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Ubiquitous CFT’s

I CFT’s are the building blocks of quantum field theories: they are signposts in the

space of quantum theories

Lecture 1

Physical Foundations of Conformal
Symmetry

1.1 Fixed points

Quantum Field Theory (QFT) is, in most general terms, the study of Renormalization
Group (RG) flows, i.e. how the theory evolves from the Ultraviolet (UV) to the Infrared
(IR) regimes:

One can ask which IR phases are possible. A priori, there are three possibilities:

A. a theory with a mass gap,

B. a theory with massless particles in the IR,

C. a Scale Invariant (SI) theory with a continuous spectrum.

It is the last class that we will call CFT and will mostly study in these lectures. But first
let’s look at some examples corresponding to these phases.

Nonabelian Yang-Mills (YM) theory in D = 4 dimensions belongs to type A.

L = � 1

4g2
F a

µ⌫F
aµ⌫ . (1.1.1)

4

I Promising way to lean more about quantum gravity via AdS/CFT correspondence

I Many real physical systems where scale invariance shows up
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4

I Promising way to lean more about quantum gravity via AdS/CFT correspondence

I Many real physical systems where scale invariance shows up

• Condensed matter:

critical point of many fluids,
Superfluid 4He → O(2)-model
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4

I Promising way to lean more about quantum gravity via AdS/CFT correspondence

I Many real physical systems where scale invariance shows up

• Percolation→ Q = 1 Potts model • Polymers → Self-avoiding random

walk (O(N = 0) vector model)
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Nature is perverse...

I In 2D, great results have been achieved thanks to a richer structure

(infinite dimensional symmetry)

I In D>2, general believe that no quantitative result could be obtained...
I perturbative expansion (in couplings, dimensions, number of fields,...)
I supersymmetry
I strong/weak dualities (AdS/CFT, ...)

Many real physical systems do not fall in the regime of validity of any of the above

assumptions.

Ex: O(N) vector model:

I N = 1 (Ising model): Ferromagnetism, Vapor to liquid transition,...

I N = 2 (XY model): superfluid 4He,

I N = 3 (Heisenberg model): magnetism

Genuine, non-supersymmetric, small-N, non perturbative systems.
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Tools at disposal

Alternative approaches to non-perturbative theories: how to compute critical

exponents (η,ν,...)?

I More exotic field theory approaches

I MonteCarlo simulations (spin systems)

0.627 0.628 0.629 0.630 0.631 0.632 0.633 0.634
0.030

0.032

0.034

0.036

0.038

0.040

0.042

ν

η

✏� exp

3D � exp

HT exp

MC (2003)

MC (2010)

0.6299 0.6300 0.6301 0.6302 0.6303

0.0362

0.0364

0.0366

0.0368

0.0370

ν

η
I QFT on the lattice

I Truncated Conformal Space Approach

I .....
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Conformal bootstrap

The conformal bootstrap aims to develop a systematic and rigorous method to study

the properties of conformal invariant fixed points in any dimension, complementary to

existing techniques.

Conformal
bootstrap

No

Maybe

are

part of a CFT?

{O1, O2, . . . , On}
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Conformal bootstrap main ideas



What is a CFT?

Theories invariant under the conformal algebra SO(D|2) which includes:

I translations

I Lorentz transformations

I dilatations

I ”inversion”

They are described by three ingredients:

1) Operator content: representations totally characterized by scaling dimension ∆ and

spin ` of the primary (lowest dimension operator). All other are called descendants.

2) Interactions between operators: encoded in the Operator Product Expansion (OPE)

O∆1
×O∆2

∼
∑
O

C12O
(
O∆,` + descendants

)︸ ︷︷ ︸
fixed by conformal symmetry

C12O are called OPE coefficients

3) Crossing symmetry constraints: see next slides...
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The power of conformal invariance

In CFT we are interested in computing correlations functions 〈Oi (x1)...Oj (xn)〉:

Two point functions of primaries: completely fixed

〈Oi (x1)Oj (x2)〉 =
δij

x
2∆i
12

x12 ≡ |x1 − x2| ∆i = [Oi ]

Three point functions of primaries: fixed modulo a constant.

