# **Conformal Bootstrap:** Non-perturbative QFT's under siege

Alessandro Vichi



Iberian Strings 2017



- ▶ Promising way to lean more about quantum gravity via AdS/CFT correspondence
- Many real physical systems where scale invariance shows up



- Promising way to lean more about quantum gravity via AdS/CFT correspondence
- Many real physical systems where scale invariance shows up
- Condensed matter:

critical point of many fluids,



Superfluid <sup>4</sup>He  $\rightarrow O(2)$ -model





- ▶ Promising way to lean more about quantum gravity via AdS/CFT correspondence
- Many real physical systems where scale invariance shows up
- Percolation  $\rightarrow Q = 1$  Potts model





- Promising way to lean more about quantum gravity via AdS/CFT correspondence
- Many real physical systems where scale invariance shows up
- Percolation  $\rightarrow Q = 1$  Potts model



 Polymers → Self-avoiding random walk (O(N = 0) vector model)



- In 2D, great results have been achieved thanks to a richer structure (infinite dimensional symmetry)
- ▶ In D>2, general believe that no quantitative result could be obtained...
  - perturbative expansion (in couplings, dimensions, number of fields,...)
  - supersymmetry
  - strong/weak dualities (AdS/CFT, ...)

- In 2D, great results have been achieved thanks to a richer structure (infinite dimensional symmetry)
- ▶ In D>2, general believe that no quantitative result could be obtained...
  - perturbative expansion (in couplings, dimensions, number of fields,...)
  - supersymmetry
  - strong/weak dualities (AdS/CFT, ...)

Many real physical systems do not fall in the regime of validity of any of the above assumptions.

Ex: O(N) vector model:

- N = 1 (Ising model): Ferromagnetism, Vapor to liquid transition,...
- N = 2 (XY model): superfluid <sup>4</sup>He,
- ▶ *N* = 3 (Heisenberg model): magnetism

Genuine, non-supersymmetric, small-N, non perturbative systems.

Alternative approaches to non-perturbative theories: how to compute critical exponents  $(\eta, \nu, ...)$ ?

More exotic field theory approaches



MonteCarlo simulations (spin systems)

- ► QFT on the lattice
- Truncated Conformal Space Approach

▶ .....

The conformal bootstrap aims to develop a systematic and rigorous method to study the properties of conformal invariant fixed points in any dimension, complementary to existing techniques.



- 1. Conformal bootstrap main ideas
- 2. A few applications
- 3. Going Beyond
- 4. Conclusions

# Conformal bootstrap main ideas

# What is a CFT?

Theories invariant under the conformal algebra SO(D|2) which includes:

- translations
- Lorentz transformations
- dilatations
- "inversion"

They are described by three ingredients:

1) Operator content: representations totally characterized by scaling dimension  $\Delta$  and spin  $\ell$  of the primary (lowest dimension operator). All other are called descendants.

2) Interactions between operators: encoded in the Operator Product Expansion (OPE)

$$\mathcal{O}_{\Delta_1} \times \mathcal{O}_{\Delta_2} \sim \sum_{\mathcal{O}} \underbrace{\mathsf{C}_{12\mathcal{O}}}_{\text{fixed by conformal symmetry}} \underbrace{(\mathcal{O}_{\Delta,\ell} + \text{descendants})}_{\text{fixed by conformal symmetry}}$$

 $C_{12\mathcal{O}}$  are called OPE coefficients

3) Crossing symmetry constraints: see next slides...

