The nilpotent cone in rank one and minimal surfaces

Daniele Alessandrini

Columbia University

Geometria em Lisboa seminar June 7, 2021

The two moduli spaces

Joint work with 李琼玲（Qiongling Li）and Andrew Sanders．

The two moduli spaces

Joint work with 李琼玲（Qiongling Li）and Andrew Sanders．
Σ closed oriented connected surface of genus g ．
X Riemann surface homeomorphic to Σ ．

The two moduli spaces

Joint work with 李琼玲（Qiongling Li）and Andrew Sanders．
Σ closed oriented connected surface of genus g ．
X Riemann surface homeomorphic to Σ ．
G connected simple complex Lie group of rank 1， i．e．$G=S L(2, \mathbb{C})$ or $G=S O(3, \mathbb{C}) \simeq \operatorname{PSL}(2, \mathbb{C})$ ．

The two moduli spaces

Joint work with 李琼玲（Qiongling Li）and Andrew Sanders．
Σ closed oriented connected surface of genus g ．
X Riemann surface homeomorphic to Σ ．
G connected simple complex Lie group of rank 1， i．e．$G=S L(2, \mathbb{C})$ or $G=S O(3, \mathbb{C}) \simeq \operatorname{PSL}(2, \mathbb{C})$ ．

Two moduli spaces：

The two moduli spaces

Joint work with 李琼玲（Qiongling Li）and Andrew Sanders．
Σ closed oriented connected surface of genus g ．
X Riemann surface homeomorphic to Σ ．
G connected simple complex Lie group of rank 1， i．e．$G=S L(2, \mathbb{C})$ or $G=S O(3, \mathbb{C}) \simeq \operatorname{PSL}(2, \mathbb{C})$ ．

Two moduli spaces：
$\mathcal{N}_{X}(G)$ ：The nilpotent cone in the moduli space of（semi－ stable）G－Higgs bundles on X ．

The two moduli spaces

Joint work with 李琼玲（Qiongling Li）and Andrew Sanders．
Σ closed oriented connected surface of genus g ．
X Riemann surface homeomorphic to Σ ．
G connected simple complex Lie group of rank 1，
i．e．$G=S L(2, \mathbb{C})$ or $G=S O(3, \mathbb{C}) \simeq \operatorname{PSL}(2, \mathbb{C})$ ．
Two moduli spaces：
$\mathcal{N}_{X}(G)$ ：The nilpotent cone in the moduli space of（semi－ stable）G－Higgs bundles on X ．
$\mathcal{B}_{\Sigma}\left(\mathbb{H}^{3}\right)$ ：The moduli space of equivariant branched minimal immersions from $\widetilde{\Sigma}$ to \mathbb{H}^{3} ．

The Hitchin fibration

$\mathcal{M}_{X}(G)$: Moduli space of (semi-stable) G-Higgs bundles on X.
$\mathcal{M}_{X}(G)$: Moduli space of (semi-stable) G-Higgs bundles on X.
$(E, \ldots, \varphi) \in \mathcal{M}_{X}(G)$, where

- E is a vector bundle (of rank 2 or 3).
- φ is the Higgs field.
- ... is some extra structure $(G=S L(2, \mathbb{C})$ or $S O(3, \mathbb{C})$.)
$\mathcal{M}_{X}(G)$: Moduli space of (semi-stable) G-Higgs bundles on X.
$(E, \ldots, \varphi) \in \mathcal{M}_{X}(G)$, where
- E is a vector bundle (of rank 2 or 3).
- φ is the Higgs field.
- ... is some extra structure $(G=S L(2, \mathbb{C})$ or $S O(3, \mathbb{C})$.)
$\operatorname{tr}\left(\varphi^{2}\right) \in H^{0}\left(X, K^{2}\right)$ is a quadratic differential on X.
$\mathcal{M}_{X}(G)$: Moduli space of (semi-stable) G-Higgs bundles on X.
$(E, \ldots, \varphi) \in \mathcal{M}_{X}(G)$, where
- E is a vector bundle (of rank 2 or 3).
- φ is the Higgs field.
- ... is some extra structure $(G=S L(2, \mathbb{C})$ or $S O(3, \mathbb{C})$.)
$\operatorname{tr}\left(\varphi^{2}\right) \in H^{0}\left(X, K^{2}\right)$ is a quadratic differential on X.
The Hitchin fibration:

$$
H: \mathcal{M}_{X}(G) \ni(E, \ldots, \varphi) \longrightarrow \operatorname{tr}\left(\varphi^{2}\right) \in H^{0}\left(X, K^{2}\right)
$$

The nilpotent cone

The Hitchin fiber: for $q_{2} \in H^{0}\left(X, K^{2}\right)$,

$$
H^{-1}\left(q_{2}\right) \subset \mathcal{M}_{X}(G)
$$

a half-dimensional Lagrangian subvariety.

The nilpotent cone

The Hitchin fiber: for $q_{2} \in H^{0}\left(X, K^{2}\right)$,

$$
H^{-1}\left(q_{2}\right) \subset \mathcal{M}_{X}(G)
$$

a half-dimensional Lagrangian subvariety.
If q_{2} has simple zeros: regular fibers, abelian varieties.

The nilpotent cone

The Hitchin fiber: for $q_{2} \in H^{0}\left(X, K^{2}\right)$,

$$
H^{-1}\left(q_{2}\right) \subset \mathcal{M}_{X}(G)
$$

a half-dimensional Lagrangian subvariety.
If q_{2} has simple zeros: regular fibers, abelian varieties.
Otherwise: singular fibers, see Gothen-Oliveira, Horn.

The nilpotent cone

The Hitchin fiber: for $q_{2} \in H^{0}\left(X, K^{2}\right)$,

$$
H^{-1}\left(q_{2}\right) \subset \mathcal{M}_{X}(G)
$$

a half-dimensional Lagrangian subvariety.
If q_{2} has simple zeros: regular fibers, abelian varieties.
Otherwise: singular fibers, see Gothen-Oliveira, Horn.
The nilpotent cone, when $q_{2}=0$,

$$
\mathcal{N}_{X}(G):=H^{-1}(0) .
$$

This is the most singular fiber.

Motivations

Integrable Systems:

- The regular fibers are the leaves of the Hitchin systems.

Motivations

Integrable Systems:

- The regular fibers are the leaves of the Hitchin systems.
- Recently, Hitchin studied some subintegrable systems in the singular locus.

Motivations

Integrable Systems:

- The regular fibers are the leaves of the Hitchin systems.
- Recently, Hitchin studied some subintegrable systems in the singular locus.

Mirror symmetry:

- $S L(2, \mathbb{C})$ and $P S L(2, \mathbb{C})$ are Langlands dual groups.
- $\mathcal{M}_{X}(S L(2, \mathbb{C}))$ and $\mathcal{M}_{X}(\operatorname{PSL}(2, \mathbb{C}))$ are mirror dual spaces.

Motivations

Integrable Systems:

- The regular fibers are the leaves of the Hitchin systems.
- Recently, Hitchin studied some subintegrable systems in the singular locus.

Mirror symmetry:

- $S L(2, \mathbb{C})$ and $P S L(2, \mathbb{C})$ are Langlands dual groups.
- $\mathcal{M}_{X}(S L(2, \mathbb{C}))$ and $\mathcal{M}_{X}(\operatorname{PSL}(2, \mathbb{C}))$ are mirror dual spaces.
- For regular fibers, this is understood.

Motivations

Integrable Systems:

- The regular fibers are the leaves of the Hitchin systems.
- Recently, Hitchin studied some subintegrable systems in the singular locus.

Mirror symmetry:

- $S L(2, \mathbb{C})$ and $P S L(2, \mathbb{C})$ are Langlands dual groups.
- $\mathcal{M}_{X}(S L(2, \mathbb{C}))$ and $\mathcal{M}_{X}(\operatorname{PSL}(2, \mathbb{C}))$ are mirror dual spaces.
- For regular fibers, this is understood.
- More complicated for singular fibers, especially for $\mathcal{N}_{X}(G)$.

