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Holography and AdS/CFT

(gravitational) theory in some
region of space (bulk)

⇔ (non-gravitational) theory
confined to the boundary of that

region
[’t Hooft ’93; Susskind ’94]

Explicit example: AdS/CFT

(quantum) gravity on d + 1-dim.
asymptotic AdS

⇔

d-dim. CFT on the boundary

[Maldacena ’98]
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Operator representations and subregion duality
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Figure: Equal-time slice of AdS.

Operator representation:

there exists a operator rep. of φ(x) on A
if x ∈ C (A):

φ(x) =

∫
D(A)

dX Kφ(x ,X )O(X )

D(A): domain of dependence
C (A): causal wedge



Operator representations and subregion duality
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Figure: Equal-time slice of AdS.

subregion duality:

there exists no operator rep. of φ(x) on
A, B, or C alone.

however, on AB, BC, or AC

φ(x) =

∫
D(AB)

dX Kφ(x ,X )O(X )



Ryu-Takayanagi formula

A
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γA

Figure: Equal-time slice of AdS.

Ryu-Takayanagi (RT) formula:
[Ryu, Takayanagi ’06]

entanglement entropy of ρA:

S(ρA) =
Area(γA)

4G

γA: minimal surface



Toy models for AdS/CFT

What is a toy model?

captures some characteristic features of a theory
there might be distinct toy models for the same theory
does not capture all features

Toy models for AdS/CFT:

SYK model:

chaos
scrambling

[Sachdev, Ye ’93]

[Kitaev ’15]

Quantum error correcting codes:

subregion duality
RT formula

[Almheiri, Dong, Harlow ’15]

[Pastawski, Yoshida, Harlow, Preskill ’15]

[Hayden, Nezami, Qi, Thomas, Walter, Yang ’16]
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Quantum error-correcting codes

Idea: Adding redundancy, i.e., protect “information” (logical qudit) by encoding it
in a larger system (physical qudits). ⇒ encode qudit states into entanglement.

Example: HT̃ = C3 → HA ⊗HB ⊗HC

|0̃〉T̃ =
1√
3

(|000〉ABC + |111〉ABC + |222〉ABC ) ,

|1̃〉T̃ =
1√
3

(|012〉ABC + |120〉ABC + |201〉ABC ) ,

|2̃〉T̃ =
1√
3

(|021〉ABC + |102〉ABC + |210〉ABC ) .

Then there exist unitaries such that

UAB |̃i〉T̃ =|i〉A ⊗ |χ〉BC ,

|χ〉 =
1√
3

(|00〉+ |11〉+ |22〉) .

[Cleve, Gottesman, Lo ’99]

C

BA

T̃

Figure: One logical qutrit T̃ is encoded
into three physical qutrits A, B and C .
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Quantum error correction and AdS/CFT

A

B

C

φ(x)

C

BA

T̃

φ(x) =
∫
D(BC)

dX Kφ(x ,X )O(X ) Õ |̃i〉T̃ = U†
BCOBUBC |̃i〉T̃

= U†
BCOB (|i〉B ⊗ |χ〉AC ) .

[Almheiri, Dong, Harlow ’15]



Quantum error correction and AdS/CFT

Features:

bulk reconstruction

subregion duality

lattice RT formula

C

BA

T̃

[Almheiri, Dong, Harlow ’15; Pastawski, Yoshida, Harlow, Preskill ’15; Hayden, Nezami, Qi, Thomas, Walter,

Yang ’16; . . . ]



Classical holographic codes

holographic description of entanglement in AdS/CFT [Ryu, Takayanagi ’06]

tensor networks are discussed as tools to build spacetime from entanglement
[Swingle ’09]

toy models based on quantum error correction rely on entanglement [Almheiri,

Dong, Harlow ’15]

⇒ Is there any chance to obtain models with holographic features without
employing entanglement?

⇒ Or even classical holographic models?

⇒ Classical holographic codes [Brehm, BR ’16]
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Construction of classical holographic codes

Goal: find mapping between bulk and
boundary such that:

bulk can be reconstructed,

sub-region duality exists,

version of RT formula holds.

Approach:

tile AdS space,

insert one dof (bit) in each tile,

define mappings Figure: AdS.



