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The two moduli spaces

Joint work with Z=I{ % (Qiongling Li) and Andrew Sanders.

Y closed oriented connected surface of genus g.
X Riemann surface homeomorphic to ¥.

G connected simple complex Lie group of rank 1,
i.,e. G=SL(2,C)or G= SO(3,C) ~ PSL(2,C).

Two moduli spaces:

Nx(G): The nilpotent cone in the moduli space of (semi-
stable) G-Higgs bundles on X.

Bs(H®): The moduli space of equivariant branched
minimal immersions from X to HS.
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The Hitchin fibration

Mx(G): Moduli space of (semi-stable) G-Higgs bundles on X.
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The Hitchin fibration

Mx(G): Moduli space of (semi-stable) G-Higgs bundles on X.

(E,...,p) € Mx(G), where
@ E is a vector bundle (of rank 2 or 3).
@ ¢ is the Higgs field.

@ ... is some extra structure (G = SL(2,C) or SO(3,C).)

tr(p?) € HO(X, K?) is a quadratic differential on X.

The Hitchin fibration:

H: Mx(G)3 (E,...,¢) — tr(¢?) € H(X,K?).
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The nilpotent cone

The Hitchin fiber: for g, € H°(X, K?),
H ' (q) € Mx(G)

a half-dimensional Lagrangian subvariety.
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If go has simple zeros: regular fibers, abelian varieties.
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a half-dimensional Lagrangian subvariety.
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Otherwise: singular fibers, see Gothen-Oliveira, Horn.
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The nilpotent cone

The Hitchin fiber: for g, € H°(X, K?),
H ' (q) € Mx(G)

a half-dimensional Lagrangian subvariety.
If go has simple zeros: regular fibers, abelian varieties.
Otherwise: singular fibers, see Gothen-Oliveira, Horn.

The nilpotent cone, when g, = 0,
Nx(G) .= H(0).

This is the most singular fiber.
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Integrable Systems:
- The regular fibers are the leaves of the Hitchin systems.
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Integrable Systems:

- The regular fibers are the leaves of the Hitchin systems.

- Recently, Hitchin studied some subintegrable systems in the
singular locus.

Mirror symmetry:

- SL(2,C) and PSL(2,C) are Langlands dual groups.

- Mx(SL(2,C)) and Mx(PSL(2,C)) are mirror dual spaces.
- For regular fibers, this is understood.

- More complicated for singular fibers, especially for Nx(G).

Topology of the moduli space:

Nx(G) = Mx(G)

this inclusion is a homotopy equivalence
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Minimal surfaces

An equivariant branched minimal immersion from S to HB
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Minimal surfaces

An equivariant branched minimal immersion from S to HB
is a pair (f, p), where

f:i—HHIS,

p:m(X) — PSL(2,C) ~ SO(3,C) ~ Isom™* (H3),
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@ B={pex|df,=0}is adiscrete set.
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Minimal surfaces

An equivariant branched minimal immersion from S to HB
is a pair (f, p), where

f:y— He,
p:m(X) — PSL(2,C) ~ SO(3,C) ~ Isom™* (H3),

and f is a p-equivariant smooth map such that

@ B={pex|df,=0}is adiscrete set.
e Ony\ B, f is an immersion with zero mean curvature.

Bs (H3): The moduli space of such pairs.
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Minimal surfaces and nilpotent cones

The pull back of the hyperbolic metric of H® induces a
conformal structure on x.
This gives a map to the Teichmiller space 7 (X):

By (H3) — T(X).
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Minimal surfaces and nilpotent cones

The pull back of the hyperbolic metric of H® induces a
conformal structure on x.
This gives a map to the Teichmiller space 7 (X):

By (H3) — T(X).

Denote the fiber over X € T(X) by Bx(H3).
Bx(H3) — Bs(H3) — T(X).
Bs(H3) is a bundle over T (%) ~ RN with fiber By(H?®).

Bx(H3) is “more or less” the nilpotent cone Nx(SO(3, C)).