Motivations

Integrable Systems:

- The regular fibers are the leaves of the Hitchin systems.
- Recently, Hitchin studied some subintegrable systems in the singular locus.

Mirror symmetry:

- $S L(2, \mathbb{C})$ and $P S L(2, \mathbb{C})$ are Langlands dual groups.
- $\mathcal{M}_{X}(S L(2, \mathbb{C}))$ and $\mathcal{M}_{X}(\operatorname{PSL}(2, \mathbb{C}))$ are mirror dual spaces.
- For regular fibers, this is understood.
- More complicated for singular fibers, especially for $\mathcal{N}_{X}(G)$.

Topology of the moduli space:

$$
\mathcal{N}_{X}(G) \hookrightarrow \mathcal{M}_{X}(G)
$$

this inclusion is a homotopy equivalence

Minimal surfaces

An equivariant branched minimal immersion from $\widetilde{\Sigma}$ to \mathbb{H}^{3}

Minimal surfaces

An equivariant branched minimal immersion from $\widetilde{\Sigma}$ to \mathbb{H}^{3} is a pair (f, ρ), where

$$
\begin{aligned}
f: \widetilde{\Sigma} & \longrightarrow \mathbb{H}^{3}, \\
\rho: \pi_{1}(\Sigma) \longrightarrow P S L(2, \mathbb{C}) & \simeq S O(3, \mathbb{C}) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{3}\right),
\end{aligned}
$$

Minimal surfaces

An equivariant branched minimal immersion from $\widetilde{\Sigma}$ to \mathbb{H}^{3} is a pair (f, ρ), where

$$
\begin{aligned}
f: \widetilde{\Sigma} & \longrightarrow \mathbb{H}^{3}, \\
\rho: \pi_{1}(\Sigma) \longrightarrow P S L(2, \mathbb{C}) & \simeq S O(3, \mathbb{C}) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{3}\right),
\end{aligned}
$$

and f is a ρ-equivariant smooth map such that

Minimal surfaces

An equivariant branched minimal immersion from $\widetilde{\Sigma}$ to \mathbb{H}^{3} is a pair (f, ρ), where

$$
\begin{gathered}
f: \widetilde{\Sigma} \longrightarrow \mathbb{H}^{3}, \\
\rho: \pi_{1}(\Sigma) \longrightarrow \operatorname{PSL}(2, \mathbb{C}) \simeq \operatorname{SO}(3, \mathbb{C}) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{3}\right),
\end{gathered}
$$

and f is a ρ-equivariant smooth map such that

- $\widetilde{B}=\left\{p \in \widetilde{\Sigma} \mid d f_{p}=0\right\}$ is a discrete set.

Minimal surfaces

An equivariant branched minimal immersion from $\widetilde{\Sigma}$ to \mathbb{H}^{3} is a pair (f, ρ), where

$$
\begin{gathered}
f: \widetilde{\Sigma} \longrightarrow \mathbb{H}^{3}, \\
\rho: \pi_{1}(\Sigma) \longrightarrow \operatorname{PSL}(2, \mathbb{C}) \simeq \operatorname{SO}(3, \mathbb{C}) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{3}\right),
\end{gathered}
$$

and f is a ρ-equivariant smooth map such that

- $\widetilde{B}=\left\{p \in \widetilde{\Sigma} \mid d f_{p}=0\right\}$ is a discrete set.
- On $\tilde{\Sigma} \backslash \widetilde{B}, f$ is an immersion with zero mean curvature.

Minimal surfaces

An equivariant branched minimal immersion from $\widetilde{\Sigma}$ to \mathbb{H}^{3} is a pair (f, ρ), where

$$
\begin{gathered}
f: \tilde{\Sigma} \longrightarrow \mathbb{H}^{3}, \\
\rho: \pi_{1}(\Sigma) \longrightarrow \operatorname{PSL}(2, \mathbb{C}) \simeq S O(3, \mathbb{C}) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{3}\right),
\end{gathered}
$$

and f is a ρ-equivariant smooth map such that

- $\widetilde{B}=\left\{p \in \widetilde{\Sigma} \mid d f_{p}=0\right\}$ is a discrete set.
- On $\widetilde{\Sigma} \backslash \widetilde{B}, f$ is an immersion with zero mean curvature.
$\mathcal{B}_{\Sigma}\left(\mathbb{H}^{3}\right)$: The moduli space of such pairs.

Minimal surfaces and nilpotent cones

The pull back of the hyperbolic metric of \mathbb{H}^{3} induces a conformal structure on Σ.
This gives a map to the Teichmüller space $\mathcal{T}(\Sigma)$:

$$
\mathcal{B}_{\Sigma}\left(\mathbb{H}^{3}\right) \longrightarrow \mathcal{T}(\Sigma)
$$

Minimal surfaces and nilpotent cones

The pull back of the hyperbolic metric of \mathbb{H}^{3} induces a conformal structure on Σ.
This gives a map to the Teichmüller space $\mathcal{T}(\Sigma)$:

$$
\mathcal{B}_{\Sigma}\left(\mathbb{H}^{3}\right) \longrightarrow \mathcal{T}(\Sigma) .
$$

Denote the fiber over $X \in \mathcal{T}(\Sigma)$ by $\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$.

$$
\mathcal{B}_{X}\left(\mathbb{H}^{3}\right) \longrightarrow \mathcal{B}_{\Sigma}\left(\mathbb{H}^{3}\right) \longrightarrow \mathcal{T}(\Sigma) .
$$

Minimal surfaces and nilpotent cones

The pull back of the hyperbolic metric of \mathbb{H}^{3} induces a conformal structure on Σ.
This gives a map to the Teichmüller space $\mathcal{T}(\Sigma)$:

$$
\mathcal{B}_{\Sigma}\left(\mathbb{H}^{3}\right) \longrightarrow \mathcal{T}(\Sigma) .
$$

Denote the fiber over $X \in \mathcal{T}(\Sigma)$ by $\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$.

$$
\mathcal{B}_{X}\left(\mathbb{H}^{3}\right) \longrightarrow \mathcal{B}_{\Sigma}\left(\mathbb{H}^{3}\right) \longrightarrow \mathcal{T}(\Sigma) .
$$

$\mathcal{B}_{\Sigma}\left(\mathbb{H}^{3}\right)$ is a bundle over $\mathcal{T}(\Sigma) \simeq \mathbb{R}^{N}$ with fiber $\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$.

Minimal surfaces and nilpotent cones

The pull back of the hyperbolic metric of \mathbb{H}^{3} induces a conformal structure on Σ.
This gives a map to the Teichmüller space $\mathcal{T}(\Sigma)$:

$$
\mathcal{B}_{\Sigma}\left(\mathbb{H}^{3}\right) \longrightarrow \mathcal{T}(\Sigma)
$$

Denote the fiber over $X \in \mathcal{T}(\Sigma)$ by $\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$.

$$
\mathcal{B}_{X}\left(\mathbb{H}^{3}\right) \longrightarrow \mathcal{B}_{\Sigma}\left(\mathbb{H}^{3}\right) \longrightarrow \mathcal{T}(\Sigma) .
$$

$\mathcal{B}_{\Sigma}\left(\mathbb{H}^{3}\right)$ is a bundle over $\mathcal{T}(\Sigma) \simeq \mathbb{R}^{N}$ with fiber $\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$.
$\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$ is "more or less" the nilpotent cone $\mathcal{N}_{X}(S O(3, \mathbb{C}))$.

Branching divisor

For a (f, ρ), define the branching locus as

Branching divisor

For a (f, ρ), define the branching locus as

$$
B:=\pi(\widetilde{B}) \subset \Sigma
$$

a finite set, where $\pi: \widetilde{\Sigma} \longrightarrow \Sigma$ is the universal covering.

