Distributed ML
Optimal algorithms for distributed stochastic
nonconvex optimization

Usman A. Khan
Electrical and Computer Engineering, Tufts University

Seminar in Mathematics, Physics & Machine Learning
IST, Lisbon, Portugal
July 09, 2021

1/47



Acknowledgments

.

Reza D. C. Xi S. Safavi F. Saadatniaki
(2011-15) (2012-17) (2013-17) (2014-19)
™ O
R. Xin M. I. Qureshi  A. Swar H. Raja
(2016- ) (2018-) (2020- ) (2021-)

2/47



Research Overview
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Learning from Data

m Data is everywhere and holds a significant potential

m Image classification, Medical diagnosis, Credit card fraud, ...

Parameter g

Server

Figure 1. Centralized and distributed learning architectures

m Collecting all data at a central location may not be practical

m Large, private, datasets with communication constraints

m Distributed methods rely on local processing and communication
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A simple case study ...
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Figure 2: Test accuracy of a model trained with 10,000 32 x 32 pixel images

® When do distributed methods outperform their centralized analogs?

m How do we formally quantify such a comparison?
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Some Preliminaries
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Example: Recognizing Traffic Signs

m Identify STOP vs. YIELD sign
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Figure 3: Binary classification: (Left) Training phase (Right) Testing phase

m Input data: images {6;} and their labels {y;}
m Model: A classifier x that predicts a label y; for each image 6;
m Changing x changes the predicted label yj(x; 8;)

m Pick a classifier x* that minimizes some loss over all images

= argmin Z((yj, yi(x; 0, ))

xERP
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Minimizing Functions

. Cop
mxlnf(x), ffz{ , Yi(x;0;)) :RP =R

m Different predictors y and losses ¢ lead to different cost functions f

Quadratic: Signal estimation, linear regression, LQR

(Strongly) convex: Logistic regression, classification

m Nonconvex: Neural networks, reinforcement learning, blind sensing

This talk

First-order (gradient-based) methods over various function classes
m Search for a point x* € R” such that Vf(x*) =0,
® When the training data is distributed over a network of nodes
(machines, devices, robots)
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Basic Definitions

m f:RP — Ris L-smooth and f(x) > f* > —o0, Vx
m Not necessarily convex, bounded above by a quadratic
m Assumed throughout

m f:RP — R is convex (lies above all of its tangents)

m f is p-strongly-convex (convex and bounded below by a quadratic)
m For SC functions, we have k :=1L/, >1
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Figure 4: Nonconvex: sin(ax)(x + bx?). Convexity. Strong Convexity.
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Smooth function classes

m Minimizing smooth (differentiable) functions f : R — R
m Search for a stationary point x* € R?, i.e., Vf(x*) =0,

L-Smooth functions
bounded below

Strongly

PL condition
=> every stationary point
is a global minimizer

\/

Convex
bounded below
by tangents

global minimizeris unique

./

Figure 5: Function classes restricted to L-smooth functions

m Nonconvex: x* may be a minimum, a maximum, or a saddle point
m Convex (and PL) functions: f(x*) is the unique global minimum
m Strongly convex functions: x* is the unique global minimizer

10/47



First-order methods (Gradient Descent)

min f(x)

xERP

m Search for a stationary point x*, i.e., Vf(x*) =0,

m Intuition: Take a step in the direction opposite to the gradient
m At x, VF(x*) =0,

vf(x)
.

VX (x)

>
« vf(x)>0
vf(x)<@

Figure 6: Minimizing strongly convex functions: R — R and R? — R

m Gradient Descent: x; 1 = xx — a - VF(xk)
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Function classes: Performance metrics and Rates

m Gradient Descent: xx11 = Xk — a - VF(xk)

L-Smooth functions
bounded below
11V (x) 11 > 0

PL condition

=> every stationary point convex bounded below
is a global minimizer global minimizer is unique by tangents
fx) —f* >0 I %= x* 11 > 0 f(xd—Ff*>0
| ./ \
\ ) o/ ]
/ .

