Holographic complexity

Javier Martín García

Based on:
J. L. F. Barbón & J. M-G. 1510.00349
& Ongoing work...
1 Introduction
 The holographic dictionary
 Quantum Information

2 Quantum entanglement and computational complexity
 Entanglement
 Entanglement in the spacetime picture
 Computational complexity
 Complexity in the spacetime picture

3 Complexity of topological AdS black holes
 General features
 Non-extremal regime
 Near-extremal regime

4 The Action/complexity proposal
 From volume to action
 Action for hyperbolic black holes
 Comparison with C/V duality

5 Conclusions
1 Introduction
 The holographic dictionary
 Quantum Information

2 Quantum entanglement and computational complexity
 Entanglement
 Entanglement in the spacetime picture
 Computational complexity
 Complexity in the spacetime picture

3 Complexity of topological AdS black holes
 General features
 Non-extremal regime
 Near-extremal regime

4 The Action/complexity proposal
 From volume to action
 Action for hyperbolic black holes
 Comparison with C/V duality

5 Conclusions
Holography

- Quantum gravity in d+1 dimensions must be described by a non-gravitational theory in d dimensions.
 - Translation between both theories should be possible: DICTIONARY
 - Not so easy to find precise examples of holographic theories.
- Successful example: AdS/CFT
 - Finding the entries of the dictionary is manageable.

- 1997: Today:
Holography

- Quantum gravity in $d+1$ dimensions must be described by a non-gravitational theory in d dimensions.
 - Translation between both theories should be possible: DICTIONARY
 - Not so easy to find precise examples of holographic theories.

- Successful example: AdS/CFT
 - Finding the entries of the dictionary is manageable.

- 1997: Today:
Holography

- Quantum gravity in \(d+1\) dimensions must be described by a non-gravitational theory in \(d\) dimensions.
 - Translation between both theories should be possible: DICTIONARY
 - Not so easy to find precise examples of holographic theories.

- Successful example: AdS/CFT
 - Finding the entries of the dictionary is manageable.

- 1997: Today:
Holography

- Quantum gravity in $d+1$ dimensions must be described by a non-gravitational theory in d dimensions.
 - Translation between both theories should be possible: DICTIONARY
 - Not so easy to find precise examples of holographic theories.

- Successful example: AdS/CFT
 - Finding the entries of the dictionary is manageable.

- 1997: Today:
Holography

- Quantum gravity in d+1 dimensions must be described by a non gravitational theory in d dimensions.
 - Translation between both theories should be possible:
 - DICTIONARY
 - Not so easy to find precise examples of holographic theories.
- Successful example: AdS/CFT
 - Finding the entries of the dictionary is manageable.

1997: Today:
Holography

- Quantum gravity in $d+1$ dimensions must be described by a non-gravitational theory in d dimensions.
 - Translation between both theories should be possible: DICTIONARY
 - Not so easy to find precise examples of holographic theories.

- Successful example: AdS/CFT
 - Finding the entries of the dictionary is manageable.

☆ 1997: Today:
Holography

- Quantum gravity in $d+1$ dimensions must be described by a non-gravitational theory in d dimensions.
 - Translation between both theories should be possible: DICTIONARY
 - Not so easy to find precise examples of holographic theories.
- Successful example: AdS/CFT
 - Finding the entries of the dictionary is manageable.

★ 1997: Today:
\[\Delta = \frac{d}{2} + \sqrt{\frac{d^2}{4} + m^2 L^2}. \]
Dictionary:

Chapter QI

<table>
<thead>
<tr>
<th>AdS</th>
<th>CFT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Entanglement?</td>
</tr>
<tr>
<td></td>
<td>Complexity?</td>
</tr>
</tbody>
</table>
Introduction

The holographic dictionary

Quantum Information

Quantum entanglement and computational complexity

Entanglement

Entanglement in the spacetime picture

Computational complexity

Complexity in the spacetime picture

Complexity of topological AdS black holes

General features

Non-extremal regime

Near-extremal regime

The Action/complexity proposal

From volume to action

Action for hyperbolic black holes

Comparison with C/V duality

Conclusions
Quantum entanglement

- Entanglement in QM
 - Failure of making the decomposition $|\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle$
 - Quantified by entanglement entropy $S_A = -\text{Tr}_A[\rho_A \log \rho_A]$
 - Characterization of operator correlations
 $$|\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle \iff \langle O_A O_B \rangle - \langle O_A \rangle \langle O_B \rangle = 0.$$