Daniele Alessandrini Nilpotent cones and minimal surfaces



Branching divisor

For a (f, p), define the branching locus as
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For a (f, p), define the branching locus as
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a finite set, where 7 : ¥ — ¥ is the universal covering.
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Branching divisor

For a (f, p), define the branching locus as

B:==(B)C ¥,
a finite set, where 7 : Y — ¥ is the universal covering.
Branching has multiplicities, B ~~ D, the branching divisor.

d:=2g—2—deg(D),

the Euler number.
1<d<2g-2.
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Branching divisor

For a (f, p), define the branching locus as

B:==(B)C ¥,
a finite set, where 7 : Y — ¥ is the universal covering.
Branching has multiplicities, B ~~ D, the branching divisor.

d:=2g—2—deg(D),

the Euler number.
1<d<2g-2.

B (H?®) the subset of the (f, p) with Euler number d.
A stratum of By.
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We can understand the strata: the map
BS(H3) > (f, p) — D € Symm?9-279(X).
is a vector bundle of rank g — 1 + d.

Vy — BS(H®) — Symm29-2-9(X)
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We can understand the strata: the map
BS(H3) > (f,p) — D € Symm29-2-9(X).
is a vector bundle of rank g — 1 + d.
Vy — BS(H®) — Symm29-2-9(X)

The parameter in the vector space Vy contains information
about the curvature of the minimal surface.
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We can understand the strata: the map
BS(H3) > (f,p) — D € Symm29-2-9(X).
is a vector bundle of rank g — 1 + d.
Vy — BS(H®) — Symm29-2-9(X)

The parameter in the vector space Vy contains information
about the curvature of the minimal surface.

Example

B39 72(H3) ~ C39-3 is the part without branching, they are
minimal immerstions.
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We can understand the strata: the map
BS(H3) > (f, p) — D € Symm?9-279(X).
is a vector bundle of rank g — 1 + d.

Vy — BS(H®) — Symm29-2-9(X)

The parameter in the vector space Vy contains information
about the curvature of the minimal surface.

Example
B39 72(H3) ~ C39-3 is the part without branching, they are
minimal immerstions.

Minimal surfaces inside quasi-Fuchsian hyperbolic manifolds
are here.
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Degeneracy of branching

2g-2
Bx(H®) = | BY(H®).
d=1
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Bx(H®) = | BY(H®).
d=1

Careful! The map (f, p) — d is only lower semi-continuous!
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d=1
Careful! The map (f, p) — d is only lower semi-continuous!

d can decrease suddenly and new branching appears.
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Bx(H®) = | BY(H®).
d=1

Careful! The map (f, p) — d is only lower semi-continuous!
d can decrease suddenly and new branching appears.
The different strata touch each other!

In this work, we study all possible ways in which d can change
when we move in By(H?3).
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Degeneracy of branching

2g-2
Bx(H®) = | BY(H®).
d=1

Careful! The map (f, p) — d is only lower semi-continuous!
d can decrease suddenly and new branching appears.
The different strata touch each other!

In this work, we study all possible ways in which d can change
when we move in By(H?3).

We explicitly describe the topology of By (H?®).

E.g. we prove that By (H?®) has two connected components
(even d and odd d).
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The real part

By (H?) C By (H®)

The “real part”
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The real part

By (H?) C By (H®)

The “real part”, the subset of pairs (f, p) where
f:y— H?,

p:m(X) — PSL(2,R) ~ SOy(2, 1) ~ Isom™ (H?),
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The real part

Bs (H?) C By (H®)
The “real part”, the subset of pairs (f, p) where
f:y— H?,
p:m(X) — PSL(2,R) ~ SOy(2, 1) ~ Isom™ (H?),

Bs (H?) is the moduli space of branched hyperbolic structures
on%.
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Bs (H?) is the moduli space of branched hyperbolic structures
on%.

Bx(H?), B%(H?), defined as before.

This time, the BY(H?) are connected components of By (H?).
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The “real part”, the subset of pairs (f, p) where
f:y— H?,
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The real part

By (H?) C By (H®)

The “real part”, the subset of pairs (f, p) where
f:y— H?,
p:m(X) — PSL(2,R) ~ SOy(2, 1) ~ Isom™ (H?),

Bs (H?) is the moduli space of branched hyperbolic structures
on%.

Bx(H?), B%(H?), defined as before.
This time, the BY(H?) are connected components of By (H?).