Branching divisor

For a (f, ρ), define the branching locus as

$$
B:=\pi(\widetilde{B}) \subset \Sigma
$$

a finite set, where $\pi: \widetilde{\Sigma} \longrightarrow \Sigma$ is the universal covering.
Branching has multiplicities, $B \rightsquigarrow D$, the branching divisor.

Branching divisor

For a (f, ρ), define the branching locus as

$$
B:=\pi(\widetilde{B}) \subset \Sigma,
$$

a finite set, where $\pi: \widetilde{\Sigma} \longrightarrow \Sigma$ is the universal covering.
Branching has multiplicities, $B \rightsquigarrow D$, the branching divisor.

$$
d:=2 g-2-\operatorname{deg}(D),
$$

the Euler number.

$$
1 \leq d \leq 2 g-2 .
$$

Branching divisor

For a (f, ρ), define the branching locus as

$$
B:=\pi(\widetilde{B}) \subset \Sigma,
$$

a finite set, where $\pi: \widetilde{\Sigma} \longrightarrow \Sigma$ is the universal covering.
Branching has multiplicities, $B \rightsquigarrow D$, the branching divisor.

$$
d:=2 g-2-\operatorname{deg}(D)
$$

the Euler number.

$$
1 \leq d \leq 2 g-2 .
$$

$\mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right)$ the subset of the (f, ρ) with Euler number d.
A stratum of \mathcal{B}_{X}.

Strata

We can understand the strata: the map

$$
\mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right) \ni(f, \rho) \longrightarrow D \in \operatorname{Symm}^{2 g-2-d}(X)
$$

is a vector bundle of rank $g-1+d$.

$$
V_{d} \longrightarrow \mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right) \longrightarrow \text { Symm }^{2 g-2-d}(X)
$$

Strata

We can understand the strata: the map

$$
\mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right) \ni(f, \rho) \longrightarrow D \in \operatorname{Symm}^{2 g-2-d}(X) .
$$

is a vector bundle of rank $g-1+d$.

$$
V_{d} \longrightarrow \mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right) \longrightarrow \operatorname{Symm}^{2 g-2-d}(X)
$$

The parameter in the vector space V_{d} contains information about the curvature of the minimal surface.

Strata

We can understand the strata: the map

$$
\mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right) \ni(f, \rho) \longrightarrow D \in \operatorname{Symm}^{2 g-2-d}(X) .
$$

is a vector bundle of rank $g-1+d$.

$$
V_{d} \longrightarrow \mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right) \longrightarrow \operatorname{Symm}^{2 g-2-d}(X)
$$

The parameter in the vector space V_{d} contains information about the curvature of the minimal surface.

Example

$\mathcal{B}_{X}^{2 g-2}\left(\mathbb{H}^{3}\right) \simeq \mathbb{C}^{3 g-3}$ is the part without branching, they are minimal immerstions.

Strata

We can understand the strata: the map

$$
\mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right) \ni(f, \rho) \longrightarrow D \in \operatorname{Symm}^{2 g-2-d}(X) .
$$

is a vector bundle of rank $g-1+d$.

$$
V_{d} \longrightarrow \mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right) \longrightarrow \operatorname{Symm}^{2 g-2-d}(X)
$$

The parameter in the vector space V_{d} contains information about the curvature of the minimal surface.

Example

$\mathcal{B}_{X}^{2 g-2}\left(\mathbb{H}^{3}\right) \simeq \mathbb{C}^{3 g-3}$ is the part without branching, they are minimal immerstions.

Minimal surfaces inside quasi-Fuchsian hyperbolic manifolds are here.

Degeneracy of branching

$$
\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)=\bigcup_{d=1}^{2 g-2} \mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right)
$$

Degeneracy of branching

$$
\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)=\bigcup_{d=1}^{2 g-2} \mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right)
$$

Careful! The map $(f, \rho) \longrightarrow d$ is only lower semi-continuous!

Degeneracy of branching

$$
\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)=\bigcup_{d=1}^{2 g-2} \mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right)
$$

Careful! The map $(f, \rho) \longrightarrow d$ is only lower semi-continuous!
d can decrease suddenly and new branching appears.

Degeneracy of branching

$$
\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)=\bigcup_{d=1}^{2 g-2} \mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right)
$$

Careful! The map $(f, \rho) \longrightarrow d$ is only lower semi-continuous!
d can decrease suddenly and new branching appears.
The different strata touch each other!

Degeneracy of branching

$$
\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)=\bigcup_{d=1}^{2 g-2} \mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right)
$$

Careful! The map $(f, \rho) \longrightarrow d$ is only lower semi-continuous!
d can decrease suddenly and new branching appears.
The different strata touch each other!
In this work, we study all possible ways in which d can change when we move in $\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$.

Degeneracy of branching

$$
\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)=\bigcup_{d=1}^{2 g-2} \mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right)
$$

Careful! The map $(f, \rho) \longrightarrow d$ is only lower semi-continuous!
d can decrease suddenly and new branching appears.
The different strata touch each other!
In this work, we study all possible ways in which d can change when we move in $\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$.

We explicitly describe the topology of $\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$.

Degeneracy of branching

$$
\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)=\bigcup_{d=1}^{2 g-2} \mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right)
$$

Careful! The map $(f, \rho) \longrightarrow d$ is only lower semi-continuous!
d can decrease suddenly and new branching appears.
The different strata touch each other!
In this work, we study all possible ways in which d can change when we move in $\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$.

We explicitly describe the topology of $\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$.
E.g. we prove that $\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$ has two connected components (even d and odd d).

The real part

$$
\mathcal{B}_{\Sigma}\left(\mathbb{H}^{2}\right) \subset \mathcal{B}_{\Sigma}\left(\mathbb{H}^{3}\right)
$$

The "real part"

The real part

$$
\mathcal{B}_{\Sigma\left(\mathbb{H}^{2}\right) \subset \mathcal{B}_{\Sigma}\left(\mathbb{H}^{3}\right)}
$$

The "real part", the subset of pairs (f, ρ) where

$$
\begin{aligned}
f: \tilde{\Sigma} & \longrightarrow \mathbb{H}^{2}, \\
\rho: \pi_{1}(\Sigma) \longrightarrow P S L(2, \mathbb{R}) & \simeq S O_{0}(2,1) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{2}\right),
\end{aligned}
$$

The real part

$$
\mathcal{B}_{\Sigma}\left(\mathbb{H}^{2}\right) \subset \mathcal{B}_{\Sigma}\left(\mathbb{H}^{3}\right)
$$

The "real part", the subset of pairs (f, ρ) where

$$
\begin{aligned}
f: \widetilde{\Sigma} & \longrightarrow \mathbb{H}^{2}, \\
\rho: \pi_{1}(\Sigma) \longrightarrow P S L(2, \mathbb{R}) & \simeq S O_{0}(2,1) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{2}\right),
\end{aligned}
$$

$\mathcal{B}_{\Sigma}\left(\mathbb{H}^{2}\right)$ is the moduli space of branched hyperbolic structures on Σ.

The real part

$$
\mathcal{B}_{\Sigma}\left(\mathbb{H}^{2}\right) \subset \mathcal{B}_{\Sigma}\left(\mathbb{H}^{3}\right)
$$

The "real part", the subset of pairs (f, ρ) where

$$
\begin{aligned}
f: \widetilde{\Sigma} & \longrightarrow \mathbb{H}^{2}, \\
\rho: \pi_{1}(\Sigma) \longrightarrow P S L(2, \mathbb{R}) & \simeq S O_{0}(2,1) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{2}\right),
\end{aligned}
$$

$\mathcal{B}_{\Sigma}\left(\mathbb{H}^{2}\right)$ is the moduli space of branched hyperbolic structures on Σ.
$\mathcal{B}_{X}\left(\mathbb{H}^{2}\right), \mathcal{B}_{X}^{d}\left(\mathbb{H}^{2}\right)$, defined as before.