Use OPE to reduce higher point functions to smaller ones

〈O1O2O3〉 ∝


C123 (〈O3O3〉+ descendants )︸ ︷︷ ︸

fixed by conformal symmetry

if O3 ∈ O1 ×O2

0 otherwise

9



Four point functions

Use OPE to reduce higher point functions to smaller ones:

〈O(x1)O(x2)O(x3)O(x4)〉 ∼
∑
O

1 Introduction and formulation of the problem

Our knowledge about non-supersymmetric Conformal Field Theories (CFTs) in four dimensions
(4D) is still quite incomplete. Su�ces it to say that not a single nontrivial example is known which
would be solvable to the same extent as, say, the 2D Ising model. However, we do not doubt that
CFTs must be ubiquitous. For example, non-supersymmetric gauge theories with Nc colors and
Nf flavors are widely believed to have “conformal windows” in which the theory has a conformal
fixed point in the IR, with evidence from large Nc analysis [1], supersymmetric analogues [2], and
lattice simulations [3]. Since these fixed points are typically strongly coupled, we do not have
much control over them. In this situation particularly important are general, model-independent
properties.

One example of such a property is the famous unitarity bound [4] on the dimension � of a
spin l conformal primary operator O�,l :1

� � 1 (l = 0) , (1.1)

� � l + 2 (l � 1) .

These bounds are derived by imposing that the two point function hOOi have a positive spectral
density.

As is well known, 3-point functions in CFT are fixed by conformal symmetry up to a few arbi-
trary constants (Operator Product Expansion (OPE) coe�cients). The next nontrivial constraint
thus appears at the 4-point function level, and is known as the conformal bootstrap equation. It
says that OPE applied in direct and crossed channel should give the same result (see Fig. 1).

The bootstrap equation goes back to the early days of CFT [5]. However, until recently, not
much useful general information has been extracted from it2. All spins and dimensions can apriori
enter the bootstrap on equal footing, and this seems to lead to unsurmountable di�culties.

‚
O

= ⁄
O

f

f

f

f

O

Figure 1: The conformal bootstrap equation. The thick red line denotes a conformal
block, summing up exchanges of a primary operator O and all its descendants.

Recently, however, tangible progress in the analysis of bootstrap equations was achieved in
[7]. Namely, it was found that, in unitary theories, the functions entering the bootstrap equations

1Here we quote only the case of symmetric traceless tensor operators.
2Except in 2D, in theories with finitely many primary fields and in the Liouville theory [6]. We will comment

on the 2D case in Sections 4.1 and 5 below.
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1

Crossing symmetry is the statement that the two expansions must give the same result!
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Definition of a CFT:

A Conformal Field Theory is an infinite set of primary operators O∆,` and OPE

coefficients Cijk that satisfy crossing symmetry for all set of four-point functions.
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Four point functions (more in details)
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=
u−d

(x2d
13 x

2d
24 )

∑
O′

∆,l

C2
O′

(
〈O′∆,`O′∆,`〉+ descendants

)
︸ ︷︷ ︸

function of u, v only by conformal symmetry

u =
x2

12x
2
34

x2
13x

2
24

v =
x2

14x
2
23

x2
13x

2
24

Conformal Blocks:

g∆,l (u, v) ≡ 〈O′∆,`O′∆,`〉+ descendants

They sum up the contribution of an entire representation
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Conformal blocks (CB’s) gold rush
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The Bootstrap program

I Crossing equation for 〈O(x1)O(x2)O(x3)O(x4)〉:

∑
∆,`

C2
∆,`



1 Introduction and formulation of the problem

Our knowledge about non-supersymmetric Conformal Field Theories (CFTs) in four dimensions
(4D) is still quite incomplete. Su�ces it to say that not a single nontrivial example is known which
would be solvable to the same extent as, say, the 2D Ising model. However, we do not doubt that
CFTs must be ubiquitous. For example, non-supersymmetric gauge theories with Nc colors and
Nf flavors are widely believed to have “conformal windows” in which the theory has a conformal
fixed point in the IR, with evidence from large Nc analysis [1], supersymmetric analogues [2], and
lattice simulations [3]. Since these fixed points are typically strongly coupled, we do not have
much control over them. In this situation particularly important are general, model-independent
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thus appears at the 4-point function level, and is known as the conformal bootstrap equation. It
says that OPE applied in direct and crossed channel should give the same result (see Fig. 1).