- Tensor Network
 - 2-Qubit entangled state $|\psi\rangle = \sum_{i,j} \alpha_{ij} |\psi_i\rangle_A |\psi_j\rangle_B$.
 - General entangled state $|\psi\rangle = \sum_{\mu_1,\ldots,\mu_n} c_{\mu_1,\ldots,\mu_n} |\psi_{\mu_1}\rangle_1 \ldots |\psi_{\mu_n}\rangle_n$.
Quantum entanglement

- Entanglement in QM
 - Failure of making the decomposition $|\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle$
 - Quantified by entanglement entropy $S_A = -\text{Tr}_A[\rho_A \log \rho_A]$
 - Characterization of operator correlations
 $|\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle \iff \langle O_A O_B \rangle - \langle O_A \rangle \langle O_B \rangle = 0$.

- Tensor Network
 - 2-Qubit entangled state $|\Psi\rangle = \sum_{i,j} \alpha_{ij} |\psi_i\rangle_A |\psi_j\rangle_B$.
 - General entangled state $|\Psi\rangle = \sum_{\mu_1,\ldots,\mu_n} c_{\mu_1,\ldots,\mu_n} |\psi_{\mu_1}\rangle_1 \cdots |\psi_{\mu_n}\rangle_n$.
Quantum entanglement

- Entanglement in QM
 - Failure of making the decomposition $|\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle$
 - Quantified by entanglement entropy $S_A = -\text{Tr}_A[\rho_A \log \rho_A]$
 - Characterization of operator correlations
 $|\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle \iff \langle O_A O_B \rangle - \langle O_A \rangle \langle O_B \rangle = 0$.

- Tensor Network
 - 2-Qubit entangled state $|\Psi\rangle = \sum_{i,j} \alpha_{ij} |\psi_i\rangle_A |\psi_j\rangle_B$.
 - General entangled state $|\psi\rangle = \sum_{\mu_1,\ldots,\mu_n} c_{\mu_1,\ldots,\mu_n} |\psi_{\mu_1}\rangle_1 \ldots |\psi_{\mu_n}\rangle_n$.
Quantum entanglement

- Entanglement in QM
 - Failure of making the decomposition $|\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle$
 - Quantified by entanglement entropy $S_A = -\text{Tr}_A[\rho_A \log \rho_A]$
 - Characterization of operator correlations
 \[
 |\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle \quad \iff \quad \langle O_A O_B \rangle - \langle O_A \rangle \langle O_B \rangle = 0.
 \]

- Tensor Network
 - 2-Qubit entangled state $|\Psi\rangle = \sum_{i,j} \alpha_{ij} |\psi_i\rangle_A |\psi_j\rangle_B$.
 - General entangled state $|\Psi\rangle = \sum_{\mu_1, \ldots, \mu_n} c_{\mu_1, \ldots, \mu_n} |\psi_{\mu_1}\rangle_1 \ldots |\psi_{\mu_n}\rangle_n$.

\[\begin{array}{c}
 \bar{\alpha}_{ij} \\
 i \nearrow j
\end{array} \]
Quantum entanglement

- **Entanglement in QM**
 - Failure of making the decomposition $|\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle$
 - Quantified by entanglement entropy $S_A = -\text{Tr}_A[\rho_A \log \rho_A]$
 - Characterization of operator correlations
 \[
 |\psi\rangle = |\psi_A\rangle \otimes |\psi_B\rangle \Leftrightarrow \langle O_A O_B \rangle - \langle O_A \rangle \langle O_B \rangle = 0.
 \]

- **Tensor Network**
 - 2-Qubit entangled state $|\Psi\rangle = \sum_{i,j} \alpha_{ij} |\psi_i\rangle_A |\psi_j\rangle_B$.
 - General entangled state $|\Psi\rangle = \sum \ c_{\mu_1,...,\mu_n} |\psi_{\mu_1}\rangle_1 \cdots |\psi_{\mu_n}\rangle_n$
Entanglement in the spacetime picture

- Tensor network for a CFT
 - Scale invariance \Rightarrow Tree-like structure TN
 - New (non-physical) dimension: Network depth
 - Mimics a discretized hyperbolic space

- Holographic entanglement entropy
 - Entanglement between two regions \IFF number of links cut to separate the TN in two.
 - Ryu-Takayanagi formula $S_A = \frac{\text{Area}(\tilde{A})}{4G}$.
Entanglement in the spacetime picture