Figure 7: Function classes restricted to L-smooth functions

m Convergence rates of GD (non-stochastic and not accelerated):
m Nonconvex: ||Vf(xk)|| — 0 at O(1/Vk)
m Convex: f(xx) — f(x") — 0 at O(1/k)
m SC (and PL): f(x«) — f(x*) — 0 and ||xx — x*|| = O exponentially
(linearly on the log-scale)
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How to extend GD when the data is distributed?

m Let's consider a simple example: Linear Regression

= Implement local GD at each node i: x}_; = x} — a - Vfi(x})

Figure 8: Linear regression: Locally optimal solutions

m Local GD does not lead to agreement on the optimal solution
m Requirements for a distributed algorithm

m Agreement: Each node agrees on the same solution
m Optimality: The agreed upon solution is the optimal

13/47



Distributed optimization

Smooth and strongly convex problems with full gradients
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Distributed Optimization

min F(x),  F(x):= Z fi(x)

x€RP

Figure 9: A peer-to-peer or edge computing architecture

Assumptions

m Each f; is private to node i
m Each f; is L;-smooth and p;-strongly-convex (assumed for now!)

m The nodes communicate over a network (a connected graph)

m F has a unique global minimizer x* such that VF(x*) =0,
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Distributed Gradient Descent (DGD)

n
i r i
X1 = E Wir - X — - V(X))

r=1

m Mix and Descend [Nedi¢ et al. '09]
m The weight matrix W = {wjj}>0 sums to 1 on rows and columns
m DGD converges linearly (on a log-scale) up to a steady-state error
m Exact convergence with a decaying step-size but at a sublinear rate

W11

Figure 10: (Left) An
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undirected graph. (Right) DGD performance.
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Recap

m GD and Distributed GD

Residual

0 500 1000 1500 2000 2500 3000
Tterations, k&

Figure 11: Performance for smooth and strongly convex problems

m How do we remove the steady-state error in DGD?
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Distributed Gradient Descent
with
Gradient Tracking
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GT-DGD: Intuition

Problem: miny, )", fi(x), i.e., search for x* such that ). Vfi(x*) =0,

m DGD does not reach x* because x* is not its fixed point

Xjep1 = Dopy Wir - X — o V(%))
x* £ 1-x* —a- Vi(x¥)

This is because V£;(x*) # 0 but only the sum gradient is
We call this the local-vs.-global dissimilarity bias (n & |Vf; — VF]||)

Fix: Replace Vf;(xi) with yj that tracks the global gradient VF
n
Xit1 :ZWir'XZ_a'YL
r=1

m Linear convergence in distributed optimization (SSC)
m Undirected graphs: [Xu et al. '15], [Lorenzo et al. '15]
m Directed graphs: [Xi-Khan '15], [Xi-Xin-Khan '16,'17], [Xin-Khan '18]
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AB Algorithm

m Problem: ming >~ fi(x)
m DGD: xjy = X7, wir - X} — o+ V£i(x})

Algorithm 1 [Xin-Khan "18]: at each node i

Data: x), € RP; a > 0; {a;}"_;; {bir}1_1; Yo = VF(x))
for k=0,1,..., do

Xiy1 = Dorey dir - X — - Y
Yir1 = Doy bir - Yi + Vi(Xjy 1) — V£i(x})

end

m AB converges linearly to x* with the help of Gradient Tracking
m Over both directed and undirected graphs

m We can further add heavy-ball or Nesterov momentum
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AB: Results (Smooth and Strongly convex)

m Linear convergence of AB over both directed and undirected graphs
[Xin-Khan "18]: For a range of step-sizes a € (0, @]

[Xin-Khan "18]: For non-identical step-sizes «;'s at the nodes

[Pu et al. "18]: Over mean-connected graphs

[Saadatniaki-Xin-Khan '18]: Over time-varying random graphs
Asynchronous, delays, nonconvex analysis (but without explicit rates)

m Condition number dependence
m GD &, AB undirected x”*, AB directed x?