The bootstrap equation goes back to the early days of CFT [5]. However, until recently, not
much useful general information has been extracted from it2. All spins and dimensions can apriori
enter the bootstrap on equal footing, and this seems to lead to unsurmountable di�culties.
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1Here we quote only the case of symmetric traceless tensor operators.
2Except in 2D, in theories with finitely many primary fields and in the Liouville theory [6]. We will comment

on the 2D case in Sections 4.1 and 5 below.
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
︸ ︷︷ ︸

Known functions F∆,`

≡
∑
∆,l

C2
∆,l

(
u−dg∆,`(u, v)− v−dg∆,`(v , u)

)
︸ ︷︷ ︸

Fd,∆,`

= 0

I Unitarity: C2
∆,` ≥ 0

NoMaybe

⇤

F0,0 F�1,`1

F�2,`2

F�n,`n

F0,0 F�1,`1

F�2,`2

Existence of Λ can be recast into a linear (or semi-definite) programming problem and

checked numerically. [Rattazzi,Rychkov,Tonni, AV] 2008
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A toy model:

Ising Model:

σ × σ ∼ 1 +
∑
O∆,`

C∆,`O∆,` + .....

Crossing symmetry of 〈σ(x1)σ(x2)σ(x3)σ(x4)〉 implies:

∑
∆,`

C2
∆,`F∆,`(u, v) = 0

with:

I ∆σ = 1/8

I u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
24

x2
13x

2
24

I Project crossing constraint on ad hoc
plane (linear combination of crossing constraint

evaluated at 3 different points)

TASI Lectures on the Conformal Bootstrap 57

Δ = �����

Δ = ����

ℓ = �

ℓ = �
�
�
�
��
���

�μν

���� ��������

-� �

-�

�

Fig. 26. Vectors ~v(F
��

�,` ) for all values of �, ` satisfying the 2d unitarity bound � � `,

with ` even. Dots represent vectors at the unitarity bound � = `. As � varies, ~v(F
��

�,` )

sweeps out a curve starting at the dot and approaching the negative y-axis as � ! 1.
The curves for spins ` = 16, 18, . . . look similar and converge quickly as ` ! 1, so we

have not included them in the figure. All vectors are normalized for visual simplicity,

except for the unit operator ~v(F
��

0,0 ) = ~0. The dashed line splits the figure into two

half-spaces with the stress tensor ~v(F
��

2,2 ) on the boundary. The thicker region of the

` = 0 curve, in a di↵erent half-space from the rest of the figure, corresponds to scalars
with dimension � 2 [0.161, 1.04].

least one vector appearing in the � ⇥ � OPE. (To establish this, we

could rotate ~u slightly so that ↵ is strictly positive on the stress tensor

vector. Alternatively, we could use the fact that at least one higher

dimension operator must appear in the �⇥ � OPE.)

• Applying ↵ to both sides of (192), we find a contradiction: 0 > 0.

15



The Bootstrap program

Rules of the game:

I Choose one or more operators O1,O2, ....

I Consider all four point functions containing those operators

< O1O1O1O1 >,< O1O1O2O2 >, ...

I Make assumptions on the operators (and coefficients) appearing in the OPE’s

Oi ×Oj

I Check numerically if assumptions made are consistent with crossing symmetry

I If not consistent: there is no CFT with that operator content (crossing symmetry

is a necessary condition)

16



A few applications



Comparison with 2D results

Minimal models: family of 2D CFT’s completely solved:

σ × σ ∼ 1 + ε+ .....