In CFT we are interested in computing correlations functions  $\langle O_i(x_1)...O_j(x_n) \rangle$ :

Two point functions of primaries: completely fixed

$$\langle \mathcal{O}_i(x_1)\mathcal{O}_j(x_2)\rangle = \frac{\delta_{ij}}{x_{12}^{2\Delta_i}}$$
  $x_{12} \equiv |x_1 - x_2|$   $\Delta_i = [\mathcal{O}_i]$ 

Three point functions of primaries: fixed modulo a constant. Use OPE to reduce higher point functions to smaller ones

$$\langle \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_3 \rangle \propto \left\{ \begin{array}{c} \textbf{C}_{123} \underbrace{\left( \langle \mathcal{O}_3 \mathcal{O}_3 \rangle + \text{descendants} \right)}_{\text{fixed by conformal symmetry}} & \text{if } \mathcal{O}_3 \in \mathcal{O}_1 \times \mathcal{O}_2 \\ \\ 0 & \text{otherwise} \end{array} \right.$$

Use OPE to reduce higher point functions to smaller ones:

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle \sim \sum_{\mathcal{O}} \rangle^{\mathcal{O}} \langle \langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle \sim \sum_{\mathcal{O}} \rangle^{\mathcal{O}} \langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4)\rangle \rangle \rangle$$

Crossing symmetry is the statement that the two expansions must give the same result!

A Conformal Field Theory is an infinite set of primary operators  $\mathcal{O}_{\Delta,\ell}$  and OPE coefficients  $C_{iik}$  that satisfy crossing symmetry for all set of four-point functions.

# Four point functions (more in details)

Recalling the OPE

$$\mathcal{O}(x_1) \times \mathcal{O}(x_2) = \sum_{\mathcal{O}'} \frac{C_{\mathcal{O}'}}{x_{12}^{2d-\Delta}} (\mathcal{O}'_{\Delta,\ell} + \text{descendants}) \qquad d = [\mathcal{O}]$$

# Four point functions (more in details)

### Recalling the OPE

$$\mathcal{O}(x_1) \times \mathcal{O}(x_2) = \sum_{\mathcal{O}'} \frac{C_{\mathcal{O}'}}{x_{12}^{2d-\Delta}} (\mathcal{O}'_{\Delta,\ell} + \mathsf{descendants}) \qquad d = [\mathcal{O}]$$

Then

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4) \rangle \sim \sum_{\mathcal{O}} \sum_{\mathcal{O}} \left( \frac{u^{-d}}{(x_{13}^{2d} x_{24}^{2d})} \sum_{\mathcal{O}'_{\Delta,l}} C_{\mathcal{O}'}^2 \right) \left( \frac{\left( \langle \mathcal{O}'_{\Delta,\ell} \mathcal{O}'_{\Delta,\ell} \rangle + \text{descendants} \right)}{\left( \frac{(\langle \mathcal{O}'_{\Delta,\ell} \mathcal{O}'_{\Delta,\ell} \rangle + \text{descendants})}{(u_{\Delta,\ell} \mathcal{O}'_{\Delta,\ell} \rangle + u_{\Delta}^2 (u_{\Delta,\ell} \mathcal{O}'_{\Delta,\ell} )} \right)$$

$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} \qquad \qquad v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$

# Four point functions (more in details)

#### Recalling the OPE

$$\mathcal{O}(x_1) \times \mathcal{O}(x_2) = \sum_{\mathcal{O}'} \frac{C_{\mathcal{O}'}}{x_{12}^{2d-\Delta}} (\mathcal{O}'_{\Delta,\ell} + \mathsf{descendants}) \qquad d = [\mathcal{O}]$$

Then

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\mathcal{O}(x_3)\mathcal{O}(x_4) \rangle \sim \sum_{\mathcal{O}} \sum_{\mathcal{O}} \left( \frac{u^{-d}}{(x_{13}^{2d} x_{24}^{2d})} \sum_{\mathcal{O}_{\Delta,l}'} C_{\mathcal{O}'}^2 \right) \left( \langle \mathcal{O}_{\Delta,\ell}' \mathcal{O}_{\Delta,\ell}' \rangle + \text{descendants} \right)$$

$$= \frac{u^{-d}}{(x_{13}^{2d} x_{24}^{2d})} \sum_{\mathcal{O}_{\Delta,l}'} C_{\mathcal{O}'}^2 \left( \frac{(\langle \mathcal{O}_{\Delta,\ell}' \mathcal{O}_{\Delta,\ell}' \rangle + \text{descendants})}{(x_{13}^{2d} x_{24}^{2d})} \right)$$