m AB with heavy-ball momentum

m [Xin-Khan '18]: Linear convergence for a range of alg. parameters
m Acceleration is not proved analytically and remains an open problem

m AB with Nesterov momentum
® [Qu et al. '18]: Undirected graphs "’
m [Xin-Jakoveti¢-Khan '19]: Convergence and acceleration are shown
numerically over directed graphs
m Directed graphs: Convergence and acceleration are both open
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Performance comparison

m GD, HB, DGD, AB, ABm

Residual

15
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Iterations, k

Figure 12: Performance for smooth and strongly convex problems, x = 100

m Addition of gradient tracking recovers linear convergence (proved)

m Acceleration can be shown numerically but it is not proved (yet!)

m What happens when the gradients are imperfect?
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Distributed Stochastic Optimization

2

m Stochastic gradients with noise variance v

Residual

o 000 4000 600 80 20000 000
Tterations, k ter,

Figure 13: Full gradients (> = 0) vs. stochastic gradients

m DSGD: Residual decays linearly to an error ball [Yuan et al. '19]

a2/~c2 a2n2 )
)

1< ; «
limsup — E[||xi — x*||3 :O(—V2+ ) M
maue Sl —x 1 = O+ {5

where 7 quantifies the local-vs.-global dissimilarity bias

m Gradient tracking eliminates n but the variance remains
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Distributed Stochastic Optimization

Nonconvex problems
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Distributed Stochastic Optimization:

Measurement Model

X

min F(x),  F(x):=) fi(x), fi:R° >R
i=1
m Online/Streaming: Given some x € RP, each node i makes a noisy

measurement of the local gradient V£;(x)

m Offline/Batch: Each node i possesses a local dataset with m; data
points and their corresponding labels, i.e., Vf(x) = ijz’l Vi j(x)

Figure 14: (Left) Online streaming data (Right) Offline batch data
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Distributed Stochastic Optimization:

Communication Model

0:69.°9-0

< > '-..@Q'@
.
==

Figure 15: Data Center Figure 16: Internet of Things
m Controllable topology m Ad hoc topology
® # nodes < # local samples m # local samples is small

m Big-data regime m loT regime
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Distributed Stochastic Optimization

m Gradient tracking eliminates 7 (the local-vs.-global dissimilarity bias)
but the variance v? remains

m Can we quantify the improvement due to gradient tracking?
m Can we eliminate the steady-state error due to the variance?

m What can we say about different function classes?

L-Smooth functions
‘bounded below

Strongly
convex

Convex
bounded below
by tangents

k:;;j

PL condition
=> every stationary point
is a global minimizer

\/
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Batch problems: The GT+VR framework
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GT-+VR framework

m Each node i possesses a local batch of m; data samples

m The local cost f; is the sum over all data samples 7", f;;

||
NEE

Node 1 Node 2 Node 3

Figure 17: Arbitrary data distribution over the network

m Local Gradient computation ijzl Vi j is prohibitively expensive

m Traditionally: xLH =D, Wi X — - Vi - (x})
m Performance is impacted due to sampling and local vs. global bias
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GT+VR framework

m The GT+VR framework: From Vf; , to VF =" 3" V£

m Local variance reduction: Sample then Estimate

Vi o V=YV,

j=1

m Global gradient tracking: Fuse the estimates over the network

Vfi — VF = z":w,-
i=1

m Popular VR methods: SAG, SAGA, SVRG, SPIDER, SARAH
m Our work!: GT-SAGA, GT-SVRG, GT-SARAH

1. R. Xin, S. Kar, and U. A. Khan, “Gradient tracking and variance reduction for decentralized optimization and machine learning,”
IEEE Signal Processing Magazine, 37(3), pp. 102-113, May 2020.
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GT-SAGA

m GT-SAGA: Requires O(m;p) storage at each node

Vfiz (x6)

o)

Vfia (x6)

Figure 18: GT-SAGA at node i

m [Xin-Kar-Khan: May '20, Xin-Khan-Kar: Nov. '20]
m Strongly convex problems: Linear convergence, improved rates
m Linear speedup and network-independent convergence for both

nonconvex and nonconvex with PL
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GT-SARAH

m GT-SARAH (StochAstic Recursive grAdient algoritHm)

m No storage but additional network synchrony when m; # m;

m; gradients Node i

> 97y /i)
i= 7

Sample Vfi, Sample Vfi,

Sample Vf,..