B$(H?) ~ Symm?29~2-9(X) .

B¢ (H?®) is a vector bundle over BS(H?).
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SO(3, C)-Higgs bundles

Assume from now on that G = SO(3, C).
Describe the elements of Mx(SO(3, C)):

(E,w,B,p) € Mx(SO(3,C))
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@ E is arank 3 holomorphic vector bundle on X.
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Assume from now on that G = SO(3, C).
Describe the elements of Mx(SO(3, C)):

(E,w,B,p) € Mx(SO(3,C))

@ E is arank 3 holomorphic vector bundle on X.
@ wc HY(X,A3E) is a volume form (= A3E = O).
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SO(3, C)-Higgs bundles

Assume from now on that G = SO(3, C).
Describe the elements of Mx(SO(3, C)):

(E,w,B,p) € Mx(SO(3,C))

@ E is arank 3 holomorphic vector bundle on X.

@ wc HY(X,A3E) is a volume form (= A3E = O).

@ Bis a holomorphic symmetric bil. form on E compatible
with w.
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SO(3, C)-Higgs bundles

Assume from now on that G = SO(3, C).
Describe the elements of Mx(SO(3, C)):

(E,w,B,p) € Mx(SO(3,C))

@ E is arank 3 holomorphic vector bundle on X.

@ wc HY(X,A3E) is a volume form (= A3E = O).

@ Bis a holomorphic symmetric bil. form on E compatible
with w.

@ ¢ € End(E) ® K is B-antisymmetric.
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SO(3, C)-Higgs bundles

Assume from now on that G = SO(3, C).
Describe the elements of Mx(SO(3, C)):

(E,w,B,p) € Mx(SO(3,C))

@ E is arank 3 holomorphic vector bundle on X.

@ wc HY(X,A3E) is a volume form (= A3E = O).

@ Bis a holomorphic symmetric bil. form on E compatible
with w.

@ ¢ € End(E) ® K is B-antisymmetric.

@ (Semi-stability) For all B-isotropic p-invariant line
sub-bundle L C E, deg L < 0.
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Nilpotent SO(3, C)-Higgs bundles

For SO(3, C)-Higgs bundles, det(¢) = 0.
@ is either 0 or generically of rank 2.
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Nilpotent SO(3, C)-Higgs bundles

For SO(3, C)-Higgs bundles, det(¢) = 0.
@ is either 0 or generically of rank 2.

If  # 0, denote by ker ¢ C E the unique line sub-bundle s.t.

(;0|ker<p =0.
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Nilpotent SO(3, C)-Higgs bundles

For SO(3, C)-Higgs bundles, det(¢) = 0.
@ is either 0 or generically of rank 2.

If  # 0, denote by ker ¢ C E the unique line sub-bundle s.t.

(;0|ker<p =0.

When is (E,w, B, ¢) in Nx(SO(3,C)) ?
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Nilpotent SO(3, C)-Higgs bundles

For SO(3, C)-Higgs bundles, det(¢) = 0.
@ is either 0 or generically of rank 2.

If  # 0, denote by ker ¢ C E the unique line sub-bundle s.t.
(;0|ker<p =0.
When is (E,w, B, ¢) in Nx(SO(3,C)) ?
2 cases:
@ When ¢ = 0. Here,

(E7w7 37 SO) = (E7w7 B,O) € MX(SO(S))
We define the Euler number d := 0.
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Nilpotent SO(3, C)-Higgs bundles

For SO(3, C)-Higgs bundles, det(¢) = 0.
@ is either 0 or generically of rank 2.

If  # 0, denote by ker ¢ C E the unique line sub-bundle s.t.

(;0|ker<p =0.

When is (E,w, B, ¢) in Nx(SO(3,C)) ?

2 cases:
@ When ¢ = 0. Here,
(E,w,B,p) =(E,w,B,0) € Mx(SO(3)).
We define the Euler number d := 0.
@ When ¢ # 0 and ker ¢ is B-isotropic.
We define the Euler number d := — deg(ker ¢), with

1<d<2g9-2.
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The strata

Denote by NV'Z(G) the subset of Higgs bundles with Euler
number d.
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The strata

Denote by NV'Z(G) the subset of Higgs bundles with Euler
number d.