... contains:

• Other Virasoro primaries

• Virasoro Descendants

• Conformal descendants

Consider the plane ∆σ , ∆ε:

Bound on maximal value of ∆ε

A kink signals the presence of the Ising

Model

[S.Rychkov, AV 2009]

Important

No use of Virasoro algebra. Extend the method to 3D right away
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A surprise in 3D

Choose:

σ = spin field with dimension ∆σ (→ η)

ε = energy density with dimension ∆ε (→ ν)

σ × σ ∼ 1 + ε + ε
′ + .... Z2 − even

σ × ε ∼ σ + σ
′ + .... Z2 − odd

ε× ε ∼ 1 + ε + ε
′ + .... Z2 − even

Ising

0.50 0.55 0.60 0.65 0.70 0.75 0.80 Ds1.0

1.2

1.4

1.6

1.8

De

Figure 3: Shaded: the part of the (��,�") plane allowed by the crossing symmetry constraint
(5.3). The boundary of this region has a kink remarkably close to the known 3D Ising model
operator dimensions (the tip of the arrow). The zoom of the dashed rectangle area is shown in
Fig. 4. This plot was obtained with the algorithm described in Appendix D with nmax = 11.

end of this interval is fixed by the unitarity bound, while the upper end has been chosen
arbitrarily. For each �� in this range, we ask: What is the maximal �" allowed by (5.3)?

The result is plotted in Fig. 3: only the points (��,�") in the shaded region are allowed.4

Just like similar plots in 4D and 2D [16, 17, 23] the curve bounding the allowed region starts
at the free theory point and rises steadily. Moreover, just like in 2D [17] the curve shows a
kink whose position looks remarkably close to the Ising model point.5 This is better seen in
Fig. 4 where we zoom in on the kink region. The boundary of the allowed region intersects
the red rectangle drawn using the �� and �" error bands given in Table 1.

Ising

0.510 0.515 0.520 0.525 0.530Ds1.38

1.39

1.40

1.41

1.42

1.43

1.44
De

Figure 4: The zoom of the dashed rectangle area from Fig. 3. The small red rectangle is
drawn using the �� and �" error bands given in Table 1.

From this comparison, we can draw two solid conclusions. First of all, the old results
for the allowed dimensions are not inconsistent with conformal invariance, though they are

4To avoid possible confusion: we show only the upper boundary of the allowed region. 0.5  �"  1 is
also a priori allowed.

5In contrast, the 4D dimension bounds do not show kinks, except in supersymmetric theories [23].

12

[El-Showk,Paulos,Poland,Rychkov,Simmons-Duffin, AV] 2011
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Let us input a few assumptions

Choose:

σ = spin field with dimension ∆σ (→ η)

ε = energy density with dimension ∆ε (→ ν)

σ × σ ∼ 1 + ε + ε
′ + .... Z2 − even

σ × ε ∼ σ + σ
′ + .... Z2 − odd

ε× ε ∼ 1 + ε + ε
′ + .... Z2 − even

So far we have assumed anything about the CFT besides unitarity.

Additional assumptions:

• In the Ising model one needs to tune only the temperature in order to flow to the

IR fixed point:

only one relevant Z2 − even deformation: ε

• equation of motions predicts �σ ∼ σ3:

second magnetic perturbation ∼ σ5 ⇒ irrelevant

20



3D Ising Model: the triumph of conformal bootstrap

Choose:

σ = spin field with dimension ∆σ (→ η)

ε = energy density with dimension ∆ε (→ ν)

σ × σ ∼ 1 + ε + ε
′ + .... Z2 − even

σ × ε ∼ σ + σ
′ + .... Z2 − odd

ε× ε ∼ 1 + ε + ε
′ + .... Z2 − even

Use < σσσσ >,< σσεε >,< εεεε >

Assume only σ and ε have dimension smaller than 3: allowed values for ∆σ , ∆ε?