- Tensor network for a CFT
 - Scale invariance \implies Tree-like structure TN
 - New (non-physical) dimension: Network depth
 - Mimics a discretized hyperbolic space

- Holographic entanglement entropy
 - Entanglement between two regions \iff number of links cut to separate the TN in two.
 - Ryu-Takayanagi formula $S_A = \frac{\text{Area}(\tilde{A})}{4G}$.
Entanglement in the spacetime picture

- Tensor network for a CFT
 - Scale invariance \implies Tree-like structure TN
 - New (non-physical) dimension: Network depth
 - Mimics a discretized hyperbolic space

- Holographic entanglement entropy
 - Entanglement between two regions \iff number of links cut to separate the TN in two.
 - Ryu-Takayanagi formula $S_A = \frac{\text{Area}(\tilde{A})}{4G}$.
Entanglement in the spacetime picture

- Tensor network for a CFT
 - Scale invariance \implies Tree-like structure TN
 - New (non-physical) dimension: Network depth
 - Mimics a discretized hyperbolic space

- Holographic entanglement entropy
 - Entanglement between two regions \iff number of links cut to separate the TN in two.
 - Ryu-Takayanagi formula $S_A = \frac{\text{Area}(\tilde{A})}{4G}$.

- Entanglement and spacetime connectivity
 - Eternal AdS black hole $|\Psi\rangle = \sum_i e^{-\beta E_i/2} |E_i\rangle \otimes |E_i\rangle \implies$ Two entangled BH connected by a wormhole
 - Classically connected spacetime \iff Superposition of disconnected ones
 - ER=EPR: Any entangled system is connected by a wormhole
Dictionary:
Chapter QI

<table>
<thead>
<tr>
<th>AdS</th>
<th>CFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectivity</td>
<td>Entanglement</td>
</tr>
<tr>
<td>Minimal surfaces</td>
<td>S_A</td>
</tr>
<tr>
<td>ER</td>
<td>EPR</td>
</tr>
</tbody>
</table>

Complexity?
Computational complexity

- Computer science: Minimum number of 'simple' operations needed to get a state from a 'simple' reference one. Example: Given a string of K bits, get some state 011010.. from 000000...
Computational complexity

- Computer science: Minimum number of 'simple' operations needed to get a state from a 'simple' reference one. Example: Given a string of K bits, get some state 011010... from 000000...
- Quantum complexity
Computational complexity

- **Computer science**: Minimum number of ‘simple’ operations needed to get a state from a ‘simple’ reference one. Example: Given a string of K bits, get some state $011010..$ from $000000...$

- **Quantum complexity**

- **Growth of complexity**
 - Quantum complexity keeps growing after thermalization

\[C \propto e^K \]
Computational complexity

- Computer science: Minimum number of ’simple’ operations needed to get a state from a ’simple’ reference one. Example: Given a string of K bits, get some state 011010.. from 000000...
- Quantum complexity
- Growth of complexity
 - Quantum complexity keeps growing after thermalization
 - $\frac{dC}{dt} \propto TS$

\[C \]

\[K \]

\[t_{th} \]

\[t_{comp} \sim e^K \]
Complexity in the spacetime picture

- Tensor networks
 - Complex states have bigger tensor networks
 - Complexity \Leftrightarrow size of the tensor network

- Volume/complexity relation: The complexity of $|\psi(t)\rangle$ is proportional to the volume of a maximal slice in the dual spacetime that passes through t.

- Black holes
 - Growth of quantum complexity is encoded as the growth of the Einstein-Rosen Bridge
Complexity in the spacetime picture

- Tensor networks
 - Complex states have bigger tensor networks
 - Complexity \iff size of the tensor network

- Volume/complexity relation: The complexity of $|\psi(t)\rangle$ is proportional to the volume of a maximal slice in the dual spacetime that passes through t.

