blocks

Numerically solving theories?

\rightarrow Bounds select special set of theories, can we solve them?
\rightarrow Is there an exotic "minimal" $\mathcal{N}=3$ SCFT with $c=\frac{13}{24}$?
\hookrightarrow Need more superconformal blocks
\rightarrow Can we reach the "minimal" known $\mathcal{N}=3$ SCFT $c=\frac{15}{12}$? [ML, Liendo, Meneghelli, Mitev]

Other analytic approaches?

Summary and Outlook

\rightarrow New constraints on the space of allowed $\mathcal{N} \geqslant 2$ SCFTs
\rightarrow Can the numerical bootstrap complement these?
\hookrightarrow Need more superconformal blocks

Numerically solving theories?

\rightarrow Bounds select special set of theories, can we solve them?
\rightarrow Is there an exotic "minimal" $\mathcal{N}=3$ SCFT with $c=\frac{13}{24}$?
\hookrightarrow Need more superconformal blocks
\rightarrow Can we reach the "minimal" known $\mathcal{N}=3$ SCFT $c=\frac{15}{12}$? [ML, Liendo, Meneghelli, Mitev]

Other analytic approaches?
\rightarrow Is c bounded by k for large k ?

Thank you!

Backup slides

Outline

Conformal bootstrap
Constraining the space of $\mathcal{N}=2$ SCFTs
Bootstrapping $\mathcal{N}=3$ SCFTs

Conformal Bootstrap

Conformal field theory defined by

Set of local operators and their correlation functions

Conformal Bootstrap

Conformal field theory defined by
Set of local operators and their correlation functions
CFT data
$\left\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\right\}$ and

Conformal Bootstrap

Conformal field theory defined by
Set of local operators and their correlation functions
CFT data
$\left\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\right\}$ and
Operator Product Expansion
$\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k} \quad \lambda_{\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{k}} \quad \mathcal{O}_{k}(0)$

Conformal Bootstrap

Conformal field theory defined by
Set of local operators and their correlation functions
CFT data $\left\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\right\}$ and
Operator Product Expansion
$\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k}$
$\lambda_{\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{k}}$
$\mathcal{O}_{k}(0)$
\rightarrow Finite radius of convergence

Conformal Bootstrap

Conformal field theory defined by
Set of local operators and their correlation functions
CFT data $\left\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\right\}$ and
Operator Product Expansion
$\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k p r i m} . \lambda_{\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{k}} c\left(x, \partial_{x}\right) \mathcal{O}_{k}(0)$
\rightarrow Finite radius of convergence

Conformal Bootstrap

Conformal field theory defined by
Set of local operators and their correlation functions
CFT data $\left\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\right\}$ and
Operator Product Expansion
$\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k p r i m} . \lambda_{\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{k}} c\left(x, \partial_{x}\right) \mathcal{O}_{k}(0)$
\rightarrow Finite radius of convergence
$\rightarrow n$-point function by recursive use of the OPE until $\langle\mathbb{1}\rangle=1$

Conformal Bootstrap

Conformal field theory defined by
Set of local operators and their correlation functions
CFT data
$\left\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\right\}$ and $\left\{\lambda_{\mathcal{O}_{i} \mathcal{O}_{j} \mathcal{O}_{k}}\right\}$
Operator Product Expansion
$\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k p r i m} . \lambda_{\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{k}} c\left(x, \partial_{x}\right) \mathcal{O}_{k}(0)$
\rightarrow Finite radius of convergence
$\rightarrow n$-point function by recursive use of the OPE until $\langle\mathbb{1}\rangle=1$

Conformal Bootstrap

Conformal field theory defined by

Set of local operators and their correlation functions
CFT data
$\left\{\mathcal{O}_{\Delta, \ell, \ldots}(x)\right\}$ and $\left\{\lambda_{\mathcal{O}_{i} \mathcal{O}_{j} \mathcal{O}_{k}}\right\}$
Operator Product Expansion
$\mathcal{O}_{1}(x) \mathcal{O}_{2}(0)=\sum_{k p r i m .} \lambda_{\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{k}} c\left(x, \partial_{x}\right) \mathcal{O}_{k}(0)$
\rightarrow Finite radius of convergence
$\rightarrow n$-point function by recursive use of the OPE until $\langle\mathbb{1}\rangle=1$

CFT data strongly constrained

- Unitarity
- Associativity of the operator product algebra

Conformal Bootstrap

Crossing Symmetry

$$
\left\langle\left(\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right)\right) \mathcal{O}_{3}\left(x_{3}\right) \mathcal{O}_{4}\left(x_{4}\right)\right\rangle=
$$

Conformal Bootstrap

Crossing Symmetry

$\left\langle\mathcal{O}_{1}\left(x_{1}\right)\left(\mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}\left(x_{3}\right)\right) \mathcal{O}_{4}\left(x_{4}\right)\right\rangle=$