The real part

$$
\mathcal{B}_{\Sigma}\left(\mathbb{H}^{2}\right) \subset \mathcal{B}_{\Sigma}\left(\mathbb{H}^{3}\right)
$$

The "real part", the subset of pairs (f, ρ) where

$$
\begin{aligned}
f: \widetilde{\Sigma} & \longrightarrow \mathbb{H}^{2}, \\
\rho: \pi_{1}(\Sigma) \longrightarrow P S L(2, \mathbb{R}) & \simeq S O_{0}(2,1) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{2}\right),
\end{aligned}
$$

$\mathcal{B}_{\Sigma}\left(\mathbb{H}^{2}\right)$ is the moduli space of branched hyperbolic structures on Σ.
$\mathcal{B}_{X}\left(\mathbb{H}^{2}\right), \mathcal{B}_{X}^{d}\left(\mathbb{H}^{2}\right)$, defined as before.
This time, the $\mathcal{B}_{X}^{d}\left(\mathbb{H}^{2}\right)$ are connected components of $\mathcal{B}_{X}\left(\mathbb{H}^{2}\right)$.

The real part

$$
\mathcal{B}_{\Sigma}\left(\mathbb{H}^{2}\right) \subset \mathcal{B}_{\Sigma}\left(\mathbb{H}^{3}\right)
$$

The "real part", the subset of pairs (f, ρ) where

$$
\begin{aligned}
f: \widetilde{\Sigma} & \longrightarrow \mathbb{H}^{2}, \\
\rho: \pi_{1}(\Sigma) \longrightarrow P S L(2, \mathbb{R}) & \simeq S O_{0}(2,1) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{2}\right),
\end{aligned}
$$

$\mathcal{B}_{\Sigma}\left(\mathbb{H}^{2}\right)$ is the moduli space of branched hyperbolic structures on Σ.
$\mathcal{B}_{X}\left(\mathbb{H}^{2}\right), \mathcal{B}_{X}^{d}\left(\mathbb{H}^{2}\right)$, defined as before.
This time, the $\mathcal{B}_{X}^{d}\left(\mathbb{H}^{2}\right)$ are connected components of $\mathcal{B}_{X}\left(\mathbb{H}^{2}\right)$.

$$
\mathcal{B}_{X}^{d}\left(\mathbb{H}^{2}\right) \simeq \operatorname{Symm}^{2 g-2-d}(X) .
$$

The real part

$$
\mathcal{B}_{\Sigma}\left(\mathbb{H}^{2}\right) \subset \mathcal{B}_{\Sigma}\left(\mathbb{H}^{3}\right)
$$

The "real part", the subset of pairs (f, ρ) where

$$
\begin{aligned}
f: \widetilde{\Sigma} & \longrightarrow \mathbb{H}^{2}, \\
\rho: \pi_{1}(\Sigma) \longrightarrow P S L(2, \mathbb{R}) & \simeq S O_{0}(2,1) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{2}\right),
\end{aligned}
$$

$\mathcal{B}_{\Sigma}\left(\mathbb{H}^{2}\right)$ is the moduli space of branched hyperbolic structures on Σ.
$\mathcal{B}_{X}\left(\mathbb{H}^{2}\right), \mathcal{B}_{X}^{d}\left(\mathbb{H}^{2}\right)$, defined as before.
This time, the $\mathcal{B}_{X}^{d}\left(\mathbb{H}^{2}\right)$ are connected components of $\mathcal{B}_{X}\left(\mathbb{H}^{2}\right)$.

$$
\mathcal{B}_{X}^{d}\left(\mathbb{H}^{2}\right) \simeq \operatorname{Symm}^{2 g-2-d}(X) .
$$

$\mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right)$ is a vector bundle over $\mathcal{B}_{X}^{d}\left(\mathbb{H}^{2}\right)$.

SO(3, C)-Higgs bundles

Assume from now on that $G=S O(3, \mathbb{C})$.
Describe the elements of $\mathcal{M}_{X}(S O(3, \mathbb{C}))$:

$$
(E, \omega, B, \varphi) \in \mathcal{M}_{x}(S O(3, \mathbb{C}))
$$

SO(3, C)-Higgs bundles

Assume from now on that $G=S O(3, \mathbb{C})$.
Describe the elements of $\mathcal{M}_{X}(S O(3, \mathbb{C}))$:

$$
(E, \omega, B, \varphi) \in \mathcal{M}_{x}(S O(3, \mathbb{C}))
$$

- E is a rank 3 holomorphic vector bundle on X.

SO(3, C)-Higgs bundles

Assume from now on that $G=S O(3, \mathbb{C})$.
Describe the elements of $\mathcal{M}_{X}(S O(3, \mathbb{C}))$:

$$
(E, \omega, B, \varphi) \in \mathcal{M}_{x}(S O(3, \mathbb{C}))
$$

- E is a rank 3 holomorphic vector bundle on X.
- $\omega \in H^{0}\left(X, \Lambda^{3} E\right)$ is a volume form $\left(\Rightarrow \Lambda^{3} E=\mathcal{O}\right)$.

SO(3, C)-Higgs bundles

Assume from now on that $G=S O(3, \mathbb{C})$.
Describe the elements of $\mathcal{M}_{X}(S O(3, \mathbb{C}))$:

$$
(E, \omega, B, \varphi) \in \mathcal{M}_{x}(S O(3, \mathbb{C}))
$$

- E is a rank 3 holomorphic vector bundle on X.
- $\omega \in H^{0}\left(X, \Lambda^{3} E\right)$ is a volume form $\left(\Rightarrow \Lambda^{3} E=\mathcal{O}\right)$.
- B is a holomorphic symmetric bil. form on E compatible with ω.

SO(3, C)-Higgs bundles

Assume from now on that $G=S O(3, \mathbb{C})$.
Describe the elements of $\mathcal{M}_{X}(S O(3, \mathbb{C}))$:

$$
(E, \omega, B, \varphi) \in \mathcal{M}_{X}(S O(3, \mathbb{C}))
$$

- E is a rank 3 holomorphic vector bundle on X.
- $\omega \in H^{0}\left(X, \Lambda^{3} E\right)$ is a volume form $\left(\Rightarrow \Lambda^{3} E=\mathcal{O}\right)$.
- B is a holomorphic symmetric bil. form on E compatible with ω.
- $\varphi \in \operatorname{End}(E) \otimes K$ is B-antisymmetric.

SO(3, C)-Higgs bundles

Assume from now on that $G=S O(3, \mathbb{C})$.
Describe the elements of $\mathcal{M}_{X}(S O(3, \mathbb{C}))$:

$$
(E, \omega, B, \varphi) \in \mathcal{M}_{X}(S O(3, \mathbb{C}))
$$

- E is a rank 3 holomorphic vector bundle on X.
- $\omega \in H^{0}\left(X, \Lambda^{3} E\right)$ is a volume form $\left(\Rightarrow \Lambda^{3} E=\mathcal{O}\right)$.
- B is a holomorphic symmetric bil. form on E compatible with ω.
- $\varphi \in \operatorname{End}(E) \otimes K$ is B-antisymmetric.
- (Semi-stability) For all B-isotropic φ-invariant line sub-bundle $L \subset E, \operatorname{deg} L \leq 0$.

Nilpotent SO(3, C)-Higgs bundles

For $S O(3, \mathbb{C})$-Higgs bundles, $\operatorname{det}(\varphi)=0$.
φ is either 0 or generically of rank 2.

Nilpotent SO(3, C)-Higgs bundles

For $S O(3, \mathbb{C})$-Higgs bundles, $\operatorname{det}(\varphi)=0$.
φ is either 0 or generically of rank 2.
If $\varphi \neq 0$, denote by $\operatorname{ker} \varphi \subset E$ the unique line sub-bundle s.t.

$$
\left.\varphi\right|_{\operatorname{ker} \varphi}=0
$$

Nilpotent SO(3, C)-Higgs bundles

For $S O(3, \mathbb{C})$-Higgs bundles, $\operatorname{det}(\varphi)=0$.
φ is either 0 or generically of rank 2.
If $\varphi \neq 0$, denote by $\operatorname{ker} \varphi \subset E$ the unique line sub-bundle s.t.

$$
\left.\varphi\right|_{\operatorname{ker} \varphi}=0
$$

When is (E, ω, B, φ) in $\mathcal{N}_{X}(S O(3, \mathbb{C}))$?

