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The (Super)conformal Bootstrap Program

What is the space of consistent (S)CFTs?

→ Maximally supersymmetric theories: well known list of
theories

→ N = 3 theories: not known to exist until
Garćıa-Etxebarria and Regalado

→ N = 2 theories: large known list of theories

many lacking a Lagrangian description

Can we bootstrap specific theories?

→ Particularly helpful if theory is uniquely fixed by a set of
discrete data

→ Only tool available for finite N non-Lagrangian theories
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The Superconformal Bootstrap

I Various conformal families related by action of
supercharges

I Conformal blocks  superconformal blocks

I Finite re-organization of an infinite amount of data

Q: Is there a solvable truncation of the crossing
equations?

→ Yes, for 4d N > 2 [Beem, ML, Liendo, Peelaers, Rastelli, van Rees]

( 6d N = (2, 0) and 2d N = (0, 4) [Beem, Rastelli, van Rees])

I Step 1: Solve this subsector

I Step 2: Full blown numerics for the rest
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Chiral algebra

Organize operators in representations of superconformal
algebra

{O
∆,(j1,j2),

R︸︷︷︸
SU(2)R

, r︸︷︷︸
U(1)r

}

Claim

→ Pick a plane R2 ∈ R4

→ Restrict to operators with ∆ = 2R + j1 + j2

uI1(z̄1) . . . uIn(z̄n)

〈OI1
1 (z1, z̄1) . . .OIn

n (zn, z̄n)〉

= f (zi)

→ Meromorphic!
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Chiral algebra

Why?

I Subsector = Cohomology of nilpotent Q

∼ Q+ S
→ Cohomology at the origin ⇒ non-empty classes

∆ = 2R + j1 + j2
I On plane sl2︸︷︷︸

commutes with Q

× s̄l2︸︷︷︸

does not

→ twisted translations uI (z̄)

↪→ diagonal subalgebra s̄l2 × su(2)R is Q exact

→ h = R + j1 + j2
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Chiral algebra

Example: free hypermultiplet

Complex scalars in hypermultiplet are in the cohomology

Q I =

[
Q

Q̃?

]
, Q̃ I =

[
Q̃
−Q?

]

uI = (1, z̄)

q(z , z̄) = uIQ
I = Q(z , z̄) + z̄ Q̃?(z , z̄),

q̃(z , z̄) = uI Q̃
I = Q̃(z , z̄)− z̄Q?(z , z̄)

→ q(z , z̄)q̃(0) ∼ z̄ Q̃?(z , z̄)Q̃(0) ∼ z̄
z z̄

= 1
z
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Chiral algebra

Which operators are in the cohomology?

→ Stress tensor Tµν

 superdescendant

→ Stress tensor supermultiplet ⇒ 2d stress tensor

T (z)T (0) ∼ −12
c4d/2

z4
+ 2

T (0)

z2
+
∂T (0)

z
+ . . . ,

↪→ Global sl2 enhances to Virasoro

↪→ c2d = −12c4d
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Chiral algebra

Which operators are in the cohomology?

→ Flavor symmetries current multiplet

↪→ Affine Kac Moody current algebra

Ja(z)Jb(0) ∼ −k4d/2δab

z2
+ i f abc

Jc(0)

z
+ . . . ,

↪→ k2d = −k4d

2

→ . . .
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What is the space of consistent SCFTs?

4d N = 2 SCFTs with a flavor symmetry

〈TTTT 〉 , 〈JaJbJcJd〉 , 〈TTJaJb〉

I Block decomposition:

O2d

∑
O2d

λ2
O2d

→ λ2
O2d

 λ2
O4d

>︸︷︷︸
4d unitarity

0 ⇒ New unitarity bounds

assumptions: interacting theory, unique stress tensor
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4d N = 2 SCFTs with E6 flavor symmetry

〈TTTT 〉 , 〈JaJbJcJd〉 , 〈TTJaJb〉
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4d N = 3 SCFTs

4d N = 3 SCFTs

→ Non-trivial interacting theories

[Garćıa-Etxebarria, Regalado] [Aharony, Tachikawa]

→ Non-Lagrangian, isolated

→ No flavor symmetry

→ c = a

→ Just another SCFT
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[Garćıa-Etxebarria, Regalado] [Aharony, Tachikawa]

→ Non-Lagrangian, isolated

→ No flavor symmetry

→ c = a

→ Just another SCFT

17 / 21



4d N = 3 SCFTs

4d N = 3 SCFTs

→ Non-trivial interacting theories
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Chiral algebra

