Adiabatic quantum transport

Sven Bachmann

Vancouver

Quantum Matter meets Math

July 2021

Plan

- > The adiabatic principle
- ▶ Parallel transport
- ▷ An index for charge transport
- ▶ Local charge fluctuations
- ▷ Anyons

Adiabatic principle

Evolution equation

$$\frac{d}{dt}\varphi(t) = L_p(\varphi(t)) \qquad \varphi(0) = \varphi_0$$

for

$$L: \mathcal{M} \times \mathcal{H} \to \mathcal{H}$$

where

- $\triangleright \mathcal{H}$ is a Banach space
- $\triangleright \mathcal{M}$ is the manifold of parameters

Stable fixpoints

$$\varphi(t) \rightharpoonup \varphi_p \qquad (t \to \infty)$$

Adiabatic principle

Driving

$$t \mapsto p_t$$

namely

$$\frac{d}{dt}\varphi(t) = L_{p_t}(\varphi(t)) \qquad \varphi(0) = \varphi_{p_0}$$

Adiabatic principle:

If the driving is slow, the solution $\varphi(t)$ shadows the instantaneous fixpoint φ_{p_t}

Thouless pump

In quantum mechanics:

- $\triangleright \varphi(t) \in \mathcal{H}$, a Hilbert space
- ▷ Schrödinger's equation

$$\frac{d}{dt}\varphi(t) = -\mathrm{i}H_p\varphi(t)$$

for a linear $H_p = H_p^*$.

A quantum pump

- ightharpoonup Normalized ground states $\Omega_p \in \mathcal{H}$
- ▷ Spectral gap
- ▷ Closed smooth path

Geometry

Adiabatic time

$$s = \epsilon t$$
 $0 < \epsilon \ll 1$

accordingly,

$$\epsilon \frac{d}{ds} \varphi_{\epsilon}(s) = -\mathrm{i} H_{p_s} \varphi_{\epsilon}(s)$$

Adiabatic theorem (Kato,...)

$$\varphi_{\epsilon}(s) \to \Omega_{p_s} \qquad (\epsilon \to 0)$$

The parallel transport in a vector bundle

$$s \mapsto \Omega_{p_s}$$

is geometric (Berry, Simon,...)

Parallel transport & charge transport

Physical consequences:

▶ Quantum Hall effect

Hall conductance = adiabatic curvature

as a consequence (Thouless, Niu, Avron, Seiler,...)

Hall conductance $\in \mathbb{Z}$

$$2\pi\, {
m Charge\ transport} = \oint_{{
m int}(p)} {
m Adiabatic\ curvature}$$

(..., Brouwer, Graf,...)

Orthogonality catastrophe

Family of quantum systems – atoms in a crystal

$$\mathcal{H} = \bigotimes_{x \in \Lambda} \mathcal{H}^{\{x\}}, \quad \dim(\mathcal{H}^{\{x\}}) < \infty$$

After adiabatic evolution:

Adiabatic theorem, quantized transport, in the thermodynamic limit?

$$\lim_{\epsilon \to 0} \lim_{|\Lambda| \to \infty}$$

Local parallel transport

- ▷ Local parallel transport (Hastings,...)

$$\Omega_s = U_{\parallel}(s)\Omega_0$$

and

$$A_X$$
 supported in $X \Rightarrow U_{\parallel}(s)^*A_XU_{\parallel}(s)$ supported in X

ho Higher order perturbation theory to control times of order ϵ^{-1}

Theorem. [B-De Roeck-Fraas]

If $s \mapsto H_s$ is smooth, then uniformly in the volume

$$|\langle \varphi_{\epsilon}(s), A_X \varphi_{\epsilon}(s) \rangle - \langle \Omega_s, A_X \Omega_s \rangle| \le C ||A_X|| |X|^2 \epsilon$$

see also Monaco-Teufel (fermions), Henheik-Teufel (infinite volume)

Sven

More on the Hall effect

Quantized conductance:

A Hall setting:

v.Klitzing-Dorda-Pepper (1980)

$$\sigma_{\rm H} = \frac{J_{\rm H}}{E} = n \frac{e^2}{h}, \qquad n \in \mathbb{Z}$$

Sven

Finite volume setting

Flux Hamiltonians

$$H_{\phi}, P_{\phi}$$
 s.t. $H_0 = H_{2\pi}$

U(1)-charge

$$Q_Z = \sum_{x \in Z} q_x$$
 Spec $(q_x) \subset \mathbb{Z}$

Parallel transport U_{\parallel} over cycle $\phi=0
ightarrow \phi=2\pi$

$$U_{||}PU_{||}^* = P$$

Local charge conservation

$$T = U_{\parallel}^* Q U_{\parallel} - Q = T_- + T_+$$

Index

Theorem. [B-Bols-De Roeck-Fraas] Let p = Rank(P). Then

(i)
$$\operatorname{Ind}_P(U_{\parallel}) = \operatorname{Tr}(P(U_{\parallel}^*QU_{\parallel} - Q)_{-}) \in \mathbb{Z}_{(\mathcal{O}(L^{-\infty}))}$$

(ii)
$$2\pi\sigma_{\rm H} = p^{-1}{\rm Tr}(P(U_{\parallel}^*QU_{\parallel} - Q)_{-}) + \mathcal{O}(L^{-\infty})$$

- ▷ Interacting electrons
- ▷ (i) holds for any adiabatic quantum pump
- $\, \triangleright \,$ In fact, (i) holds for any local U such that [P,U]=0
- ▷ Fractional Hall conductance