Conformal Bootstrap

Crossing Symmetry

$$
\left\langle\left(\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right)\right) \mathcal{O}_{3}\left(x_{3}\right) \mathcal{O}_{4}\left(x_{4}\right)\right\rangle=
$$

where $\Delta_{\mathcal{O}_{i}}=\Delta_{\mathcal{O}}, u=\frac{x_{1}^{2} x_{24}^{2}}{x_{13}^{2} x_{24}^{2}}=z \bar{z}, v=\frac{x_{23}^{2} x_{14}^{2}}{x_{13}^{2} 2_{24}^{24}}=(1-z)(1-\bar{z})$

Conformal Bootstrap

Crossing Symmetry

$\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}\left(x_{3}\right) \mathcal{O}_{4}\left(x_{4}\right)\right\rangle=$

$$
\begin{aligned}
& \frac{1}{\chi_{12}^{2 L \mathcal{O}_{34}^{2 \Delta O}}} \sum_{\mathcal{O}_{\Delta, \ell}} \lambda_{\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{\Delta, \ell}} \lambda_{\mathcal{O}_{3} \mathcal{O}_{4} \mathcal{O}_{\Delta, \ell}} g_{\Delta, \ell}(u, v)= \\
& \frac{1}{2 \Delta 0_{14}^{2 \Delta} \chi_{23}^{2 \Delta}} \sum_{\tilde{\mathcal{O}}_{\Delta, \ell}} \lambda_{\mathcal{O}_{1} \mathcal{O}_{4} \tilde{\mathcal{O}}_{\Delta, \ell}} \lambda_{\mathcal{O}_{2} \mathcal{O}_{3} \tilde{\mathcal{O}}_{\Delta, \ell}} g_{\Delta, \ell}(v, u)
\end{aligned}
$$

where $\Delta_{\mathcal{O}_{i}}=\Delta_{\mathcal{O}}, u=\frac{x_{1}^{2} x_{24}^{2}}{x_{13}^{2} x_{24}^{2}}=z \bar{z}, v=\frac{x_{23}^{2} x_{14}^{2}}{x_{13}^{2} 2_{24}^{24}}=(1-z)(1-\bar{z})$

Conformal Bootstrap

\rightarrow Solve crossing equations for all four-point functions

Conformal Bootstrap

\rightarrow Solve crossing equations for all four-point functions
[Rattazzi, Rychkov, Tonni, Vichi]

- Solving \Rightarrow constraining

Conformal Bootstrap

\rightarrow Solve crossing equations for all four-point functions
[Rattazzi, Rychkov, Tonni, Vichi]

- Solving \Rightarrow constraining
\rightarrow Guess for the spectrum

Conformal Bootstrap

\rightarrow Solve crossing equations for all four-point functions
[Rattazzi, Rychkov, Tonni, Vichi]

- Solving \Rightarrow constraining
\rightarrow Guess for the spectrum
\hookrightarrow there's a large gap in the spectrum

Conformal Bootstrap

\rightarrow Solve crossing equations for all four-point functions
[Rattazzi, Rychkov, Tonni, Vichi]

- Solving \Rightarrow constraining
\rightarrow Guess for the spectrum
\hookrightarrow there's a large gap in the spectrum
\rightarrow Can it ever define a consistent CFT?

Conformal Bootstrap

\rightarrow Solve crossing equations for all four-point functions
[Rattazzi, Rychkov, Tonni, Vichi]

- Solving \Rightarrow constraining
\rightarrow Guess for the spectrum
\hookrightarrow there's a large gap in the spectrum
\rightarrow Can it ever define a consistent CFT?
Sum rule: identical scalars ϕ

Conformal Bootstrap

\rightarrow Solve crossing equations for all four-point functions
[Rattazzi, Rychkov, Tonni, Vichi]

- Solving \Rightarrow constraining
\rightarrow Guess for the spectrum
\hookrightarrow there's a large gap in the spectrum
\rightarrow Can it ever define a consistent CFT?
Sum rule: identical scalars ϕ
\rightarrow Identity operator $\lambda_{\mathcal{O O} \mathbb{I}}=1$

$$
1=\sum_{\substack{\mathcal{O}_{\Delta \ell} \neq \mathbb{1} \\ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^{2} \underbrace{\frac{u^{\Delta_{\phi}} g_{\Delta, \ell}(v, u)-v^{\Delta_{\phi}} g_{\Delta, \ell}(u, v)}{v^{\Delta_{\phi}}-u^{\Delta_{\phi}}}}_{F_{\Delta, \ell}}
$$

Conformal Bootstrap

Sum rule

$$
1=\sum_{\substack{\mathcal{O}_{\Delta \ell} \neq \mathbb{1} \\ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^{2} F_{\Delta, \ell}
$$

Conformal Bootstrap

Sum rule

$$
1=\sum_{\substack{\mathcal{O}_{\Delta_{\ell}} \neq 1 \\ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^{2} F_{\Delta, \ell}
$$