Construction of classical holographic codes

Goal: find mapping between bulk and
boundary such that:

bulk can be reconstructed,

sub-region duality exists,

version of RT formula holds.

Approach:

tile AdS space,

insert one dof (bit) in each tile,

define mappings ⇒ network,

study properties.
Figure: Network on tiling of AdS.

[c.f. tensor networks: [Pastawski, Yoshida, Harlow, Preskill ’15]]



Construction of mappings

Mappings originate from a single set

S = {sk | k = 1, ..,N}

with

sk : strings of six bits (sk
e.g.
= 001111) ,

discrete uniform probability distribution on S,

S has the property that substrings are (almost) maximally correlated.

Example:

S = {000000, 001111, 010110, 011001, 100101, 101010, 110011, 111100} .



Construction of mappings

The probability density of the outcome of the mappings for a given input string sin
is defined by the conditional probabilities

pout(s out | s in) ,

where s in ∪ s out ∈ S, e.g., 000000, 001111 ∈ S.
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i6

i1

i2 i3

i4

i5

i6

Properties of mappings:

(I) knowledge of three neighboring edge bits gives full information about the
complementary bits;

(II) no information about any other single bit can be obtained by the knowledge of
one bit.
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Construction of mappings

Example: 2→ 4 -mapping

i1

i 2 i3

i4

i5

i 6

S = {000000, 001111, 010110, 011001, 100101, 101010, 110011, 111100} .

0̃0e → p(0000) = p(1111) =
1

2
, 1̃0e → p(0101) = p(1010) =

1

2
,

0̃1e → p(0110) = p(1001) =
1

2
, 1̃1e → p(1100) = p(0011) =

1

2
.



Features of classical holographic codes

We show that

bulk input can be reconstructed,

subregion duality exists,

a version of the RT formula holds:

Icl(A,A
c) = |γA| .

Figure: Network to realize a classical
holographic code.



Reconstructing the bulk

Question: Given some subset of the
boundary, which bulk bits can be
reconstructed?

Remember:

(I) the knowledge of three neighboring
edge bits gives full information about
the three complementary bits.

Figure: Network to realize a classical
holographic code.



Reconstructing the bulk

(I) the knowledge of three neighboring edge bits gives full information about the
three complementary bits.

A bulk bit can be
reconstructed

⇔
It is contained in the

correlation wedge C (A)

initial cut
first iteration
second iteration
minimal cut

Figure: Algorithm to construct the minimal cut.



Representation of operations: subregion duality

bit flip O

boundary regions Ai

A bulk operation O can be represented on Ai

⇔
It is supported in the correlation wedge C (Ai )

⇒ subregion duality



A version of the RT formula

The classical mutual information between a (connected) subregion A on the
boundary and its complement Ac is given by the length of the minimal cut γA
through the network

Icl(A,A
c) = |γA| ,

where

Iqu/cl(A,B) = S(A) + S(B)− S(A,B) .

A

Ac

γA

Tensor networks: [Pastawski, Yoshida, Harlow, Preskill ’15]

S(ρA) =
Area(γA)

4G
network

= |γA|
pure state⇒ Iqm(A,Ac) = 2|γA|
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Conclusions

We introduced classical holographic codes and analyzed their properties:

a version of the Ryu-Takayanagi formula holds,

bulk inputs contained in the correlation wedge C (A) can be reconstructed from
the data in A,

a operation O, acting on any bulk input contained in C (A), can be represented
by multiple bit flips in A.

These properties are due to the “correlation structure” and can exist even classically
in the absence of quantum correlations, like entanglement.
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A version of the RT formula

Icl(A,A
c) = |γA| . (1)

Idea of proof:

1. Show upper bound:

Icl(A,A
c) ≤ |γA| .

2. Show that there are no correlations
between edges crossing γA.

⇒ Each edge contributes one bit to
Icl(A,A

c).

⇒ Upper bound is saturated.

⇒ formula (1)

A

Ac

γA



A possible physical interpretation

bulk direction as a coarse graining
parameter for an effective description of

the boundary

interpolates between the microscopic
description (at the boundary of AdS)
and the macroscopic description (in
the center of AdS)

analogy to the renormalization group
flow in AdS/CFT:
RG flow from the UV to the IR fix
point

c
o
a
rs
e
g
ra

in
in
g

network
phase space

tiling
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