$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2} \qquad \qquad v = \frac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$

Conformal Blocks:

$$g_{\Delta,l}(u,v) \equiv \langle O'_{\Delta,\ell} O'_{\Delta,\ell} 
angle + \mathsf{descendants}$$

They sum up the contribution of an entire representation



# The Bootstrap program

► Crossing equation for ⟨O(x<sub>1</sub>)O(x<sub>2</sub>)O(x<sub>3</sub>)O(x<sub>4</sub>)⟩:

$$\sum_{\Delta,\ell} C_{\Delta,\ell}^{2} \underbrace{\left( \underbrace{-}_{\Delta,\ell} \underbrace{-}_{Known \text{ functions } F_{\Delta,\ell}}_{Known \text{ functions } F_{\Delta,\ell}} \right)}_{Known \text{ functions } F_{\Delta,\ell}} \equiv \sum_{\Delta,\ell} C_{\Delta,\ell}^{2} \underbrace{\left( \underbrace{u^{-d} g_{\Delta,\ell}(u,v) - v^{-d} g_{\Delta,\ell}(v,u)}_{F_{d,\Delta,\ell}} \right)}_{F_{d,\Delta,\ell}} = 0$$

• Unitarity:  $C_{\Delta,\ell}^2 \ge 0$ 



Existence of A can be recast into a *linear (or semi-definite) programming problem* and checked numerically. [Rattazzi,Rychkov,Tonni, AV] 2008

# A toy model:

Ising Model:

$$\sigma \times \sigma \sim 1 + \sum_{\mathcal{O}_{\Delta,\ell}} C_{\Delta,\ell} \mathcal{O}_{\Delta,\ell} + .....$$

Crossing symmetry of  $\langle \sigma(x_1)\sigma(x_2)\sigma(x_3)\sigma(x_4) \rangle$  implies:

$$\sum_{\Delta,\ell} C^2_{\Delta,\ell} F_{\Delta,\ell}(u,v) = 0$$

with:

• 
$$\Delta_{\sigma} = 1/8$$

• 
$$u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}, v = \frac{x_{14}^2 x_{24}^2}{x_{13}^2 x_{24}^2}$$

 Project crossing constraint on ad hoc plane (linear combination of crossing constraint evaluated at 3 different points)



Rules of the game:

- Choose one or more operators  $\mathcal{O}_1, \mathcal{O}_2, ...$
- Consider all four point functions containing those operators  $< \mathcal{O}_1 \mathcal{O}_1 \mathcal{O}_1 \mathcal{O}_1 >, < \mathcal{O}_1 \mathcal{O}_1 \mathcal{O}_2 \mathcal{O}_2 >, ...$
- $\blacktriangleright$  Make assumptions on the operators (and coefficients) appearing in the OPE's  $\mathcal{O}_i\times\mathcal{O}_j$
- ▶ Check numerically if assumptions made are consistent with crossing symmetry
- If not consistent: there is no CFT with that operator content (crossing symmetry is a necessary condition)

# A few applications

# Comparison with 2D results

Minimal models: family of 2D CFT's completely solved:

... contains:

 $\sigma \times \sigma \sim 1 + \epsilon + \dots$ 

- Other Virasoro primaries
- Virasoro Descendants
- Conformal descendants

Consider the plane  $\Delta_{\sigma}, \Delta_{\epsilon}$ :

### Comparison with 2D results

Minimal models: family of 2D CFT's completely solved:

$$\sigma \times \sigma \sim 1 + \epsilon + \dots$$

#### Consider the plane $\Delta_{\sigma}, \Delta_{\epsilon}$ :



#### ... contains:

- Other Virasoro primaries
- Virasoro Descendants
- Conformal descendants

Bound on maximal value of  $\Delta_{\epsilon}$ 

A kink signals the presence of the Ising Model

[S.Rychkov, AV 2009]

#### Important

No use of Virasoro algebra. Extend the method to 3D right away

# A surprise in 3D

Choose:

 $\sigma = \text{spin field with dimension } \Delta_{\sigma} (\to \eta)$  $\epsilon = \text{energy density with dimension } \Delta_{\epsilon} (\to \nu)$   $\begin{array}{rcl} \sigma \times \sigma & \sim & 1 + \epsilon + \epsilon' + \dots & \mathbb{Z}_2 - \mathrm{even} \\ \sigma \times \epsilon & \sim & \sigma + \sigma' + \dots & \mathbb{Z}_2 - \mathrm{odd} \\ \epsilon \times \epsilon & \sim & 1 + \epsilon + \epsilon' + \dots & \mathbb{Z}_2 - \mathrm{even} \end{array}$ 



[El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, AV] 2011

| Choose:                                                                             | $\sigma\times\sigma$   | $\sim$ | $1 + \epsilon + \epsilon' + \dots$ $\mathbb{Z}_2$ - even |
|-------------------------------------------------------------------------------------|------------------------|--------|----------------------------------------------------------|
| $\sigma = \text{spin field with dimension } \Delta_{\sigma} \ ( \rightarrow \eta )$ | $\sigma\times\epsilon$ | $\sim$ | $\sigma + \sigma' + \dots$ $\mathbb{Z}_2 - odd$          |
| $\epsilon =$ energy density with dimension $\Delta_{\epsilon} ( ightarrow  u)$      | ε×ε                    | $\sim$ | $1 + \epsilon + \epsilon' + \dots$ $\mathbb{Z}_2$ – even |

So far we have assumed anything about the CFT besides unitarity.

Additional assumptions:

• In the Ising model one needs to tune only the temperature in order to flow to the IR fixed point:

only one relevant  $\mathbb{Z}_2$  – even deformation:  $\epsilon$ 

 equation of motions predicts □σ ~ σ<sup>3</sup>: second magnetic perturbation ~ σ<sup>5</sup> ⇒ irrelevant

# 3D Ising Model: the triumph of conformal bootstrap

| Choose:                                                                         | $\sigma\times\sigma$       | $\sim$ | $1 + \epsilon + \epsilon' + \dots$ $\mathbb{Z}_2$ - even |
|---------------------------------------------------------------------------------|----------------------------|--------|----------------------------------------------------------|
| $\sigma=$ spin field with dimension $\Delta_{\sigma}~(	o~\eta)$                 | $\sigma\times\epsilon$     | $\sim$ | $\sigma+\sigma'+\dots  \mathbb{Z}_2-odd$                 |
| $\epsilon =$ energy density with dimension $\Delta_{\epsilon} ~( ightarrow  u)$ | $\epsilon \times \epsilon$ | $\sim$ | $1 + \epsilon + \epsilon' + \dots$ $\mathbb{Z}_2 - even$ |

Use  $< \sigma \sigma \sigma \sigma \sigma >, < \sigma \sigma \epsilon \epsilon >, < \epsilon \epsilon \epsilon \epsilon >$ 

Assume only  $\sigma$  and  $\epsilon$  have dimension smaller than 3: allowed values for  $\Delta_{\sigma}, \Delta_{\epsilon}$ ?

# 3D Ising Model: the triumph of conformal bootstrap

| Choose:                                                                         | $\sigma\times\sigma$       | $\sim$ | $1 + \epsilon + \epsilon' + \dots$ $\mathbb{Z}_2$ - even |
|---------------------------------------------------------------------------------|----------------------------|--------|----------------------------------------------------------|
| $\sigma = { m spin}$ field with dimension ${f \Delta}_{\sigma} \ (	o \eta)$     | $\sigma \times \epsilon$   | $\sim$ | $\sigma + \sigma' + \dots  \mathbb{Z}_2 - odd$           |
| $\epsilon =$ energy density with dimension $\Delta_{\epsilon} ~( ightarrow  u)$ | $\epsilon \times \epsilon$ | $\sim$ | $1 + \epsilon + \epsilon' + \dots$ $\mathbb{Z}_2 - even$ |

Use  $< \sigma \sigma \sigma \sigma \sigma >, < \sigma \sigma \epsilon \epsilon >, < \epsilon \epsilon \epsilon \epsilon >$ 

Assume only  $\sigma$  and  $\epsilon$  have dimension smaller than 3: allowed values for  $\Delta_{\sigma}$ ,  $\Delta_{\epsilon}$ ?