- Black holes
 - Growth of quantum complexity is encoded as the growth of the Einstein-Rosen Bridge
Complexity in the spacetime picture

- Tensor networks
 - Complex states have bigger tensor networks
 - Complexity \Leftrightarrow size of the tensor network
- Volume/complexity relation: The complexity of $|\psi(t)\rangle$ is proportional to the volume of a maximal slice in the dual spacetime that passes through t.
- Black holes
 - Growth of quantum complexity is encoded as the growth of the Einstein-Rosen Bridge

\[
\begin{array}{c}
\text{AdS} & \sim \text{AdS} & \text{Einstein-Rosen Bridge}
\end{array}
\]
Dictionary: Chapter QI

<table>
<thead>
<tr>
<th>AdS</th>
<th>CFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectivity</td>
<td>Entanglement</td>
</tr>
<tr>
<td>Minimal surfaces</td>
<td>S_A</td>
</tr>
<tr>
<td>ER</td>
<td>EPR</td>
</tr>
<tr>
<td>Maximal volumes</td>
<td>Complexity</td>
</tr>
</tbody>
</table>
1 Introduction
 The holographic dictionary
 Quantum Information

2 Quantum entanglement and computational complexity
 Entanglement
 Entanglement in the spacetime picture
 Computational complexity
 Complexity in the spacetime picture

3 Complexity of topological AdS black holes
 General features
 Non-extremal regime
 Near-extremal regime

4 The Action/complexity proposal
 From volume to action
 Action for hyperbolic black holes
 Comparison with C/V duality

5 Conclusions
General features

- Topological black holes
 - Metric
 \[ds^2 = -f(r)dt^2 + f(r)^{-1}dr^2 + \frac{r^2}{l^2}dH^2_{d-1} \]
 \[f(r) = -1 + \frac{r^2}{l^2} - \frac{\mu}{r^{d-2}} \]
 - Dual to two CFT’s on a hyperboloid [Emparan]
 - Degenerate system: \(\lim_{T \to 0} S \neq 0 \)

- Slicing conditions
 - Spacelike Cauchy surfaces
 - ’Nice’ slices: Stay away from singularities
 - Asymptotically match constant \(t \) surfaces far away
 - Foliation of the entire exterior region
 - Asymptote to constant \(r_m \) surface in the interior for long times.
General features

- Topological black holes
 - Metric
 \[ds^2 = -f(r)dt^2 + f(r)^{-1}dr^2 + \frac{r^2}{l^2}dH_{d-1}^2 \]
 \[f(r) = -1 + \frac{r^2}{l^2} - \frac{\mu}{r^{d-2}} \]
 - Dual to two CFT’s on a hyperboloid [Emparan]
 - Degenerate system: \(\lim_{T \to 0} S \neq 0 \)

- Slicing conditions
 - Spacelike Cauchy surfaces
 - ’Nice’ slices: Stay away from singularities
 - Asymptotically match constant \(t \) surfaces far away
 - Foliation of the entire exterior region
 - Asymptote to constant \(r_m \) surface in the interior for long times.
Non-extremal regime

• Features
 * $T_H \gg 1$
 * One horizon. Schwarzschild-Ads-like topology.

• Metric Patching
 * Exterior ($r \gg 1$) \(\implies f_E(r) = -1 + r^2 \implies \) Constant t surface
 * Rindler region ($r \sim r_h$) \(\implies f_R(r) = 4\pi T_H (r - r_h) \implies \)
 Horizontal planes (in X, T coordinates)
 * Interior ($r \ll r_h$)

• Results
 * Exterior: Constant contribution
 * Wormhole:
 \[
 V \sim \sqrt{\frac{d}{1 - 2^{-1/d}}} G_N S T_H t
 \]
Non-extremal regime

• Features
 ✷ \(T_H \gg 1 \)
 ✷ One horizon. Schwarzschild-Ads-like topology.

• Metric Patching
 ✷ Exterior \((r \gg 1) \implies f_E(r) = -1 + r^2 \implies \text{Constant } t \text{ surface} \)
 ✷ Rindler region \((r \sim r_h) \implies f_R(r) = 4\pi T_H(r - r_h) \implies \text{Horizontal planes (in X,T coordinates)} \)
 ✷ Interior \((r \ll r_h) \)

• Results
 ✷ Exterior: Constant contribution
 ✷ Wormhole:
 \[V \sim \sqrt{\frac{d}{1 - 2^{-1/d}}} G_N S T_H t \]
Non-extremal regime

- **Features**
 - $T_H \gg 1$
 - One horizon. Schwarzschild-Ads-like topology.

- **Metric Patching**
 - Exterior ($r \gg 1$) $\implies f_E(r) = -1 + r^2 \implies$ Constant t surface
 - Rindler region ($r \sim r_h$) $\implies f_R(r) = 4\pi T_H (r - r_h) \implies$ Horizontal planes (in X, T coordinates)
 - Interior ($r \ll r_h$)

- **Results**
 - Exterior: Constant contribution
 - Wormhole:
 \[V \sim \sqrt{\frac{d}{1 - 2^{-1/d}}} G_N S T_H t \]
Near-extremal regime

- **Features**
 - $T_H < \frac{1}{2\pi}$
 - Two horizons r_{\pm}. Timelike singularity. Degenerate system.