IR/

J
m, gradients Node r
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GT-SAGA vs. GT-SARAH

m A space vs. time tradeoff: Storage vs. Synchronization

m GT-SAGA: For ad hoc problems with heterogeneous data
m GT-SARAH: For very large-scale problem in controlled settings

m We can show!? these tradeoffs theoretically!!!

1. R. Xin, U. A. Khan, and S. Kar, “A fast randomized incremental gradient method for non-convex decentralized stochastic
optimization,” Oct. 2020, arxiv: 2011.03853.

2. R. Xin, U. A. Khan, and S. Kar, “A near-optimal stochastic gradient method for decentralized non-convex finite-sum
optimization,” Aug. 2020, arxiv: 2008.07428.

33/47



GT-SARAH: Smooth and nonconvex

m GT plus SARAH based VR

m Assume m; = m, Vi, for simplicity

Theorem (Almost sure and mean-squared results, Xin-Khan-Kar '20)

At each node i, GT-SARAH's iterate x}; follows

]P’( lim [|VF(xL) :o) —1  and IimE [”VF(XL)HZ} —0.
k— o0

k— 00
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GT-SARAH: Smooth and nonconvex

n m
3 0
i=1 j=1
m Total of N = nm data points divided equally among n nodes

m How many gradient computations are required to reach
an e-accurate solution?

Theorem (Gradient computation complexity, Xin-Khan-Kar '20)

Under a certain constant step-size o, GT-SARAH, with O(m) inner loop
iterations, reaches an e-optimal stationary point of the global cost F in

1/ n n+-m)'2n’l? n = 1
Him 0 (max (N, i, O ) (e L S, A ) )

gradient computations across all nodes, where c := F(Xo) — F*.
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GT-SARAH: Smooth and nonconvex

n m
3 0
i=1 j=1
m Total of N = nm data points divided equally among n nodes

m How many gradient computations are required to reach
an e-accurate solution?

m In a certain big-data regime n < O(m(1 — \)®): H = O(N"?e1)
m Independent of the network topology
m Linear speedup compared to centralized SARAH
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GT-SARAH: Smooth and nonconvex

m Minimize a sum of N := nm smooth nonconvex functions

m The rate O(N"2¢~1) in the big-data regime matches the centralized
algorithmic lower bound for this problem class [SPIDER: Fang et al. '18]

m Independent of the variance of local gradient estimators
m Independent of the local vs. global dissimilarity bias

m Independent of the network

m Linear speedup
GT-SARAH is n times faster than the centralized SARAH
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Experiments: Nonconvex binary classification

m Performance Comparison

a%
—— DSGT
—4+— D-GET
2107t —e— GT-SARAH
o
>
©
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0 10 20 30 40
Epoch

m Big-data regime
m 10 x 10 grid graph

Large-scale net. regime: the a9a dataset

074 —4— DSGD
‘ > GT-SARAH
102] | —e— GT-SAGA

Stationary gap

Epoch

m loT regime
m Nearest neighbor graph
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Experiments: Nonconvex binary classification

m Effect of network topology in GT-SAGA

Big-data regime: the BNG dataset Large-scale net. regime: the BNG dataset
107t 107
e undirected ring graph —e— undirected geometric graph
a0 #- undirected 2D-grid —— directed exponential graph
. = 0 T [}
3 10 4 directed exponential graph g 1072 —+— complete graph
> —— complete graph >
© -3 ©
.5 10 _5 107
® ©
104 Il
104
10-°
0 20 40 60 80 100
Epoch
m Big-data regime m loT regime
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Online Stochastic Nonconvex Problems

m What happens for streaming data where VR is not applicable?
m GT-DSGD!: Vanilla distributed SGD + GT
m Decaying stepsizes can be used to kill the variance

m GT-HSGD?: A novel way for variance reduction

B - (Local stoch. gradient)+ (1 — ) (inner loop of SARAH)
Outperforms existing methods with a 5 € (0,1)

1. R. Xin, U. A. Khan, and S. Kar, “An improved convergence analysis for decentralized online stochastic non-convex
optimization,” IEEE Transactions on Signal Processing, 69, pp. 1842-1858, Mar. 2021.