### 3D Ising Model: the triumph of conformal bootstrap

| Choose:                                                                         | $\sigma\times\sigma$       | $\sim$ | $1 + \epsilon + \epsilon' + \dots$ $\mathbb{Z}_2 - \text{even}$ |
|---------------------------------------------------------------------------------|----------------------------|--------|-----------------------------------------------------------------|
| $\sigma=$ spin field with dimension $\Delta_{\sigma}~(	o\eta)$                  | $\sigma \times \epsilon$   | $\sim$ | $\sigma+\sigma'+\dots  \mathbb{Z}_2-odd$                        |
| $\epsilon =$ energy density with dimension $\Delta_{\epsilon} ~( ightarrow  u)$ | $\epsilon \times \epsilon$ | $\sim$ | $1 + \epsilon + \epsilon' + \dots$ $\mathbb{Z}_2 - even$        |

```
Use < \sigma \sigma \sigma \sigma \sigma >, < \sigma \sigma \epsilon \epsilon >, < \epsilon \epsilon \epsilon \epsilon >
```

Assume only  $\sigma$  and  $\epsilon$  have dimension smaller than 3: allowed values for  $\Delta_{\sigma}, \Delta_{\epsilon}$ ?





[Kos,Poland,Simmons-Duffin,AV] 2015

# **Going Beyond**

Universal handle on any CFT: need to study universal operators in the theory.

- Conserved global symmetry currents  $J^{\mu}$
- Energy momentum tensor  $T^{\mu\nu}$

Two possible strategies:

- 1. Use supersymmetry to relate correlations functions of conserved currents to those of the scalar belonging to the same super-multiplet
- 2. Study correlation functions of spinning operators

### **Super Conformal Field Theories**

- ►  $\mathcal{N} = 1, D = 4$ real multiplet  $\mathcal{J}^A \subset J^A, J^A_\mu$ [Stergiu, in progress]
- ►  $\mathcal{N} = 2, D = 4$ semi-short multiplet  $\hat{\mathcal{C}}_{0,(0,0)} \supset \phi, J_{\mu}^{(R)}, J_{\mu}^{(r)}, T_{\mu\nu}$ [Beem, Lemos, Liendo, Rastelli, van Rees]
- ►  $\mathcal{N} = 3, D = 4$ semi-short multiplet  $\hat{\mathcal{B}}_{[R,0]} \supset \phi, T_{\mu\nu}$ [Lemos, Liendo, Meneghelli, Mitev]
- ▶  $\mathcal{N} = 4, D = 4$ 1/2 BPS multiplet  $\mathcal{B}_{[0,2,0]} \supset \phi^{IJ}, J^{(R)}_{\mu}, J^{(r)}_{\mu}, T_{\mu\nu}$ [Beem, Rastelli, van Rees]
- ► (2,0), D = 61/2 BPS multiplet  $\mathcal{D}[2,0] \supset \phi^{ij}$ ,  $T_{\mu\nu}$ [Beem, Lemos, Rastelli, van Rees]

See Madalena's talk for a detailed application.

<u>**Goal:**</u> study bootstrap equations in 3D for  $\langle J_{\mu}J_{\nu}J_{\rho}J_{\sigma}\rangle$ , with  $J_{\mu}$  a conserved current. Size of the problem:

|     |    | Gen | eric | Equal                  | & | conserved        |
|-----|----|-----|------|------------------------|---|------------------|
|     | +  |     | -    | +                      |   | -                |
| 3pf | 5  |     | 4    | $2(\ell \text{ even})$ |   | $1~(\ell  eq 1)$ |
| 4pf | 41 |     |      | 17                     |   |                  |