- **Metric Patching**
 - Exterior ($r \gg 1$) \Rightarrow Constant t surface
 - $AdS_{1+1} \times H^{d-1}$ region ($r_h \ll r \ll 1$) \Rightarrow Constant t surface
 - Rindler region ($r \sim r_h$) \Rightarrow Horizontal planes (in X,T coordinates)
 - Interior ($r \ll r_h$)

- **Results**
 - Exterior: Constant contribution
 - $AdS_{1+1} \times H^{d-1}$ region: Constant divergent contribution $\sim \log T^{-1}$
 - Wormhole:
 $V \sim G_N S T_H t$
Near-extremal regime

- Features
 - $T_H < \frac{1}{2\pi}$
 - Two horizons r_{\pm}. Timelike singularity. Degenerate system.

- Metric Patching
 - Exterior ($r \gg 1$) \Rightarrow Constant t surface
 - $AdS_1 \times H^{d-1}$ region ($r_h \ll r \ll 1$) \Rightarrow Constant t surface
 - Rindler region ($r \sim r_h$) \Rightarrow Horizontal planes (in X,T coordinates)
 - Interior ($r \ll r_h$)

- Results
 - Exterior: Constant contribution
 - $AdS_1 \times H^{d-1}$ region: Constant divergent contribution
 $\sim \log T^{-1}$
 - Wormhole:
 $V \sim G_N S T_H t$
Near-extremal regime

- **Features**
 - $T_H < \frac{1}{2\pi}$
 - Two horizons r_{\pm}. Timelike singularity. Degenerate system.

- **Metric Patching**
 - Exterior ($r \gg 1$) \implies Constant t surface
 - $AdS_{1+1} \times H^{d-1}$ region ($r_h \ll r \ll 1$) \implies Constant t surface
 - Rindler region ($r \sim r_h$) \implies Horizontal planes (in X,T coordinates)
 - Interior ($r \ll r_h$)

- **Results**
 - Exterior: Constant contribution
 - $AdS_{1+1} \times H^{d-1}$ region: Constant divergent contribution
 \[\sim \log T^{-1} \]
 - Wormhole:
 \[V \sim G_N S T_H t \]
\[T = 0.04 \]
\[T = 0.06 \]
\[T = 0.08 \]
1. Introduction
 - The holographic dictionary
 - Quantum Information

2. Quantum entanglement and computational complexity
 - Entanglement
 - Entanglement in the spacetime picture
 - Computational complexity
 - Complexity in the spacetime picture

3. Complexity of topological AdS black holes
 - General features
 - Non-extremal regime
 - Near-extremal regime

4. The Action/complexity proposal
 - From volume to action
 - Action for hyperbolic black holes
 - Comparison with C/V duality

5. Conclusions
From volume to action

- Unpleasant features of volume/complexity duality
 - Arbitrary scale $\mathcal{C} \sim \frac{V}{G\ell}$, $\ell \sim \ell_{AdS}, r_h, \ldots$
 - Why should the maximal slice play a preferred role?
- A higher dimensional object might solve the problem
 - $\mathcal{C} \sim \frac{V\ell_{AdS}}{G\ell_{AdS}^2} \sim \frac{\mathcal{W}}{G\ell_{AdS}^2} \sim \frac{\Lambda}{G} \int \sqrt{g}dV \sim A$
 - Consider all possible foliations
From volume to action

- Unpleasant features of volume/complexity duality
 - Arbitrary scale $C \sim \frac{V}{G\ell}$, $\ell \sim \ell_{AdS}, r_h, \ldots$
 - Why should the maximal slice play a preferred role?
- A higher dimensional object might solve the problem
 - $C \sim \frac{V\ell_{AdS}}{G\ell_{AdS}^2} \sim \frac{\mathcal{W}}{G\ell_{AdS}^2} \sim \frac{\Lambda}{G} \int \sqrt{g}dV \sim A$
 - Consider all possible foliations
From volume to action

- Unpleasant features of volume/complexity duality
 - Arbitrary scale $\mathcal{C} \sim \frac{V}{G\ell}$, $\ell \sim \ell_{AdS}, r_h, \ldots$
 - Why should the maximal slice play a preferred role?