Nilpotent SO(3, C)-Higgs bundles

For $S O(3, \mathbb{C})$-Higgs bundles, $\operatorname{det}(\varphi)=0$.
φ is either 0 or generically of rank 2.
If $\varphi \neq 0$, denote by $\operatorname{ker} \varphi \subset E$ the unique line sub-bundle s.t.

$$
\left.\varphi\right|_{\operatorname{ker} \varphi}=0
$$

When is (E, ω, B, φ) in $\mathcal{N}_{X}(S O(3, \mathbb{C}))$?
2 cases:

- When $\varphi=0$. Here,
$(E, \omega, B, \varphi)=(E, \omega, B, 0) \in \mathcal{M}_{X}(S O(3))$.
We define the Euler number $d:=0$.

Nilpotent SO(3, C)-Higgs bundles

For $S O(3, \mathbb{C})$-Higgs bundles, $\operatorname{det}(\varphi)=0$.
φ is either 0 or generically of rank 2.
If $\varphi \neq 0$, denote by $\operatorname{ker} \varphi \subset E$ the unique line sub-bundle s.t.

$$
\left.\varphi\right|_{\operatorname{ker} \varphi}=0
$$

When is (E, ω, B, φ) in $\mathcal{N}_{X}(S O(3, \mathbb{C}))$?
2 cases:

- When $\varphi=0$. Here,
$(E, \omega, B, \varphi)=(E, \omega, B, 0) \in \mathcal{M}_{X}(S O(3))$.
We define the Euler number $d:=0$.
- When $\varphi \neq 0$ and $\operatorname{ker} \varphi$ is B-isotropic.

We define the Euler number $d:=-\operatorname{deg}(\operatorname{ker} \varphi)$, with

$$
1 \leq d \leq 2 g-2
$$

The strata

Denote by $\mathcal{N}_{X}^{d}(G)$ the subset of Higgs bundles with Euler number d.

The strata

Denote by $\mathcal{N}_{X}^{d}(G)$ the subset of Higgs bundles with Euler number d.

Stratification of $\mathcal{N}_{X}(G)$ (Laumont, Thaddeus, Hausel, others)

$$
\mathcal{N}_{X}(G)=\bigcup_{d=0}^{2 g-2} \mathcal{N}_{X}^{d}(G)
$$

The strata

Denote by $\mathcal{N}_{X}^{d}(G)$ the subset of Higgs bundles with Euler number d.

Stratification of $\mathcal{N}_{X}(G)$ (Laumont, Thaddeus, Hausel, others)

$$
\mathcal{N}_{X}(G)=\bigcup_{d=0}^{2 g-2} \mathcal{N}_{X}^{d}(G)
$$

$\mathcal{N}_{X}^{0}(G)=\mathcal{M}_{X}(S O(3))$ closed subset. The only closed stratum.

The strata

Denote by $\mathcal{N}_{X}^{d}(G)$ the subset of Higgs bundles with Euler number d.

Stratification of $\mathcal{N}_{X}(G)$ (Laumont, Thaddeus, Hausel, others)

$$
\mathcal{N}_{X}(G)=\bigcup_{d=0}^{2 g-2} \mathcal{N}_{X}^{d}(G)
$$

$\mathcal{N}_{X}^{0}(G)=\mathcal{M}_{X}(S O(3))$ closed subset. The only closed stratum.
For $1 \leq d \leq 2 g-2, \mathcal{N}_{X}^{d}(G)$ is not closed.

Explicit description of the non-closed strata

Fix $1 \leq d \leq 2 g-2$.
Let $(E, \omega, B, \varphi) \in \mathcal{N}_{X}^{d}(G)$.

Explicit description of the non-closed strata

Fix $1 \leq d \leq 2 g-2$.
Let $(E, \omega, B, \varphi) \in \mathcal{N}_{X}^{d}(G)$.

Then, there exist

- $L \in \operatorname{Pic}_{d}(X)$;

Explicit description of the non-closed strata

Fix $1 \leq d \leq 2 g-2$.
Let $(E, \omega, B, \varphi) \in \mathcal{N}_{X}^{d}(G)$.
Then, there exist

- $L \in \operatorname{Pic}_{d}(X)$;
- $0 \neq c \in H^{0}\left(X, K L^{-1}\right)$;

Explicit description of the non-closed strata

Fix $1 \leq d \leq 2 g-2$.
Let $(E, \omega, B, \varphi) \in \mathcal{N}_{X}^{d}(G)$.

Then, there exist

- $L \in \operatorname{Pic}_{d}(X)$;
- $0 \neq c \in H^{0}\left(X, K L^{-1}\right)$;
- $\beta \in H^{1}\left(X, L^{-1}\right)$;

Explicit description of the non-closed strata

Fix $1 \leq d \leq 2 g-2$.
Let $(E, \omega, B, \varphi) \in \mathcal{N}_{X}^{d}(G)$.
Then, there exist

- $L \in \operatorname{Pic}_{d}(X)$;
- $0 \neq c \in H^{0}\left(X, K L^{-1}\right)$;
- $\beta \in H^{1}\left(X, L^{-1}\right)$;
such that

$$
E=L \oplus \mathcal{O} \oplus L^{-1},
$$

$$
\bar{\partial}_{E}=\bar{\partial}+\left(\begin{array}{ccc}
0 & 0 & 0 \\
\beta & 0 & 0 \\
0 & -\beta & 0
\end{array}\right),
$$

Explicit description of the non-closed strata

Fix $1 \leq d \leq 2 g-2$.
Let $(E, \omega, B, \varphi) \in \mathcal{N}_{X}^{d}(G)$.
Then, there exist

- $L \in \operatorname{Pic}_{d}(X)$;
- $0 \neq c \in H^{0}\left(X, K L^{-1}\right)$;
- $\beta \in H^{1}\left(X, L^{-1}\right)$;
such that

$$
\begin{aligned}
& E=L \oplus \mathcal{O} \oplus L^{-1}, \bar{\partial}_{E}=\bar{\partial}+\left(\begin{array}{ccc}
\beta & 0 & 0 \\
0 & -\beta & 0
\end{array}\right), \\
& \omega=1 \in H^{0}(X, \mathcal{O}), \quad B=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad \varphi=\left(\begin{array}{ccc}
0 & 0 & 0 \\
c & 0 & 0 \\
0 & -c & 0
\end{array}\right) .
\end{aligned}
$$

Let $D \in \operatorname{Symm}^{2 g-2-d}(X)$ be the divisor of c.
D determines the pair (L, c).

Let $D \in \operatorname{Symm}^{2 g-2-d}(X)$ be the divisor of c.
D determines the pair (L, c).

$$
p: \mathcal{N}_{X}^{d}(G) \longrightarrow \operatorname{Symm}^{2 g-2-d}(X)
$$

is a vector bundle of rank $g-1+d$, with fiber $H^{1}\left(X, L^{-1}\right)$.

Let $D \in \operatorname{Symm}^{2 g-2-d}(X)$ be the divisor of c.
D determines the pair (L, c).

$$
p: \mathcal{N}_{X}^{d}(G) \longrightarrow \operatorname{Symm}^{2 g-2-d}(X)
$$

is a vector bundle of rank $g-1+d$, with fiber $H^{1}\left(X, L^{-1}\right)$.
$\operatorname{dim}_{\mathbb{C}} \mathcal{N}_{X}^{d}(G)=3 g-3=\operatorname{dim}_{\mathbb{C}} \mathcal{N}_{X}(G)$.