Monte Carlo

Bootstrap

0.51808 0.51810 0.51812 0.51814 0.51816 0.51818 Δσ

1.4125

1.4126

1.4127

1.4128

1.4129

1.4130

Δϵ

Ising: Scaling Dimensions

0.518146 0.518148 0.518150 0.518152
1.41260

1.41261

1.41262

1.41263

1.41264

1.41265

Figure 1: Determination of the leading scaling dimensions in the 3d Ising model from the
mixed correlator bootstrap after scanning over the ratio of OPE coe�cients �✏✏✏/���✏ and
projecting to the (��,�✏) plane (blue region). Here we assume that � and ✏ are the only
relevant Z2-odd and Z2-even scalars, respectively. In this plot we compare to the previous
best Monte Carlo determinations [18] (dashed rectangle). This region is computed at ⇤ = 43.

partially motivated by the present ⇠ 8� discrepancy between measurements of the heat-
capacity critical exponent ↵ in 4He performed aboard the space shuttle STS-52 [16] and
the precise Monte Carlo simulations performed in [17]. While our new O(2) island is not
quite small enough to resolve this issue definitively, our results have some tension with the
reported 4He measurement and currently favor the Monte Carlo determinations.

This paper is organized as follows. In section 2 we review the bootstrap equations
relevant for the 3d Ising and O(N) vector models and explain the scan over relative OPE
coe�cients employed in this work. In section 3 we describe our results, and in section 4 we
give a brief discussion. Details of our numerical implementation are given in appendix A.

4

[Poland,Simmons-Duffin,AV, ’11]

[El-Showk,Paulos,Poland,Rychkov,

Simmons-Duffin,AV, ’12 & ’14]

[Poland,Simmons-Duffin, Kos ’14]

[Simmons-Duffin, ’15]

[Poland,Simmons-Duffin,Kos,AV, ’16]
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An island for any N

this work will be able to do so in the near future. More generally, the results of this work
give us hope that the same techniques can be used to to solve other interesting strongly-
coupled CFTs, such as the 3d Gross-Neveu models, 3d Chern-Simons and gauge theories
coupled to matter, 4d QCD in the conformal window, N = 4 supersymmetric Yang-Mills
theory, and more.

The structure of this paper is as follows. In section 2, we summarize the crossing
symmetry conditions arising from systems of correlators in 3d CFTs with O(N) symmetry,
and discuss how to study them with semidefinite programming. In section 3, we describe
our results and in section 4 we discuss several directions for future work. Details of our
implementation are given in appendix A. An exploration of the role of the leading symmetric
tensor is given in appendix B.

0.505 0.510 0.515 0.520 0.525 0.530
!Φ

1.2

1.4

1.6

1.8

2.0
!s

The O!N" archipelago

Ising

O!2"
O!3"
O!4"

O!20"

Figure 1: Allowed regions for operator dimensions in 3d CFTs with an O(N) global symmetry
and exactly one relevant scalar φi in the vector representation and one relevant scalar s in
the singlet representation of O(N), for N = 1, 2, 3, 4, 20. The case N = 1, corresponding to
the 3d Ising model, is from [51]. The allowed regions for N = 2, 3, 4, 20 were computed with
Λ = 35, where Λ (defined in appendix A) is related to the number of derivatives of the crossing
equation used. Each region is roughly triangular, with an upper-left vertex that corresponds
to the kinks in previous bounds [15]. Further allowed regions may exist outside the range of
this plot; we leave their exploration to future work.

4

[Kos,Poland,Simmons-Duffin,AV] 2015
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Going Beyond



Conserved currents

Universal handle on any CFT: need to study universal operators in the theory.

I Conserved global symmetry currents Jµ

I Energy momentum tensor Tµν

Two possible strategies:

1. Use supersymmetry to relate correlations functions of conserved currents to those

of the scalar belonging to the same super-multiplet

2. Study correlation functions of spinning operators

24



Super Conformal Field Theories

I N = 1,D = 4

real multiplet J A ⊂ JA, JAµ
[Stergiu, in progress]

I N = 2,D = 4

semi-short multiplet Ĉ0,(0,0) ⊃ φ, J(R)
µ , J

(r)
µ ,Tµν

[Beem, Lemos, Liendo, Rastelli, van Rees]

I N = 3,D = 4

semi-short multiplet B̂[R,0] ⊃ φ,Tµν
[Lemos, Liendo, Meneghelli, Mitev]