- A higher dimensional object might solve the problem
 - $\mathcal{C} \sim \frac{V\ell_{AdS}}{G\ell_{AdS}^2} \sim \frac{\mathcal{W}}{G\ell_{AdS}^2} \sim \frac{\Lambda}{G} \int \sqrt{g}dV \sim \mathcal{A}$
 - Consider all possible foliations
From volume to action

- Unpleasant features of volume/complexity duality
 - Arbitrary scale $\mathcal{C} \sim \frac{V}{G\ell}$, $\ell \sim \ell_{AdS}, r_h, \ldots$
 - Why should the maximal slice play a preferred role?

- A higher dimensional object might solve the problem
 - $\mathcal{C} \sim \frac{V\ell_{AdS}}{G\ell_{AdS}^2} \sim \frac{\mathcal{W}}{G\ell_{AdS}^2} \sim \frac{\Lambda}{G} \int \sqrt{g}dV \sim A$
 - Consider all possible foliations
From volume to action

- Unpleasant features of volume/complexity duality
 - Arbitrary scale $C \sim \frac{V}{G\ell}$, $\ell \sim \ell_{AdS}, r_h, \ldots$
 - Why should the maximal slice play a preferred role?

- A higher dimensional object might solve the problem
 - $C \sim \frac{V\ell_{AdS}}{G\ell_{AdS}^2} \sim \frac{\mathcal{W}}{G\ell_{AdS}^2} \sim \frac{\Lambda}{G} \int \sqrt{g} dV \sim A$
 - Consider all possible foliations
The Action/complexity proposal

- The complexity of \(|\psi(t)\rangle \) is given by the on-shell action of its gravitational dual evaluated on the WdW patch corresponding to \(t \).

\[
C = \frac{\mathcal{A}}{\pi \hbar}
\]

[Brown, Roberts, Susskind, Swingle, Zhao]

- Some features
 - Absence of arbitrary scales
 - No preferred foliation
 - Recovers the nice features of V/C
 - BH complexity growth: \(\frac{dC}{dt} = 2M \sim ST \)
 - Shockwave tests [Susskind, Stanford]
 - Connection to Lloyd’s bound

- Drawbacks
 - The YGH term is ill-defined for null surfaces and joints. New prescriptions for these quantities still ambiguous and \textit{ad hoc}. [Lehner, Myers, Poisson, Sorkin...]

The Action/complexity proposal

- The complexity of $|\psi(t)\rangle$ is given by the on-shell action of its gravitational dual evaluated on the WdW patch corresponding to t.

$$C = \frac{\mathcal{A}}{\pi \hbar}$$

[Brown, Roberts, Susskind, Swingle, Zhao]

- Some features
 - Absence of arbitrary scales
 - No preferred foliation
 - Recovers the nice features of V/C
 - BH complexity growth: $\frac{dC}{dt} = 2M \sim ST$
 - Shockwave tests [Susskind, Stanford]
 - Connection to Lloyd’s bound

- Drawbacks
 - The YGH term is ill-defined for null surfaces and joints. New prescriptions for these quantities still ambiguous and *ad hoc*. [Lehner, Myers, Poisson, Sorkin...]
The Action/complexity proposal

- The complexity of $|\psi(t)\rangle$ is given by the on-shell action of its gravitational dual evaluated on the WdW patch corresponding to t.

$$C = \frac{A}{\pi \hbar}$$

[Brown, Roberts, Susskind, Swingle, Zhao]

- Some features
 - Absence of arbitrary scales
 - No preferred foliation
 - Recovers the nice features of V/C
 - BH complexity growth: $\frac{dC}{dt} = 2M \sim ST$
 - Shockwave tests [Susskind, Stanford]
 - Connection to Lloyd’s bound

- Drawbacks
 - The YGH term is ill-defined for null surfaces and joints. New prescriptions for these quantities still ambiguous and ad hoc. [Lehner, Myers, Poisson, Sorkin...]