2. R. Xin, U. A. Khan, and S. Kar, “A hybrid variance-reduced method for decentralized stochastic non-convex optimization,” in
38th International Conference on Machine Learning, Jul. 2021, accepted for publication.
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Distributed optimization: Demo

m Full gradient, distributed linear regression, n = 100 nodes

m Each node possesses one data point
m Collaborate to learn the slope and intercept
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Conclusions

m Gradient tracking for distributed optimization
m GT eliminates the local vs. global dissimilarity bias
m Linear convergence for smooth and strongly convex problems
m Acceleration is possible but analysis is hard!

m GT+VR: Gradient tracking for distributed batch optimization

m GT-SAGA: State-of-the-art in the loT regime
m GT-SARAH: State-of-the-art in the big-data regime

m Gradient tracking for distributed online stochastic optimization
m Shown best known rates for strongly convex and nonconvex problems
in applicable regimes

m Decaying step-sizes eliminate the variance due to the stochastic grad
m Hybrid VR techniques

Network-independent convergence behavior

Outperforms the centralized analogs in applicable regimes
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Optimization for Data-driven Learning and Control

m There is a lot more being done and a lot more to do!

m P-IEEE Special Issue, vol. 108, no. 11

U. A. Khan, Lead Editor
with Guest Editors: W. U. Bajwa, A. Nedi¢, M. G. Rabbat, A. H. Sayed

Proceedings=IEEE

———
Optimization for Data-Driven
Learning and Control
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GT-SARAH: Analysis
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GT-SARAH: Analysis

m Use the L-smoothness of F to establish the following lemma
F(Y) SF()+(VF(x)y =x) +5lly—x|*  VxyeR’

Lemma (Descent inequality)

If the step-size follows that O <a< then we have

2L'
B [FE9] < FEY Z]E [HVF &) H }
K, T K, T 1 ® Stk
a(iZE[vr,kz] E[*Tvk,7 tk)”}iLZZ [ x> | })
k,t k.t
m The object in red has two errors that we need to bound
m Gradient estimation error: E[|[v®* — VF(x"*)||?]
m Agreement error: E[|[x"* — 1 @ x“*||?]
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GT-SARAH: Analysis

Lemma (Gradient estimation error)

We have Vk > 1,

T Iy 302712 21 6TL> . [x0K — 1@ x0k|?
E ||[v"% — VE")?| < E [[|v"%)? E[i}
e <= =]+ a

n

Lemma (Agreement error)

If the step-size follows 0 < a < (8rL , then
XK:XT:E I — 1@ & ?) __64a® VR 1536afL2 u ZT:]E[ v
k=1 t=0 n B n (C RS M

m Agreement error is coupled with the gradient estimation error

Derive an LTI system that describes their evolution

m Analyze the LTI dynamics to obtain the agreement error lemma

m Use the two lemmas back in the descent inequality
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GT-SARAH: Analysis

Lemma (Refined descent inequality)

1
1=x222 n 2n \z1-X221 1
(3n+12T) & [ ar We have

For0 < a <@ :=min T R
el HFESD—F") /3 6T\ 256a2L% || VF(x>)
]E[HVF tk)”] ( a) +(§ )(1_0;2)3 Il g I

1
m ikt

m Taking K — oo on both sides leads to TE[|VF(x")|] < oo
m Mean-squared and a.s. results follow

m Divide both sides by K - T and solve for K when the R.H.S < ¢
m Gradient computation complexity follows by nothing that GT-SARAH

computes n(m + 2T) gradients per iteration across all nodes
m Choose « as the maximum and T = O(m) to obtain the optimal rate
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