I 4d N > 3: some of the extra supercharges commute with Q

↪→ 4d N = 4 ⇒ 2d “small” N = 4 chiral algebra
↪→ 4d N = 3 ⇒ 2d N = 2 chiral algebra [Nishinaka, Tachikawa]

2d N = 2 Stress tensor 〈J JJJ 〉

→ Local, interacting N = 3 SCFT

c4d >
13

24
[Cornagliotto, ML, Schomerus]

↪→ Not saturated by any known SCFT

smallest interacting c4d = 15
12

↪→ Similar bounds in N = 4 and N = 2 saturated by known
SCFTs [Beem, Rastelli, van Rees] [Liendo, Ramirez, Seo]
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Summary and Outlook

→ New constraints on the space of allowed N > 2 SCFTs

→ Can the numerical bootstrap complement these?

↪→ Need more superconformal blocks

Numerically solving theories?

→ Bounds select special set of theories, can we solve them?

→ Is there an exotic “minimal” N = 3 SCFT with c = 13
24

?

↪→ Need more superconformal blocks

→ Can we reach the “minimal” known N = 3 SCFT c = 15
12

?

[ML, Liendo, Meneghelli, Mitev]

Other analytic approaches?

→ Is c bounded by k for large k?
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Conformal Bootstrap

Conformal field theory defined by

Set of local operators and their correlation functions

CFT data
{O∆,`,...(x)} and

{λOiOjOk
}

Operator Product Expansion

O1(x)O2(0) =
∑

k

prim.

λO1O2Ok

c(x , ∂x)

Ok(0)

→ Finite radius of convergence

→ n−point function by recursive use of the OPE until
〈1〉 = 1

CFT data strongly constrained

I Unitarity

I Associativity of the operator product algebra
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Conformal Bootstrap

Crossing Symmetry

〈(O1(x1)

(

O2(x2))O3(x3)

)

O4(x4)〉 =

1

O∆,`

4

32

∑
O∆,`

3

Õ∆,`

41

2

=
∑̃
O∆,`

1

x
2∆O
12 x

2∆O
34

∑
O∆,`

λO1O2O∆,`
λO3O4O∆,`

g∆,`(u, v) =

1

x
2∆O
14 x

2∆O
23

∑
Õ∆,`

λO1O4Õ∆,`
λO2O3Õ∆,`

g∆,`(v , u)

where ∆Oi
= ∆O, u =

x2
12x

2
34

x2
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2
24

= zz̄ , v =
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2
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x2
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2
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= (1− z)(1− z̄)
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Õ∆,`

λO1O4Õ∆,`
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Conformal Bootstrap

→ Solve crossing equations for all four-point functions

[Rattazzi, Rychkov, Tonni, Vichi]

I Solving ⇒ constraining
→ Guess for the spectrum

↪→ there’s a large gap in the spectrum

→ Can it ever define a consistent CFT?

Sum rule: identical scalars φ

→ Identity operator λOO1 = 1

1 =
∑

O∆`
6=1

O∈φφ

λ2
φφO

u∆φg∆,`(v , u)− v∆φg∆,`(u, v)

v∆φ − u∆φ︸ ︷︷ ︸
F∆,`
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Conformal Bootstrap

Sum rule 1 =
∑

O∆`
6=1

O∈φφ

λ2
φφOF∆,`

I Find Functional Ψ such that

↪→ ψ · 1 < 0 (1)
↪→ ψ · F∆,`(u, v) ≥ 0 for all {∆, `} in spectrum

→ Spectrum is inconsistent ⇒ rule out CFT

I Truncate

ψ =

m,n6Λ∑
m,n

amn∂
m
z ∂

n
z̄ |z=z̄= 1

2

→ Increase Λ ⇒ bounds get stronger

→ Always true bounds
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3d Ising Model

[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi,
PRD 86 025022]

Not allowed

Maybe

→ Saturated by 3d Ising model

→ 3d Ising lives at “kink”
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What is the space of consistent SCFTs?

4d N = 2 SCFTs with SU(2) flavor symmetry

〈TTTT 〉 , 〈JaJbJcJd〉 , 〈TTJaJb〉

H1 (2)

H0 (2)L

=4 SYM
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4d N = 3 SCFTs with c = 15
12
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Ruled out

N = 4 SYM

N = 3?

[ML, Liendo, Meneghelli, Mitev ]
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