A curiosity

- 'Extended' black hole thermodynamics

 Smarr formula: \((d - 2)M = (d - 1)TS - 2PV\)

- Action growth for spherical black holes factorizes in these terms
 [Coach, Fischler, Nguyen]

 \(\delta S_{\text{bulk}} \sim PV\delta t\)
 \(\delta S_{\text{bound}} \sim M\delta t\)
 \(\delta S_{\text{joints}} \sim TS\delta t\)
A curiosity

- 'Extended' black hole thermodynamics

 Smarr formula: \((d - 2)M = (d - 1)TS - 2PV\)

- Action growth for spherical black holes factorizes in these terms [Coach, Fischler, Nguyen]
 \begin{align*}
 \delta S_{\text{bulk}} & \sim PV\delta t \\
 \delta S_{\text{bound.}} & \sim M\delta t \\
 \delta S_{\text{joints}} & \sim TS\delta t
 \end{align*}
Dictionary: Chapter QI

<table>
<thead>
<tr>
<th>AdS</th>
<th>CFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectivity</td>
<td>Entanglement</td>
</tr>
<tr>
<td>Minimal surfaces</td>
<td>S_A</td>
</tr>
<tr>
<td>ER</td>
<td>EPR</td>
</tr>
<tr>
<td>Maximal volumes</td>
<td>Complexity$_a$</td>
</tr>
<tr>
<td>WDW action</td>
<td>Complexity$_b$</td>
</tr>
</tbody>
</table>
It seems that the C/A duality includes some nice new features and recovers all the results from the C/V duality
It seems that the C/A duality includes some nice new features and recovers all the results from the C/V duality.

Toute? Non!

One small set of indomitable hyperbolic black holes still resist to match both prescriptions.
WdW action for hyperbolic black holes

- Complexity for cold BH’s is finite [Myers, Chapman, Marrochio]

- Complexity growth

 - Hot black holes: \(\frac{dC}{dt} = 2M_{AdS} \)

 - Cold black holes do not compute! \(\frac{dC}{dt} = 0 \)

- For the cold ones ’thermodynamic factorization’ no longer holds

 - \(\delta S_{\text{bulk}} \sim (PV + r_+^d)\delta t \)

 - \(\delta S_{\text{bound.}} = 0 \)

 - \(\delta S_{\text{joints}} \sim (TS - M_{AdS} - r_+^d)\delta t \)

- Vacua ambiguities

\[
\begin{align*}
\frac{dS}{dt} &= TS - \frac{2PV_+}{d-1} - \frac{(d-2)}{(d-1)}M_{AdS} \\
\frac{dS}{dt} &= TS - 2P(V_+ - V_{\text{ext}}) - \frac{(d-2)}{(d-1)}M
\end{align*}
\]
WdW action for hyperbolic black holes

- Complexity for cold BH’s is finite [Myers, Chapman, Marrochio]
- Complexity growth
 - Hot black holes: \(\frac{dC}{dt} = 2M_{AdS} \)
 - Cold black holes do not compute! \(\frac{dC}{dt} = 0 \)
- For the cold ones ’thermodynamic factorization’ no longer holds
 - \(\delta S_{\text{bulk}} \sim (PV + r_-^d) \delta t \)
 - \(\delta S_{\text{bound.}} = 0 \)
 - \(\delta S_{\text{joints}} \sim (TS - M_{AdS} - r_-^d) \delta t \)
 - Vacua ambiguities
 - \(\frac{dS}{dt} = TS - \frac{2PV_+}{d-1} - \frac{(d-2)}{(d-1)} M_{AdS} \)
 - \(\frac{dS}{dt} = TS - \frac{2P(V_+ - V_{ext})}{d-1} - \frac{(d-2)}{(d-1)} M \)

\(M_0(\text{Empty AdS}) \)
\(M = 0 \) (Extremal BH)
WdW action for hyperbolic black holes

- Complexity for cold BH’s is finite [Myers, Chapman, Marrochio]
- Complexity growth
 - Hot black holes: \(\frac{dC}{dt} = 2M_{\text{AdS}} \)
 - Cold black holes do not compute! \(\frac{dC}{dt} = 0 \)
- For the cold ones ’thermodynamic factorization’ no longer holds
 - \(\delta S_{\text{bulk}} \sim (PV + r_d)\delta t \)
 - \(\delta S_{\text{bound.}} = 0 \)
 - \(\delta S_{\text{joints}} \sim (TS - M_{\text{AdS}} - r_d)\delta t \)
- Vacua ambiguities
 - \(\frac{dS}{dt} = TS - \frac{2PV_+}{d-1} - \frac{(d-2)}{(d-1)} M_{\text{AdS}} \)
 - \(\frac{dS}{dt} = TS - \frac{2P(V_+ - V_{\text{ext}})}{d-1} - \frac{(d-2)}{(d-1)} M \)
WdW action for hyperbolic black holes