Noninteracting fermions

 \triangleright Unique ground state Ω_F , the Fock vacuum (filled Fermi sea):

$$P = |\Omega_{\rm F}\rangle\langle\Omega_{\rm F}|$$

- \triangleright Hence p=1: integer charge transport
- ▷ Index of projections (1d)

$$Ind_{P}(U) = \langle \Omega_{F}, (\Gamma(u)^{*}d\Gamma(q)\Gamma(u) - d\Gamma(q))\Omega_{F} \rangle$$

$$= tr(p_{F}(u^{*}qu - q))$$

$$= tr(u^{*}(p_{F}qp_{F})u - (p_{F}qp_{F}))$$

for p_{F} the Fermi projection

$$ightharpoonup$$
 Charge: $q=\chi_{[0,\infty)}$, and

$$p_{\rm F}qp_{\rm F} = \text{projection} + \text{compact}$$

Linear response

Charge transport is driven (Faraday's law) by

$$E = -(\mathsf{flux}\ \mathsf{change}) = -\epsilon \phi'(s)$$

Linear response is exact:

Theorem. [B-De Roeck-Lange-Fraas] For the Schrödinger propagator U_{ϵ}

$$p^{-1}\text{Tr}(P(U_{\epsilon}^*QU_{\epsilon}-Q)_{-})=2\pi\sigma_{\rm H}+\mathcal{O}(\epsilon^{\infty})$$

see also Klein-Seiler

Block diagonalization

The linear map on A

$$A \mapsto \mathcal{I}(A) := \widehat{W}(-\mathrm{ad}_H)(A) = \int_{-\infty}^{\infty} W(t) \mathrm{e}^{\mathrm{i}tH} A \mathrm{e}^{-\mathrm{i}tH} \mathrm{d}t$$

for $W \in L^1(\mathbb{R}; \mathbb{R}) \cap L^{\infty}(\mathbb{R}; \mathbb{R})$ such that

$$\widehat{W}(\xi) = -\mathrm{i}\xi^{-1} \qquad (|\xi| > \mathrm{gap})$$

is the inverse of $-i \operatorname{ad}_{H}$

$$O - \mathcal{I}(i[O, H]) = 0$$

 $O - L(\mathbf{1}[O,H]) = 0$ whenever O = PO(1-P) + (1-P)OP

Block diagonalization

$$P' = \mathcal{I}(\mathrm{i}[P', H]) = \mathrm{i}\mathcal{I}([H', P]) = \mathrm{i}[\mathcal{I}(H'), P]$$

 \triangleright For any operator A

$$\overline{A} = A - \mathcal{I}(\mathrm{i}[A,H])$$

is block diagonal

$$[\overline{A}, P] = 0$$

▶ Locality

$$\operatorname{supp}(B) = X \implies \operatorname{supp}(\mathcal{I}(B)) \sim X$$

(because
$$|W(t)| = \mathcal{O}(|t|^{-\infty})$$
)

Charge fluctuations

Charge conservation

$$\operatorname{supp}([H,Q_Z]) = \partial Z$$

Then,

$$ho \ K_{\partial Z} = \mathcal{I}([H,Q_Z])$$
 is supported on ∂Z

$$ightarrow \overline{Q}_Z = Q - K_{\partial Z}$$
 is so that

$$[P, \overline{Q}_Z] = 0$$

$$e^{-2\pi i \overline{Q}_Z} = e^{-2\pi i (Q_{\partial Z} - K_{\partial Z})} e^{-2\pi i (Q_Z - Q_{\partial Z})}$$
$$= e^{-2\pi i (Q_{\partial Z} - K_{\partial Z})} \in \mathcal{A}_{\partial Z}$$

since $\operatorname{Spec}(Q_Z - Q_{\partial Z}) \subset \mathbb{Z}$.

Loops and boundaries

For half-space Q

$$V = e^{-2\pi i \overline{Q}} = e^{-2\pi i \overline{Q}} - e^{-2\pi i \overline{Q}} = V_{-}V_{+}$$

With the gap

$$PV_{-}V_{+}P = PV_{-}PV_{+}P$$

and hence

$$[P, V_{\pm}] = 0$$

 $\text{but } [P, \overline{Q}_-] \neq 0.$

$$\partial_- \cup \partial_+ = \partial \Gamma$$

but ∂_{-} is not a boundary

Loops and boundaries

lf

$$P\overline{Q}_ZP\propto P$$

then

 $\triangleright \alpha$ is a boundary

$$V_{\alpha}P = Pe^{2\pi i \overline{Q}_Z}P = e^{2\pi i P\overline{Q}_ZP} \propto P$$

 V_{lpha} acts trivially on ${
m Ran} P$

 $hd \gamma$ is not a boundary, V_{γ} may act nontrivially on ${
m Ran} P$

Algebra of loops

The index theorem can be phrased as

$$V_{\ell}^* V_{-} V_{\ell} V_{-}^* P = e^{2\pi i \frac{q}{p}} P$$

Rational rotation algebra

Charged anyons

For an open path γ

$$\varphi = V_{\gamma}\Omega \qquad (\Omega = P\Omega)$$

is a state of a pair of excitations

▶ Fractional charge (Laughlin, Saminadayar, Reznikov,...)

$$\langle \varphi, Q_R \varphi \rangle - \langle \Omega, Q_R \Omega \rangle = \langle \Omega, (V_\gamma^* Q_R V_\gamma - Q_R) \Omega \rangle = \frac{q}{p}$$

▷ Berry phase, aka Braiding (..., Wen, Fröhlich,...)

$$V_{\alpha}\varphi = V_{\gamma}(V_{\gamma}^*V_{\alpha}V_{\gamma}V_{\alpha}^*)\Omega = e^{2\pi i \frac{q}{p}}\varphi$$