I N = 4,D = 4

1/2 BPS multiplet B[0,2,0] ⊃ φIJ , J(R)
µ , J

(r)
µ ,Tµν

[Beem, Rastelli, van Rees]

I (2, 0),D = 6

1/2 BPS multiplet D[2, 0] ⊃ φij ,Tµν
[Beem, Lemos, Rastelli, van Rees]

See Madalena’s talk for a detailed application.
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A window to all CFTs (with a global symmetry)

Goal: study bootstrap equations in 3D for 〈JµJνJρJσ〉, with Jµ a conserved current.

Size of the problem:

Generic Equal & conserved

+ - + -

3pf 5 4 2(` even) 1 (` 6= 1)

4pf 41 17

I Parametrization

< Jµ(x1)Jν(x2)Jρ(x3)Jσ(x4) >=
41∑
k=1

fi (u, v)Qµνρσi (x)

(x12)2(x34)2

I Crossing symmetry has the form

fi (u, v) =
17∑
k=1

M(u, v)ij fj (v , u)
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Minimal set of crossing conditions

I Conservation relates the 17 a priori independent structures with 14 differential

equations of the form∑
j

(
K0
ij + Ku

ij ∂u + K v
ij ∂v

)
fj (u, v) = 0, i = 1, ..., 14 j = 1, ..., 17

I By inspecting the Kernel of the matrices K one can show that the minimal and
necessary set of information needed to integrate the conservation equations is

1. 5 functions f̃i of both conformal ratios satisfying f̃i (u, v) = ±f̃i (v , u)

2. 10 functions g̃j defined at u = v

3. the values of 2 functions h̃k a at u = v = 1/4.

I Moreover, the form of conservation equation is such that if the initial conditions

satisfies crossing symmetry, the same would be for the integrated solution.
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Conformal collider bounds

Gedankenexperiment:

I Switch on a local perturbation O∆,` in a CFT. This create a perturbation

growing in time and space

I Measure the angular distribution of the flux E(θ) at some distance.

I It integral measures the total energy deposited in a ”calorimeter”

Formally we want to compute the expectation value of the energy density E = T−− in

the vacuum created by the local operator O∆,`|0 >:

〈E(θ)〉 =
〈O†∆,`E(θ)O∆,`〉
〈O†∆,`O∆,`〉
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Conformal collider bounds

If we choose 〈Od−1,1 = Jµ the above flux can be computed in terms of the universal

CFT data entering the three point function 〈JµJνTρσ〉

〈E(θ)〉 ∝
[

1− 4d(d − 1)γ

(
cos2 θ − 1

d − 1

)]
.

Positivity of this energy correlator implies the bounds

− 1

4d
≤ γ ≤ 1

4d(d − 2)

which are saturated by free scalars and free fermions, respectively.

The parameter γ can be defined in terms of the AdS bulk action:

SAdS = CJ

∫
dd+1x

[
−1

4
FµνF

µν + γR2
AdSW

µντρFµνFτρ

]
(W is the Weyl tensor)
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Conformal collider bounds

Can we find numerical evidences in d = 3 of the bound − 1
12
≤ γ ≤ 1

12
?

The argument assumes the CFT posses a local Energy momentum tensor

⇔ central charge cT <∞.

Let us compute numerically a lower bound on the central charge as a function of γ
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Colors correspond to increasing computing power. [work in progress, w/ Dymarsky, Penedones,

Trevisani]
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Scalar operators

The OPE Jµ × Jν contains both even and odd scalar under Parity. How high can their

dimension be in a generic CFT?

O(2)?

Large N?

???.Free fermion

.
Free boson
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Conclusions



Summary of results

I The Conformal bootstrap is carving out the space of conformal field theories in

D ≥ 2.

I Three dimensional CFT’s (neglected for 40 years) are now under siege: critical

exponents of condensed matter systems can be computed with precision

competitive with MC

I The study of conserved currents will open a windows on all unitary CFTs, even

allowing to discover theories we know nothing about.
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