- Complexity for cold BH’s is finite [Myers, Chapman, Marrochio]
- Complexity growth
 - Hot black holes: \(\frac{dC}{dt} = 2M_{AdS} \)
 - Cold black holes do not compute! \(\frac{dC}{dt} = 0 \)
- For the cold ones ’thermodynamic factorization’ no longer holds
 - \(\delta S_{\text{bulk}} \sim (PV + r^d_-) \delta t \)
 - \(\delta S_{\text{bound.}} = 0 \)
 - \(\delta S_{\text{joints}} \sim (TS - M_{AdS} - r^d_-) \delta t \)
- Vacua ambiguities
 - \(\frac{dS}{dt} = TS - \frac{2PV_+}{d-1} - \frac{(d-2)}{(d-1)} M_{AdS} \)
 - \(\frac{dS}{dt} = TS - \frac{2P(V_+ - V_{ext})}{d-1} - \frac{(d-2)}{(d-1)} M \)
WdW action for hyperbolic black holes

- Complexity for cold BH’s is finite [Myers, Chapman, Marrochio]
- Complexity growth
 - Hot black holes: \[
 \frac{dC}{dt} = 2M_{AdS}
 \]
 - Cold black holes do not compute! \[
 \frac{dC}{dt} = 0
 \]
- For the cold ones ’thermodynamic factorization’ no longer holds
 - \[
 \delta S_{\text{bulk}} \sim (PV + r_-^d) \delta t
 \]
 - \[
 \delta S_{\text{bound.}} = 0
 \]
 - \[
 \delta S_{\text{joints}} \sim (TS - M_{AdS} - r_-^d) \delta t
 \]
 - Vacua ambiguities
 - \[
 \frac{dS}{dt} = TS - \frac{2PV_+}{d-1} - \frac{(d-2)}{(d-1)} M_{AdS}
 \]
 - \[
 \frac{dS}{dt} = TS - \frac{2P(V_+ - V_{\text{ext}})}{d-1} - \frac{(d-2)}{(d-1)} M
 \]
Comparison between both prescriptions

<table>
<thead>
<tr>
<th>General features</th>
<th>Complexity/Volume</th>
<th>Complexity/Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Preferred slicing</td>
<td>Covariant definition</td>
</tr>
<tr>
<td>Scale</td>
<td>Ambiguous</td>
<td>Fixed</td>
</tr>
<tr>
<td>TN interpretation</td>
<td># of tensors</td>
<td>?</td>
</tr>
<tr>
<td>dC / dt in BH</td>
<td>$\sim ST$</td>
<td>$2M$</td>
</tr>
<tr>
<td>Technicalities</td>
<td>Optimization</td>
<td>Boundary terms</td>
</tr>
</tbody>
</table>

Cold hyp. BH

<table>
<thead>
<tr>
<th>C in AdS_{1+1} throat</th>
<th>$\sim \log T$</th>
<th>Finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>dC / dt</td>
<td>$\sim S \circ T$</td>
<td>0</td>
</tr>
</tbody>
</table>
1 Introduction
 The holographic dictionary
 Quantum Information

2 Quantum entanglement and computational complexity
 Entanglement
 Entanglement in the spacetime picture
 Computational complexity
 Complexity in the spacetime picture

3 Complexity of topological AdS black holes
 General features
 Non-extremal regime
 Near-extremal regime

4 The Action/complexity proposal
 From volume to action
 Action for hyperbolic black holes
 Comparison with C/V duality

5 Conclusions
Conclusions & Outlook

- Quantum complexity might be a interesting tool to explore black hole interiors, but its definition is not yet clear
 - Need for a precise definition in the continuum CFT
 - Decide which of the holographic proposals (if any) is the correct one

- Topological black holes might be a useful diagnostic tool to select the correct prescription
 - If C/V duality is correct, we need to explain the exotic properties of the effective CQM vacuum
 - If C/A duality is correct, we need to explain why cold hyperbolic black holes do not compute
Conclusions & Outlook

- Quantum complexity might be a interesting tool to explore black hole interiors, but its definition is not yet clear
 - Need for a precise definition in the continuum CFT
 - Decide which of the holographic proposals (if any) is the correct one

- Topological black holes might be a useful diagnostic tool to select the correct prescription
 - If C/V duality is correct, we need to explain the exotic properties of the effective CQM vacuum
 - If C/A duality is correct, we need to explain why cold hyperbolic black holes do not compute
Questions

Muito obrigado!