Stratification of Nx(G) (Laumont, Thaddeus, Hausel, others)

2g-2

Nx(G) = | MY(G).
d=0
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The strata

Denote by NV'Z(G) the subset of Higgs bundles with Euler
number d.

Stratification of Nx(G) (Laumont, Thaddeus, Hausel, others)

2g-2
Nx(G) = |J ME(G).
d=0

NY(G) = Mx(SO(3)) closed subset. The only closed stratum.
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The strata

Denote by NV'Z(G) the subset of Higgs bundles with Euler
number d.

Stratification of Nx(G) (Laumont, Thaddeus, Hausel, others)

2g-2
Nx(G) = |J ME(G).
d=0

NY(G) = Mx(SO(3)) closed subset. The only closed stratum.

For1 < d < 2g -2, NJ(G) is not closed.
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Explicit description of the non-closed strata

Fix1<d<2g-2.
Let (E,w, B, ) € N{(G).
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Explicit description of the non-closed strata

Fix1<d<2g-2.
Let (E,w, B, ) € N{(G).

Then, there exist
@ L € Picy(X);
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Explicit description of the non-closed strata

Fix1<d<2g-2.
Let (E,w, B, ) € N{(G).

Then, there exist
@ L € Picy(X);
@ 0+#ce HX,KL™);
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Explicit description of the non-closed strata

Fix1<d<2g-2.
Let (E,w, B, ) € N{(G).

Then, there exist
@ L € Picy(X);
@ 0+#ce HX,KL™);
@ Be H'(X,L™;
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Explicit description of the non-closed strata

Fix1<d<2g-2.
Let (E,w, B, ) € N{(G).

Then, there exist
@ L € Picy(X);
@ 0+#ce HX,KL™);
@ Be H'(X,L™;
such that

0 0 O
E=LaO0a L, de=0+ (8 0 0],
0 -8 0
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Explicit description of the non-closed strata

Fix1<d<2g-2.
Let (E,w, B, ) € N{(G).

Then, there exist
@ L € Picy(X);
@ 0+#ce HX,KL™);
@ Be H'(X,L™;
such that

0 0 O
E=LaO0a L, de=0+ (8 0 0],
0 -8 0

0 0 1 0 0 0
w=1¢eH(X,0), B={(0 1 0], o=|c 0 0].
100 0 ¢ O
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Parametrization

Let D € Symm?9-2-9(X) be the divisor of c.
D determines the pair (L, ¢).
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Parametrization

Let D € Symm?9-2-9(X) be the divisor of c.
D determines the pair (L, ¢).

p: N(G) — Symm?9-2-9(X)
is a vector bundle of rank g — 1 + d, with fiber H' (X, L~1).
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Let D € Symm?9-2-9(X) be the divisor of c.
D determines the pair (L, ¢).

p: N(G) — Symm?9-2-9(X)
is a vector bundle of rank g — 1 + d, with fiber H' (X, L~1).

dim(c./\/')c(j(G) =3g—-3= dichx(G).
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Let D € Symm?9-2-9(X) be the divisor of c.
D determines the pair (L, ¢).

p: N(G) — Symm?9-2-9(X)
is a vector bundle of rank g — 1 + d, with fiber H' (X, L~1).

dim(c./\/')c(j(G) =3g—-3= dichx(G).

(Loftin-McIntosh gave a similar description for the nilpotent
cone for SU(2, 1) and SOy(4,1).)
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Parametrization

Let D € Symm?9-2-9(X) be the divisor of c.
D determines the pair (L, ¢).

p: N(G) — Symm?9-2-9(X)
is a vector bundle of rank g — 1 + d, with fiber H' (X, L~1).

dich)c(j(G) =3g—-3= dichx(G).

(Loftin-McIntosh gave a similar description for the nilpotent
cone for SU(2, 1) and SOy(4,1).)

The zero section (5 = 0) is the sub-space of SO(2, 1)-Higgs
bundles:
/\/}?(SO(Z, 1)) ~ Symm?9—279(X).

This is also the sub-space of the variations of Hodge structure.
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Minimal immersions and nilpotent cone

Using our parameters, we can write the Hitchin’s equations and
understand their solutions.
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Using our parameters, we can write the Hitchin’s equations and
understand their solutions.