Let $D \in \operatorname{Symm}^{2 g-2-d}(X)$ be the divisor of c.
D determines the pair (L, c).

$$
p: \mathcal{N}_{X}^{d}(G) \longrightarrow \operatorname{Symm}^{2 g-2-d}(X)
$$

is a vector bundle of rank $g-1+d$, with fiber $H^{1}\left(X, L^{-1}\right)$.
$\operatorname{dim}_{\mathbb{C}} \mathcal{N}_{X}^{d}(G)=3 g-3=\operatorname{dim}_{\mathbb{C}} \mathcal{N}_{X}(G)$.
(Loftin-McIntosh gave a similar description for the nilpotent cone for $S U(2,1)$ and $S O_{0}(4,1)$.)

Let $D \in \operatorname{Symm}^{2 g-2-d}(X)$ be the divisor of c.
D determines the pair (L, c).

$$
p: \mathcal{N}_{X}^{d}(G) \longrightarrow \operatorname{Symm}^{2 g-2-d}(X)
$$

is a vector bundle of rank $g-1+d$, with fiber $H^{1}\left(X, L^{-1}\right)$.
$\operatorname{dim}_{\mathbb{C}} \mathcal{N}_{X}^{d}(G)=3 g-3=\operatorname{dim}_{\mathbb{C}} \mathcal{N}_{X}(G)$.
(Loftin-McIntosh gave a similar description for the nilpotent cone for $S U(2,1)$ and $S O_{0}(4,1)$.)

The zero section $(\beta=0)$ is the sub-space of $S O(2,1)$-Higgs bundles:

$$
\mathcal{N}_{X}^{d}(S O(2,1)) \simeq \operatorname{Symm}^{2 g-2-d}(X)
$$

This is also the sub-space of the variations of Hodge structure.

Minimal immersions and nilpotent cone

Using our parameters, we can write the Hitchin's equations and understand their solutions.

Minimal immersions and nilpotent cone

Using our parameters, we can write the Hitchin's equations and understand their solutions.

The corresponding harmonic map is a minimal branched immersion, and has branching divisor D.

Minimal immersions and nilpotent cone

Using our parameters, we can write the Hitchin's equations and understand their solutions.

The corresponding harmonic map is a minimal branched immersion, and has branching divisor D.

$$
\text { For } 1 \leq d \leq 2 g-2, \quad \mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right)=\mathcal{N}_{X}^{d}(S O(3, \mathbb{C}))
$$

Minimal immersions and nilpotent cone

Using our parameters, we can write the Hitchin's equations and understand their solutions.

The corresponding harmonic map is a minimal branched immersion, and has branching divisor D.

$$
\begin{aligned}
& \text { For } 1 \leq d \leq 2 g-2, \quad \mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right)=\mathcal{N}_{X}^{d}(S O(3, \mathbb{C})) \\
& \qquad \mathcal{B}_{X}\left(\mathbb{H}^{3}\right)=\mathcal{N}_{X}(S O(3, \mathbb{C})) \backslash \mathcal{N}_{X}^{0}(S O(3, \mathbb{C}))
\end{aligned}
$$

Minimal immersions and nilpotent cone

Using our parameters, we can write the Hitchin's equations and understand their solutions.

The corresponding harmonic map is a minimal branched immersion, and has branching divisor D.

$$
\begin{gathered}
\text { For } 1 \leq d \leq 2 g-2, \quad \mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right)=\mathcal{N}_{X}^{d}(S O(3, \mathbb{C})) \\
\qquad \begin{array}{c}
\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)=\mathcal{N}_{X}(S O(3, \mathbb{C})) \backslash \mathcal{N}_{X}^{0}(S O(3, \mathbb{C})) \\
\mathcal{B}_{X}\left(\mathbb{H}^{2}\right)=\mathcal{N}_{X}(S O(2,1)) \backslash \mathcal{N}_{X}^{0}(S O(2,1))
\end{array}
\end{gathered}
$$

Minimal immersions and nilpotent cone

Using our parameters, we can write the Hitchin's equations and understand their solutions.

The corresponding harmonic map is a minimal branched immersion, and has branching divisor D.

$$
\begin{gathered}
\text { For } 1 \leq d \leq 2 g-2, \quad \mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right)=\mathcal{N}_{X}^{d}(S O(3, \mathbb{C})) \\
\qquad \begin{array}{c}
\mathcal{B}_{X}\left(\mathbb{H}^{3}\right)=\mathcal{N}_{X}(S O(3, \mathbb{C})) \backslash \mathcal{N}_{X}^{0}(S O(3, \mathbb{C})) \\
\mathcal{B}_{X}\left(\mathbb{H}^{2}\right)=\mathcal{N}_{X}(S O(2,1)) \backslash \mathcal{N}_{X}^{0}(S O(2,1))
\end{array}
\end{gathered}
$$

$\mathcal{N}_{X}^{0}(S O(3, \mathbb{C}))$ would correspond to pairs (f, ρ), where f is constant and ρ goes to $S O(3)$.

Irreducible components

Do we understand $\mathcal{N}_{X}(G)$ now?

Irreducible components

Do we understand $\mathcal{N}_{X}(G)$ now? Not yet!

Irreducible components

Do we understand $\mathcal{N}_{X}(G)$ now? Not yet!
$\mathcal{N}_{X}(G)$ is compact (Hitchin).

Irreducible components

Do we understand $\mathcal{N}_{X}(G)$ now? Not yet!
$\mathcal{N}_{X}(G)$ is compact (Hitchin).
For $d \geq 1, \mathcal{N}_{X}^{d}(G)$ is a vector bundle, hence it is not compact.

Irreducible components

Do we understand $\mathcal{N}_{X}(G)$ now? Not yet!
$\mathcal{N}_{X}(G)$ is compact (Hitchin).
For $d \geq 1, \mathcal{N}_{X}^{d}(G)$ is a vector bundle, hence it is not compact.
$\mathcal{N}_{X}^{d}(G)$ is not closed in $\mathcal{N}_{X}(G)$: what happens when $\beta \rightarrow \infty$?

Irreducible components

Do we understand $\mathcal{N}_{X}(G)$ now? Not yet!
$\mathcal{N}_{X}(G)$ is compact (Hitchin).
For $d \geq 1, \mathcal{N}_{X}^{d}(G)$ is a vector bundle, hence it is not compact.
$\mathcal{N}_{X}^{d}(G)$ is not closed in $\mathcal{N}_{X}(G)$: what happens when $\beta \rightarrow \infty$?
$\mathcal{N}_{X}(G)$ has $2 g-1$ irreducible components: the $\overline{\mathcal{N}_{X}^{d}(G)}$.

Irreducible components

Do we understand $\mathcal{N}_{X}(G)$ now? Not yet!
$\mathcal{N}_{X}(G)$ is compact (Hitchin).
For $d \geq 1, \mathcal{N}_{X}^{d}(G)$ is a vector bundle, hence it is not compact.
$\mathcal{N}_{X}^{d}(G)$ is not closed in $\mathcal{N}_{X}(G)$: what happens when $\beta \rightarrow \infty$?
$\mathcal{N}_{X}(G)$ has $2 g-1$ irreducible components: the $\overline{\mathcal{N}_{X}^{d}(G)}$.
We want to understand $\partial \mathcal{N}_{X}^{d}(G)$ and more precisely

$$
\partial \mathcal{N}_{X}^{d}(G) \cap \mathcal{N}_{X}^{d^{\prime}}(G) .
$$

Irreducible components

Do we understand $\mathcal{N}_{X}(G)$ now? Not yet!
$\mathcal{N}_{X}(G)$ is compact (Hitchin).
For $d \geq 1, \mathcal{N}_{X}^{d}(G)$ is a vector bundle, hence it is not compact.
$\mathcal{N}_{X}^{d}(G)$ is not closed in $\mathcal{N}_{X}(G)$: what happens when $\beta \rightarrow \infty$?
$\mathcal{N}_{X}(G)$ has $2 g-1$ irreducible components: the $\overline{\mathcal{N}_{X}^{d}(G)}$.
We want to understand $\partial \mathcal{N}_{X}^{d}(G)$ and more precisely

$$
\partial \mathcal{N}_{X}^{d}(G) \cap \mathcal{N}_{X}^{d^{\prime}}(G) .
$$

This will tell us the shape of $\mathcal{N}_{X}(G)$.