- Find Functional Ψ such that

$$
\begin{aligned}
& \hookrightarrow \psi \cdot 1<0(\mathbb{1}) \\
& \hookrightarrow \psi \cdot F_{\Delta, \ell}(u, v) \geq 0 \text { for all }\{\Delta, \ell\} \text { in spectrum }
\end{aligned}
$$

Conformal Bootstrap

Sum rule

$$
1=\sum_{\substack{\mathcal{O}_{\Delta_{\ell}} \neq \mathbb{1} \\ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^{2} F_{\Delta, \ell}
$$

- Find Functional Ψ such that

$$
\begin{aligned}
& \hookrightarrow \psi \cdot 1<0(\mathbb{1}) \\
& \hookrightarrow \psi \cdot F_{\Delta, \ell}(u, v) \geq 0 \text { for all }\{\Delta, \ell\} \text { in spectrum }
\end{aligned}
$$

\rightarrow Spectrum is inconsistent \Rightarrow rule out CFT

Conformal Bootstrap

Sum rule

$$
1=\sum_{\substack{\mathcal{O}_{\Delta \ell} \neq \mathbb{1} \\ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^{2} F_{\Delta, \ell}
$$

- Find Functional Ψ such that

$$
\begin{aligned}
& \hookrightarrow \psi \cdot 1<0(\mathbb{1}) \\
& \hookrightarrow \psi \cdot F_{\Delta, \ell}(u, v) \geq 0 \text { for all }\{\Delta, \ell\} \text { in spectrum }
\end{aligned}
$$

\rightarrow Spectrum is inconsistent \Rightarrow rule out CFT

- Truncate

$$
\psi=\left.\sum_{m, n}^{m, n \leqslant \Lambda} a_{m n} \partial_{z}^{m} \partial_{\bar{z}}^{n}\right|_{z=\bar{z}=\frac{1}{2}}
$$

Conformal Bootstrap

Sum rule

$$
1=\sum_{\substack{\mathcal{O}_{\Delta \in} \neq 1 \\ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^{2} F_{\Delta, \ell}
$$

- Find Functional Ψ such that

$$
\begin{aligned}
& \hookrightarrow \psi \cdot 1<0(\mathbb{1}) \\
& \hookrightarrow \psi \cdot F_{\Delta, \ell}(u, v) \geq 0 \text { for all }\{\Delta, \ell\} \text { in spectrum }
\end{aligned}
$$

\rightarrow Spectrum is inconsistent \Rightarrow rule out CFT

- Truncate

$$
\psi=\left.\sum_{m, n}^{m, n \leqslant \Lambda} a_{m n} \partial_{z}^{m} \partial_{\bar{z}}^{n}\right|_{z=\bar{z}=\frac{1}{2}}
$$

\rightarrow Increase $\Lambda \Rightarrow$ bounds get stronger

Conformal Bootstrap

Sum rule

$$
1=\sum_{\substack{\mathcal{O}_{\Delta \in} \neq 1 \\ \mathcal{O} \in \phi \phi}} \lambda_{\phi \phi \mathcal{O}}^{2} F_{\Delta, \ell}
$$

- Find Functional Ψ such that

$$
\begin{aligned}
& \hookrightarrow \psi \cdot 1<0(\mathbb{1}) \\
& \hookrightarrow \psi \cdot F_{\Delta, \ell}(u, v) \geq 0 \text { for all }\{\Delta, \ell\} \text { in spectrum }
\end{aligned}
$$

\rightarrow Spectrum is inconsistent \Rightarrow rule out CFT

- Truncate

$$
\psi=\left.\sum_{m, n}^{m, n \leqslant \Lambda} a_{m n} \partial_{z}^{m} \partial_{\bar{z}}^{n}\right|_{z=\bar{z}=\frac{1}{2}}
$$

\rightarrow Increase $\Lambda \Rightarrow$ bounds get stronger
\rightarrow Always true bounds

3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, PRD 86 025022]

3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, PRD 86 025022]

\rightarrow Saturated by 3d Ising model

3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, PRD 86 025022]

\rightarrow Saturated by 3d Ising model
\rightarrow 3d Ising lives at "kink"

Outline

Conformal bootstrap

Constraining the space of $\mathcal{N}=2$ SCFTs Bootstrapping $\mathcal{N}=3$ SCFTs

What is the space of consistent SCFTs?

4d $\mathcal{N}=2$ SCFTs with $S U(2)$ flavor symmetry
$\langle T T T T\rangle,\left\langle J^{a} J^{b} J^{c} J^{d}\right\rangle,\left\langle T T J^{a} J^{b}\right\rangle$

Outline

Conformal bootstrap
Constraining the space of $\mathcal{N}=2$ SCFTs
Bootstrapping $\mathcal{N}=3$ SCFTs

$4 d \mathcal{N}=3$ SCFTs with $c=\frac{15}{12}$

[ML, Liendo, Meneghelli, Mitev]