The corresponding harmonic map is a minimal branched
immersion, and has branching divisor D.
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Minimal immersions and nilpotent cone

Using our parameters, we can write the Hitchin’s equations and
understand their solutions.

The corresponding harmonic map is a minimal branched
immersion, and has branching divisor D.

For1<d<2g-2 BYH3=NZ(SO3,C)).
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Minimal immersions and nilpotent cone

Using our parameters, we can write the Hitchin’s equations and
understand their solutions.

The corresponding harmonic map is a minimal branched
immersion, and has branching divisor D.

For1<d<2g-2 BYH3=NZ(SO3,C)).

Bx(H®) = Nx(SO(3,C)) \ N}(SO(3,C)).
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Minimal immersions and nilpotent cone

Using our parameters, we can write the Hitchin’s equations and
understand their solutions.

The corresponding harmonic map is a minimal branched
immersion, and has branching divisor D.

For1<d<2g-2 BYH3=NZ(SO3,C)).
Bx(H®) = Nx(SO(3,C)) \ N3(SO(3,C)).

Bx(H?) = Nx(S80(2,1)) \ N3(S0(2,1)).
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Minimal immersions and nilpotent cone

Using our parameters, we can write the Hitchin’s equations and
understand their solutions.

The corresponding harmonic map is a minimal branched
immersion, and has branching divisor D.

For1<d<2g-2 BYH3=NZ(SO3,C)).
Bx(H®) = Nx(SO(3,C)) \ N3(SO(3,C)).
Bx(H?) = Nx(S0(2,1)) \ N3(50(2,1)).

N2(SO(3,C)) would correspond to pairs (f, p), where f is
constant and p goes to SO(3).
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Irreducible components

Do we understand Nx(G) now?
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Do we understand Nx(G) now? Not yet!

Nx(G) is compact (Hitchin).
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Irreducible components

Do we understand Nx(G) now? Not yet!
Nx(G) is compact (Hitchin).

For d > 1, N¢(G) is a vector bundle, hence it is not compact.
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Irreducible components

Do we understand Nx(G) now? Not yet!
Nx(G) is compact (Hitchin).
For d > 1, N¢(G) is a vector bundle, hence it is not compact.

NZ(G) is not closed in Nx(G): what happens when 3 — c0?
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Irreducible components

Do we understand Nx(G) now? Not yet!

Nx(G) is compact (Hitchin).

For d > 1, N¢(G) is a vector bundle, hence it is not compact.
NZ(G) is not closed in Nx(G): what happens when 3 — co?

Nx(G) has 2g — 1 irreducible components: the NZ(G).
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Irreducible components

Do we understand Nx(G) now? Not yet!

Nx(G) is compact (Hitchin).

For d > 1, N¢(G) is a vector bundle, hence it is not compact.
NZ(G) is not closed in Nx(G): what happens when 3 — co?

Nx(G) has 2g — 1 irreducible components: the NZ(G).

We want to understand ONZ(G) and more precisely

INZ(G) NN (G).
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Irreducible components

Do we understand Nx(G) now? Not yet!

Nx(G) is compact (Hitchin).

For d > 1, N¢(G) is a vector bundle, hence it is not compact.
NZ(G) is not closed in Nx(G): what happens when 3 — co?
Nx(G) has 2g — 1 irreducible components: the W.

We want to understand ONZ(G) and more precisely

INZ(G) NN (G).

This will tell us the shape of Nx(G).

Daniele Alessandrini Nilpotent cones and minimal surfaces



Our results

Let1 < d',d <2g-2.
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Our results

Let1 < d',d <2g-2.

ONY(G)NNY (G) # 0
o=
d>d AND d—d iseven .
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Our results

Let1 < d',d <2g-2.

ONY(G)NNY (G) # 0
o=
d>d AND d—d iseven .

In other words, when the parameter 8 goes to oo in N)‘?(G), you
can only converge to a stratum with smaller Euler number, and
only with an even difference.
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Our results

Let1 <d' <d<2g-2, withd —d = 2q even.
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Our results

Let1 <d' <d<2g-2, withd —d = 2q even.