Our results

Theorem
 Let $1 \leq d^{\prime}, d \leq 2 g-2$.

Our results

Theorem

Let $1 \leq d^{\prime}, d \leq 2 g-2$.

$$
\begin{aligned}
& \quad \partial \mathcal{N}_{X}^{d}(G) \cap \mathcal{N}_{X}^{d^{\prime}}(G) \neq \emptyset \\
& \Leftrightarrow \\
& d>d^{\prime} \quad A N D \quad d-d^{\prime} \text { is even . }
\end{aligned}
$$

Our results

Theorem

Let $1 \leq d^{\prime}, d \leq 2 g-2$.

$$
\begin{aligned}
& \quad \partial \mathcal{N}_{X}^{d}(G) \cap \mathcal{N}_{X}^{d^{\prime}}(G) \neq \emptyset \\
& \Leftrightarrow \\
& d>d^{\prime} \quad A N D \quad d-d^{\prime} \text { is even . }
\end{aligned}
$$

In other words, when the parameter β goes to ∞ in $\mathcal{N}_{X}^{d}(G)$, you can only converge to a stratum with smaller Euler number, and only with an even difference.

Our results

Theorem
 Let $1 \leq d^{\prime}<d \leq 2 g-2$, with $d-d^{\prime}=2 q$ even.

Our results

Theorem

Let $1 \leq d^{\prime}<d \leq 2 g-2$, with $d-d^{\prime}=2 q$ even.

We define

$$
S_{d, d^{\prime}}=\left\{2 T+D \mid T \in \operatorname{Symm}^{q}(X), D \in \operatorname{Symm}^{2 g-2-d}(X)\right\}
$$

with $S_{d, d^{\prime}} \subset$ Symm $^{2 g-2-d^{\prime}}(X)$. Then

Our results

Theorem

Let $1 \leq d^{\prime}<d \leq 2 g-2$, with $d-d^{\prime}=2 q$ even.
We define

$$
S_{d, d^{\prime}}=\left\{2 T+D \mid T \in \operatorname{Symm}^{q}(X), D \in \operatorname{Symm}^{2 g-2-d}(X)\right\}
$$

with $S_{d, d^{\prime}} \subset$ Symm $^{2 g-2-d^{\prime}}(X)$. Then

$$
\partial \mathcal{N}_{X}^{d}(G) \cap \mathcal{N}_{X}^{d^{\prime}}(G)=p^{-1}\left(S_{d, d^{\prime}}\right)
$$

where $p: \mathcal{N}_{X}^{d^{\prime}}(G) \rightarrow \operatorname{Symm}^{2 g-2-d^{\prime}}(X)$.

Our results

Theorem

Let $1 \leq d^{\prime}<d \leq 2 g-2$, with $d-d^{\prime}=2 q$ even.
We define

$$
S_{d, d^{\prime}}=\left\{2 T+D \mid T \in \operatorname{Symm}^{q}(X), D \in \operatorname{Symm}^{2 g-2-d}(X)\right\}
$$

with $S_{d, d^{\prime}} \subset$ Symm $^{2 g-2-d^{\prime}}(X)$. Then

$$
\partial \mathcal{N}_{X}^{d}(G) \cap \mathcal{N}_{X}^{d^{\prime}}(G)=p^{-1}\left(S_{d, d^{\prime}}\right)
$$

where $p: \mathcal{N}_{X}^{d^{\prime}}(G) \rightarrow \operatorname{Symm}^{2 g-2-d^{\prime}}(X)$.

In other words, when converging, the new branching points come with even multiplicity, and all candidate limits are achieved.

Our results

Theorem

Suppose $\left(f_{n}, \rho_{n}\right) \in \mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$ is a sequence with fixed branch type $\left(n_{1}, \ldots, n_{k}\right)$. Then, up to extracting a subsequence, one of the following occurs.

Our results

Theorem

Suppose $\left(f_{n}, \rho_{n}\right) \in \mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$ is a sequence with fixed branch type $\left(n_{1}, \ldots, n_{k}\right)$. Then, up to extracting a subsequence, one of the following occurs.
(1) $\left(f_{n}, \rho_{n}\right)$ converges to a pair (f, ρ) of branch type $\left(n_{1}+2 m_{1}, \ldots, n_{k}+2 m_{k}, 2 m_{k+1}, \ldots, 2 m_{k+s}\right)$, with $m_{i} \geq 0$.

Our results

Theorem

Suppose $\left(f_{n}, \rho_{n}\right) \in \mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$ is a sequence with fixed branch type $\left(n_{1}, \ldots, n_{k}\right)$. Then, up to extracting a subsequence, one of the following occurs.
(1) $\left(f_{n}, \rho_{n}\right)$ converges to a pair (f, ρ) of branch type $\left(n_{1}+2 m_{1}, \ldots, n_{k}+2 m_{k}, 2 m_{k+1}, \ldots, 2 m_{k+s}\right)$, with $m_{i} \geq 0$.
(2) f_{n} converges to a constant map and ρ_{n} converges to a representation in SO(3).

Our results

Theorem

Suppose $\left(f_{n}, \rho_{n}\right) \in \mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$ is a sequence with fixed branch type $\left(n_{1}, \ldots, n_{k}\right)$. Then, up to extracting a subsequence, one of the following occurs.
(1) $\left(f_{n}, \rho_{n}\right)$ converges to a pair (f, ρ) of branch type $\left(n_{1}+2 m_{1}, \ldots, n_{k}+2 m_{k}, 2 m_{k+1}, \ldots, 2 m_{k+s}\right)$, with $m_{i} \geq 0$.
(2) f_{n} converges to a constant map and ρ_{n} converges to a representation in SO(3).
Generic sequences belong to type 2.

Our results

Theorem

Suppose $\left(f_{n}, \rho_{n}\right) \in \mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$ is a sequence with fixed branch type $\left(n_{1}, \ldots, n_{k}\right)$. Then, up to extracting a subsequence, one of the following occurs.
(1) $\left(f_{n}, \rho_{n}\right)$ converges to a pair (f, ρ) of branch type $\left(n_{1}+2 m_{1}, \ldots, n_{k}+2 m_{k}, 2 m_{k+1}, \ldots, 2 m_{k+s}\right)$, with $m_{i} \geq 0$.
(2) f_{n} converges to a constant map and ρ_{n} converges to a representation in SO(3).
Generic sequences belong to type 2.
Moreover, every branched minimal immersion of the kind described in point 1 can arise as a limit.

Our results

Theorem

Suppose $\left(f_{n}, \rho_{n}\right) \in \mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$ is a sequence with fixed branch type $\left(n_{1}, \ldots, n_{k}\right)$. Then, up to extracting a subsequence, one of the following occurs.
(1) $\left(f_{n}, \rho_{n}\right)$ converges to a pair (f, ρ) of branch type $\left(n_{1}+2 m_{1}, \ldots, n_{k}+2 m_{k}, 2 m_{k+1}, \ldots, 2 m_{k+s}\right)$, with $m_{i} \geq 0$.
(2) f_{n} converges to a constant map and ρ_{n} converges to a representation in $\mathrm{SO}(3)$.
Generic sequences belong to type 2.
Moreover, every branched minimal immersion of the kind described in point 1 can arise as a limit.

As a slogan, new branching points are created with even multiplicity, and every candidate limit is reachable.

Our results

Theorem

Let $(f, \rho) \in \mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right)$, with branching divisor D.

