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Adiabatic principle

Evolution equation

Lo =Ly(elt)  0(0) = o

for
L- MxH—-H
where
> H is a Banach space
> M is the manifold of parameters

Stable fixpoints

p(t) = ¢p (= 00)
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Adiabatic principle

Driving
t— Dt

namely

Co(t) = Lo 9(0) = g

Adiabatic principle:

If the driving is slow, the solution ¢(t) shadows the
instantaneous fixpoint ¢,
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Thouless pump

In quantum mechanics:

> p(t) € H, a Hilbert space
> Schrédinger’s equation

et) = —iMp(t)
for a linear H,, = Hy.
A quantum pump
> Normalized ground states 2, € H

> Spectral gap
> Closed smooth path

p:[0,1] =M  po=p1
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Geometry

Adiabatic time
s=¢t 0<ex1

accordingly,
d .
f%‘ﬂe(s) = —iH) pc(s)

Adiabatic theorem (Kato,...)

pe(s) =y, (e=0)

The parallel transport in a vector bundle
5= Q.

is geometric (Berry, Simon,...)
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Parallel transport & charge transport

Physical consequences:

> Quantum Hall effect
Hall conductance = adiabatic curvature
as a consequence (Thouless, Niu, Avron, Seiler,...)
Hall conductance € Z

> For quantum pumps

27 Charge transport = 7{ Adiabatic curvature
int(p)

(..., Brouwer, Graf,...)
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Orthogonality catastrophe

Family of quantum systems — atoms in a crystal
H=eaH®,  dim(H") <

After adiabatic evolution:

....... s 0 O [ N o ey
...... S S i o Do X0

(Pe(5),2s) =0 (JA] = 0)

Adiabatic theorem, quantized transport, in the thermodynamic limit?

lim lim
€0 |A|—o0
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Local parallel transport

> Weak-* topology: only expectation values

> Local parallel transport (Hastings,...)
Qs = Uj(s)Q
and
Ax supported in X = Uj(s)*AxUj(s) supported in X
1

> Higher order perturbation theory to control times of order e~

Theorem. [B-De Roeck-Fraas]
If s — Hyg is smooth, then uniformly in the volume

[{pe(s), Axpe(s)) — (s, AxQs)| < Ol Ax | X %€

see also Monaco-Teufel (fermions), Henheik-Teufel (infinite volume)
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More on the Hall effect

Quantized conductance:

A Hall setting:

0
MAGNETIC FIELD  (T)

v.Klitzing—Dorda—Pepper (1980)

J 2
fH:n%, nel
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http://www.math.ubc.ca/~sbach/Hall.MOV

Finite volume setting
Flux Hamiltonians
H¢,P¢ st. Ho= Hor

U(1)-charge

Qz = Z Qx Spec(q.) C Z

T€Z

Parallel transport U over cycle ¢ =0 — ¢ = 27
U PO = P
Local charge conservation
T=UjQU) - Q=T-+T;
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Index

Theorem. [B-Bols-De Roeck-Fraas]
Let p = Rank(P). Then

(i) Indp(U)) = Te(P(U[QU) — Q)-) € Zio(r—))
(i) 2mon =p ' Te(P(UQU) - Q)-) + O(L™)

> Interacting electrons
> (i) holds for any adiabatic quantum pump
> In fact, (i) holds for any local U such that [P,U] =0

> Fractional Hall conductance
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Noninteracting fermions

> Unique ground state Qp, the Fock vacuum (filled Fermi sea):
P = [Qp){Qr|

> Hence p = 1: integer charge transport
> Index of projections (1d)
Indp(U) = (Qp, ('(u)"dl(¢)I'(u) — dI'(q))$2r)
= tr(pr(u'qu — q))
= tr(u" (prgpr)u — (prgpF))

for pr the Fermi projection

> Charge: ¢ = Xo,00), and
PrgpPr = projection + compact
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Linear response

Charge transport is driven (Faraday's law) by
E = —(flux change) = —e¢/(s)
Linear response is exact:

Theorem. [B-De Roeck-Lange-Fraas]
For the Schrédinger propagator U,

p T (P(UQU: — Q)-) = 2mom + O(e)

see also Klein-Seiler
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Block diagonalization

The linear map on A
A T(A) := W(—ady)(A) = / W (t)e' A1 dt
for W € LY(R;R) N L>®°(R; R) such that

—

W) =-i&"  (|¢] > gap)

is the inverse of —iady POP POPL
O —-Z({[0,H])=0
ptopP| PLOP-
whenever O = PO(1 — P)+ (1 — P)OP
_ Quantized transport July 2021
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Block diagonalization

> Generator of parallel transport
P =1I(i|P', H)) =iZ([H', P)) =i[Z(H"), P]
> For any operator A
is block diagonal
> Locality

supp(B) = X = supp(Z(B)) ~ X
(because |[W(t)| = O(|t|=*°))
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Charge fluctuations

Charge conservation

supp([H, Q7]) = 07

Then,
> Kpz =ZI([H,Qz]) is supported on 02
> Qy=Q — Kyz is so that YA

[PvaZ] =0

Wilson loops
e 2mQy _ o —27i(Qoz—Koz)o—2mi(Qz—Qoz)

— ¢ 2mi(Qoz—Koz) ¢ Aoz

since Spec(Qz — Qaz) C Z.
_ Quantized transport July 2021 16 / 21



Loops and boundaries
For half-space @
V = e 2mMQ _ o—2mQ_—2miQ, _ v,
With the gap
PV_V,P =PV_PV,P

and hence

[P,Vi] =0
but [P,Q_] # 0.

Importantly
0_Uoy =0r

but 0_ is not a boundary
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Loops and boundaries

PQ,P x P
then

> « is a boundary
VoP = Pe?™Qzp = MPQzP o p

V., acts trivially on RanP

> -y is not a boundary,
V. may act nontrivially on RanP
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Algebra of loops

The index theorem can be phrased as
ViV_VVAP = p

Rational rotation algebra
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Charged anyons

For an open path ~
=V, (Q=PQ)

is a state of a pair of excitations

> Fractional charge (Laughlin, Saminadayar, Reznikov,...)
* q
<907 QR90> - <Qa QRQ> = <Qv (V'y QRV’y - QR)Q> = ;
> Berry phase, aka Braiding (..., Wen, Frohlich,...)

Vo = Vo (VI Va Vo Vi) = T
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