We define

Sd.ar = { 2T + D | T € Symm9(X), D € Symm?9—2-9( X) } ,

with Sg.g C Symm?29=2=9(X). Then

Daniele Alessandrini Nilpotent cones and minimal surfaces



Our results

(Theorem

Let1 <d' <d<2g-2, withd —d = 2q even.

We define
Sd.ar = { 2T + D | T € Symm9(X), D € Symm?9—2-9( X) } ,
with Sg.g C Symm?29=2=9(X). Then

ONY(G)NNY(G) =P (Saa)
where p : N'(G) — Symm?29-2-9'(X).
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Our results

(Theorem

Let1 <d' <d<2g-2, withd —d = 2q even.
We define

Sua ={ 2T +D| T € Symm(X), D € Symm?-27(x) } ,
with Sg.g C Symm?29=2=9(X). Then

ONY(G)NNY(G) =P (Saa)
where p : N'(G) — Symm?29-2-9'(X).

In other words, when converging, the new branching points
come with even multiplicity, and all candidate limits are
achieved.
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Our results

Suppose (fn, pn) € Bx(H?®) is a sequence with fixed branch type
(ny,...,nk). Then, up to extracting a subsequence, one of the
following occurs.
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Our results

Suppose (fn, pn) € Bx(H?®) is a sequence with fixed branch type
(ny,...,nk). Then, up to extracting a subsequence, one of the
following occurs.

@ (fn, pn) converges to a pair (f, p) of branch type
(n1 +2my, ..., N+ 2Mk, 2Mk 1, - . . ,2mk+s), with m; > 0.
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Suppose (fn, pn) € Bx(H?®) is a sequence with fixed branch type
(ny,...,nk). Then, up to extracting a subsequence, one of the
following occurs.

@ (fn, pn) converges to a pair (f, p) of branch type
(n1 +2my, ..., N+ 2Mk, 2Mk 1, - . . ,2mk+s), with m; > 0.

@ f, converges to a constant map and p, converges to a
representation in SO(3).
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Suppose (fn, pn) € Bx(H?®) is a sequence with fixed branch type
(ny,...,nk). Then, up to extracting a subsequence, one of the
following occurs.

@ (fn, pn) converges to a pair (f, p) of branch type
(n1 +2my, ..., N+ 2Mk, 2Mk 1, - . . ,2mk+s), with m; > 0.

@ f, converges to a constant map and p, converges to a
representation in SO(3).

Generic sequences belong to type 2.
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Our results

Suppose (fn, pn) € Bx(H?®) is a sequence with fixed branch type
(ny,...,nk). Then, up to extracting a subsequence, one of the
following occurs.
@ (fn, pn) converges to a pair (f, p) of branch type
(n1 +2my, ..., N+ 2Mk, 2Mk 1, - . . ,2mk+s), with m; > 0.
@ f, converges to a constant map and p, converges to a
representation in SO(3).

Generic sequences belong to type 2.

Moreover, every branched minimal immersion of the kind
described in point 1 can arise as a limit.
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Our results

Suppose (fn, pn) € Bx(H?®) is a sequence with fixed branch type
(ny,...,nk). Then, up to extracting a subsequence, one of the
following occurs.
@ (fn, pn) converges to a pair (f, p) of branch type
(n1 +2my, ..., N+ 2Mk, 2Mk 1, - . . ,2mk+s), with m; > 0.
@ f, converges to a constant map and p, converges to a
representation in SO(3).

Generic sequences belong to type 2.

Moreover, every branched minimal immersion of the kind
described in point 1 can arise as a limit.

As a slogan, new branching points are created with even
multiplicity, and every candidate limit is reachable.
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Our results

Let (f, p) € BY(H3), with branching divisor D.
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Our results

Theorem
Let (f, p) € BY(H3), with branching divisor D.

If T is an effective divisor such that2T C D, we can find a
sequence (fy, pn) € Bx(H®), with fixed branching divisor
D — 2T, such that

(fa, pn) — (f, p) .
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Our results

Theorem
Let (f, p) € BY(H3), with branching divisor D.

If T is an effective divisor such that2T C D, we can find a
sequence (fy, pn) € Bx(H®), with fixed branching divisor
D — 2T, such that

(fa, pn) — (f, p) .