Our results

Theorem

Let $(f, \rho) \in \mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right)$, with branching divisor D.
If T is an effective divisor such that $2 T \subset D$, we can find a sequence $\left(f_{n}, \rho_{n}\right) \in \mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$, with fixed branching divisor $D-2 T$, such that

$$
\left(f_{n}, \rho_{n}\right) \longrightarrow(f, \rho) .
$$

Our results

Theorem

Let $(f, \rho) \in \mathcal{B}_{X}^{d}\left(\mathbb{H}^{3}\right)$, with branching divisor D.
If T is an effective divisor such that $2 T \subset D$, we can find a sequence $\left(f_{n}, \rho_{n}\right) \in \mathcal{B}_{X}\left(\mathbb{H}^{3}\right)$, with fixed branching divisor $D-2 T$, such that

$$
\left(f_{n}, \rho_{n}\right) \longrightarrow(f, \rho) .
$$

As a slogan, every even branching can be perturbed away.

A special case: the \mathbb{C}^{*}-flow

The \mathbb{C}^{*}-flow is an action of \mathbb{C}^{*} on $\mathcal{M}_{X}(G)$:

$$
t \cdot(E, \omega, B, \varphi)=(E, \omega, B, t \varphi)
$$

A special case: the \mathbb{C}^{*}-flow

The \mathbb{C}^{*}-flow is an action of \mathbb{C}^{*} on $\mathcal{M}_{X}(G)$:

$$
t \cdot(E, \omega, B, \varphi)=(E, \omega, B, t \varphi) .
$$

Consider $(E, \omega, B, \varphi) \in \mathcal{N}_{X}^{d}(G)$, with parameters (L, c, β).

A special case: the \mathbb{C}^{*}-flow

The \mathbb{C}^{*}-flow is an action of \mathbb{C}^{*} on $\mathcal{M}_{X}(G)$:

$$
t \cdot(E, \omega, B, \varphi)=(E, \omega, B, t \varphi) .
$$

Consider $(E, \omega, B, \varphi) \in \mathcal{N}_{X}^{d}(G)$, with parameters (L, c, β).
We ask: what is the limit

$$
\lim _{t \rightarrow 0} t \cdot(E, \omega, B, \varphi) ?
$$

A special case: the \mathbb{C}^{*}-flow

The \mathbb{C}^{*}-flow is an action of \mathbb{C}^{*} on $\mathcal{M}_{X}(G)$:

$$
t \cdot(E, \omega, B, \varphi)=(E, \omega, B, t \varphi) .
$$

Consider $(E, \omega, B, \varphi) \in \mathcal{N}_{X}^{d}(G)$, with parameters (L, c, β).
We ask: what is the limit

$$
\lim _{t \rightarrow 0} t \cdot(E, \omega, B, \varphi) ?
$$

If E is semi-stable, the limit is $(E, \omega, B, 0) \in \mathcal{N}_{X}^{0}(G)$.

A special case: the \mathbb{C}^{*}-flow

The \mathbb{C}^{*}-flow is an action of \mathbb{C}^{*} on $\mathcal{M}_{X}(G)$:

$$
t \cdot(E, \omega, B, \varphi)=(E, \omega, B, t \varphi) .
$$

Consider $(E, \omega, B, \varphi) \in \mathcal{N}_{X}^{d}(G)$, with parameters (L, c, β).
We ask: what is the limit

$$
\lim _{t \rightarrow 0} t \cdot(E, \omega, B, \varphi) ?
$$

If E is semi-stable, the limit is $(E, \omega, B, 0) \in \mathcal{N}_{X}^{0}(G)$.
This is the "generic case".

\mathbb{C}^{*}-flow - Unstable case

If E is unstable, it contains a φ-invariant B-isotropic subbundle M, with $\operatorname{deg}(M)=d^{\prime}>0$.

$$
E=M \oplus \mathcal{O} \oplus M^{-1}, \quad \quad \bar{\partial}_{E}=\bar{\partial}+\left(\begin{array}{ccc}
0 & \gamma & 0 \\
0 & 0 & -\gamma \\
0 & 0 & 0
\end{array}\right)
$$

\mathbb{C}^{*}-flow - Unstable case

If E is unstable, it contains a φ-invariant B-isotropic subbundle M, with $\operatorname{deg}(M)=d^{\prime}>0$.

$$
E=M \oplus \mathcal{O} \oplus M^{-1}, \quad \bar{\partial}_{E}=\bar{\partial}+\left(\begin{array}{ccc}
0 & \gamma & 0 \\
0 & 0 & -\gamma \\
0 & 0 & 0
\end{array}\right),
$$

Simpson showed that $d^{\prime}<d$, and $\exists a \in H^{0}\left(X, K M^{-1}\right)$ such that the limit Higgs bundle is parametrized by $(M, a, 0) \in \mathcal{N}_{X}^{d^{\prime}}(S O(2,1))$.

If E is unstable, it contains a φ-invariant B-isotropic subbundle M, with $\operatorname{deg}(M)=d^{\prime}>0$.

$$
E=M \oplus \mathcal{O} \oplus M^{-1}, \quad \bar{\partial}_{E}=\bar{\partial}+\left(\begin{array}{ccc}
0 & \gamma & 0 \\
0 & 0 & -\gamma \\
0 & 0 & 0
\end{array}\right),
$$

Simpson showed that $d^{\prime}<d$, and $\exists a \in H^{0}\left(X, K M^{-1}\right)$ such that the limit Higgs bundle is parametrized by $(M, a, 0) \in \mathcal{N}_{X}^{d^{\prime}}(S O(2,1))$.

$$
\begin{aligned}
E_{0}=M \oplus \mathcal{O} \oplus M^{-1}, & \bar{\partial}_{E_{0}}=\bar{\partial}, \\
\omega_{0}=1 \in H^{0}(X, \mathcal{O}), \quad B_{0}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), & \varphi_{0}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
a & 0 & 0 \\
0 & -a & 0
\end{array}\right) .
\end{aligned}
$$

$\mathbb{C}^{* *}$-flow - Our results

We computed that $a=c b^{2}$, for some holomorphic section b. In particular, the new branching has even order, and $d-d^{\prime}$ is even.

$\mathbb{C}^{* *}$-flow - Our results

We computed that $a=c b^{2}$, for some holomorphic section b. In particular, the new branching has even order, and $d-d^{\prime}$ is even.

Moreover, all possible candidate limits are realized: Given $(M, a, 0) \in \mathcal{N}_{X}^{d^{\prime}}(S O(2,1))$, we can describe all the \mathbb{C}^{*}-orbits that converge to $(M, a, 0)$ (the unstable manifold of ($M, a, 0$)).

\mathbb{C}^{*}-flow - Our results

Theorem

The unstable manifold of $(M, a, 0)$ is usually not irreducible, it has an irreducible component U_{b} for every divisor b such that $b^{2}<a$.

\mathbb{C}^{*}-flow - Our results

Theorem

The unstable manifold of $(M, a, 0)$ is usually not irreducible, it has an irreducible component U_{b} for every divisor b such that $b^{2}<a$.

Choose such a b, say $b=\sum_{k=1}^{k} n_{i} \cdot p_{i}$, with $n_{i}>0$. Let $L=M O\left(b^{2}\right)$, and $c=\frac{a}{b^{2}}$.

Theorem

The unstable manifold of $(M, a, 0)$ is usually not irreducible, it has an irreducible component U_{b} for every divisor b such that $b^{2}<a$.

Choose such a b, say b $=\sum_{k=1}^{k} n_{i} \cdot p_{i}$, with $n_{i}>0$. Let $L=M \mathcal{O}\left(b^{2}\right)$, and $c=\frac{a}{b^{2}}$.

Then U_{b} is the union of a family of \mathbb{C}^{*}-orbits, where $\lim _{t \rightarrow 0}$ is $(M, a, 0)$ and $\lim _{t \rightarrow \infty}$ is ($L, c, 0$). This family is parametrized by

$$
\prod_{i=1}^{k}\left(\mathbb{C}^{*} \times \mathbb{C}^{n_{i}-1}\right)
$$