Parametrization

$$< J^{\mu}(x_1)J^{
u}(x_2)J^{
ho}(x_3)J^{\sigma}(x_4) > = \sum_{k=1}^{41} rac{f_i(u,v)\mathcal{Q}_i^{\mu
u
ho\sigma}(x)}{(x_12)^2(x_{34})^2}$$

Crossing symmetry has the form

$$f_i(u, v) = \sum_{k=1}^{17} M(u, v)_{ij} f_j(v, u)$$

 Conservation relates the 17 a priori independent structures with 14 differential equations of the form

$$\sum_{j} \left( K_{ij}^{0} + K_{ij}^{u} \partial_{u} + K_{ij}^{v} \partial_{v} \right) f_{j}(u, v) = 0, \qquad i = 1, ..., 14 \qquad j = 1, ..., 17$$

- By inspecting the Kernel of the matrices K one can show that the minimal and necessary set of information needed to integrate the conservation equations is
  - 1. 5 functions  $\tilde{f}_i$  of both conformal ratios satisfying  $\tilde{f}_i(u, v) = \pm \tilde{f}_i(v, u)$
  - 2. 10 functions  $\widetilde{g}_j$  defined at u = v
  - 3. the values of 2 functions  $\tilde{h}_k$  a at u = v = 1/4.
- Moreover, the form of conservation equation is such that if the initial conditions satisfies crossing symmetry, the same would be for the integrated solution.

#### Gedankenexperiment:

- ▶ Switch on a local perturbation  $\mathcal{O}_{\Delta,\ell}$  in a CFT. This create a perturbation growing in time and space
- Measure the angular distribution of the flux  $\mathcal{E}(\theta)$  at some distance.
- It integral measures the total energy deposited in a "calorimeter"

Formally we want to compute the expectation value of the energy density  $\mathcal{E} = \mathcal{T}_{--}$  in the vacuum created by the local operator  $\mathcal{O}_{\Delta,\ell}|0>$ :

$$\langle \mathcal{E}( heta) 
angle = rac{\langle O^{\dagger}_{\Delta,\ell} \mathcal{E}( heta) O_{\Delta,\ell} 
angle}{\langle O^{\dagger}_{\Delta,\ell} O_{\Delta,\ell} 
angle}$$

If we choose  $\langle O_{d-1,1} = J_{\mu}$  the above flux can be computed in terms of the universal CFT data entering the three point function  $\langle J_{\mu}J_{\nu}T_{\rho\sigma}\rangle$ 

$$\langle \mathcal{E}( heta) 
angle \propto \left[ 1 - 4 d (d-1) \gamma \left( \cos^2 heta - rac{1}{d-1} 
ight) 
ight] \; .$$

Positivity of this energy correlator implies the bounds

$$-\frac{1}{4d} \leq \gamma \leq \frac{1}{4d(d-2)}$$

which are saturated by free scalars and free fermions, respectively.

The parameter  $\gamma$  can be defined in terms of the AdS bulk action:

$$S_{AdS} = C_J \int d^{d+1} x \left[ -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \gamma R_{AdS}^2 W^{\mu\nu\tau\rho} F_{\mu\nu} F_{\tau\rho} \right]$$

(W is the Weyl tensor)

# Conformal collider bounds

Can we find numerical evidences in d = 3 of the bound  $-\frac{1}{12} \leq \gamma \leq \frac{1}{12}$  ?

The argument assumes the CFT posses a local Energy momentum tensor  $\Leftrightarrow$  central charge  $c_T < \infty$ .

Let us compute numerically a lower bound on the central charge as a function of  $\gamma$ 



Colors correspond to increasing computing power. [work in progress, w/ Dymarsky, Penedones, Trevisani]

The OPE  $J_{\mu} \times J_{\nu}$  contains both even and odd scalar under Parity. How high can their dimension be in a generic CFT?



# Conclusions

- The Conformal bootstrap is carving out the space of conformal field theories in  $D \ge 2$ .
- Three dimensional CFT's (neglected for 40 years) are now under siege: critical exponents of condensed matter systems can be computed with precision competitive with MC
- The study of conserved currents will open a windows on all unitary CFTs, even allowing to discover theories we know nothing about.