As a slogan, every even branching can be perturbed away.
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A special case: the C*-flow

The C*-flow is an action of C* on Mx(G):

t-(E,w,B,p)=(E,w,B,tp).
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A special case: the C*-flow

The C*-flow is an action of C* on Mx(G):

t-(E,w,B,p)=(E,w,B,tp).

Consider (E,w, B, ) € NZ(G), with parameters (L, ¢, 3).
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A special case: the C*-flow

The C*-flow is an action of C* on Mx(G):

t'(anan(p) = (vav 57 tC,D)

Consider (E,w, B, ) € NZ(G), with parameters (L, ¢, 3).
We ask: what is the limit

lim t-(E,w,B,p)?
t—0
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A special case: the C*-flow

The C*-flow is an action of C* on Mx(G):

t-(E,w,B,p)=(E,w,B,tp).

Consider (E,w, B, ) € NZ(G), with parameters (L, ¢, 3).
We ask: what is the limit

lim t-(E,w,B,p)?
t—0

If E is semi-stable, the limit is (E,w, B,0) € NY(G).
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A special case: the C*-flow

The C*-flow is an action of C* on Mx(G):

t-(E,w,B,p)=(E,w,B,tp).

Consider (E,w, B, ) € NZ(G), with parameters (L, ¢, 3).
We ask: what is the limit

lim t-(E,w,B,p)?
t—0

If E is semi-stable, the limit is (E,w, B,0) € NY(G).

This is the “generic case”.
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C*-flow — Unstable case

If E is unstable, it contains a p-invariant B-isotropic subbundle
M, with deg(M) = d’ > 0.

0~ O
E=MaOaM, =0+ (0 0 —v|,
0 0 O
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C*-flow — Unstable case

If E is unstable, it contains a p-invariant B-isotropic subbundle
M, with deg(M) = d’ > 0.

0~ O
E=MaOaM, =0+ (0 0 —v|,
0 0 O

Simpson showed that ' < d, and 3a € H°(X, KM~") such that
the limit Higgs bundle is parametrized by
(M, a,0) € N'(SO(2,1)).
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C*-flow — Unstable case

If E is unstable, it contains a p-invariant B-isotropic subbundle
M, with deg(M) = d’ > 0.

0~ O
E=MaOaM, =0+ (0 0 —v|,
0 0 O

Simpson showed that ' < d, and 3a € H°(X, KM~") such that
the limit Higgs bundle is parametrized by
(M, a,0) € N'(SO(2,1)).

Eo=Mas0Oae M, g, =0,

0 0 1 0 0 O
wo=1eHY(X,0), By=|0 1 0|, ¢=|a 0 0].
100 0 -a 0
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C*-flow — Our results

We computed that a = cb?, for some holomorphic section b. In
particular, the new branching has even order, and d — d’ is
even.
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C*-flow — Our results

We computed that a = cb?, for some holomorphic section b. In
particular, the new branching has even order, and d — d’ is
even.

Moreover, all possible candidate limits are realized: Given

(M, a,0) € N{'(SO(2,1)), we can describe all the C*-orbits
that converge to (M, a, 0) (the unstable manifold of (M, a,0)).
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C*-flow — Our results

Theorem

The unstable manifold of (M, a, 0) is usually not irreducible, it
has an irreducible component Uy, for every divisor b such that
P < a.
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C*-flow — Our results

Theorem

The unstable manifold of (M, a, 0) is usually not irreducible, it

has an irreducible component Uy, for every divisor b such that
P < a.

Choose such a b, say b = Z£:1 n; - pj, with n; > 0.
Let L= MO(b?), andc = 5.
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C*-flow — Our results

Theorem

The unstable manifold of (M, a, 0) is usually not irreducible, it
has an irreducible component Uy, for every divisor b such that
P < a.

Choose such a b, say b = Z£:1 n; - pj, with n; > 0.
Let L= MO(b?), andc = 5.

Then Uy, is the union of a family of C*-orbits, where lim; _, ¢ is
(M, a,0) andlim; _,  is (L, c,0). This family is parametrized by

k

H((C* x CMi=1y.

=il
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