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System  forgets initial correlations

[Q(t)q(t —|_ t/)]average n t ™~ 6_)\t



This property ts always limited by ergodicity, which tmplies the

phenomenon of Potncars recurrences

Return 15 guaranteed affer a ftme proportional fo

esmaximal 6Nd.o.f.
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ln quantum theory, these * fractal pictures in phase space

are very misleading because the classical coarse-graning

15 forced to be
2
e* > h
So, they are not useful after the Ehrenfest fime scale
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ln particular, the classical Poincars fime exp(S) s
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St one can generalize the LOCAL chaotic behavior on
short fime scales

8Q(t7 QO)
dqo

= {q(t),po}prB

» Look for exponential growth of quantum commutators
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“quantum butterfly effect

t1 constramed by Lieb-Robinson
bounds
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What about late Fime behavior?

Using a generalized WKB approximation, it was argued that
statistical properties of the energy spectrum are related
fo the behavior of classical periodic orbits tn phase space

Gutzwiller, Berry, Voros, -
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generic (Weyl) specific

Se = log(phase space volume)
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Looking at model systems, it was established that chaotic

systems have statistical level repulsion characteristic of

random matrices
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s = normalized emgenvalue distance

Dyson, Wigner, *+ Bohigas, Giannont & Schimit



ETH Paradigm of quantum chaos

High energy eigenstates have random matrix statistics

Generic observables diagonalize tn bases uncorrelated with
H'I-Q qu\,\{{{-owia“ Peres, Deutsch, Sredunicki

Random with
51z O(Q"S/ 2)
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WHAT ABOUT BLACK HOLES?
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Rindler H x R,

' \ hyperboloid
\cowformaf -

Horizon (s mapped to the boundary of the hyperboloid

For non-conformal theories this boundary becomes generically
strongly coupled



Barbon & Magan



Cutoff defines some stretfched horizon

Oldest and simplest: 't Hooft s brick wall



Stretched horizon as a hyperbolic billiard

This chaotic system scrambles tn O(T) collisions

bsg ~ tLyapunov ~ Diameter ~ log Nscatterers

Ly ~ ﬁ log §
27T



All these models are obviously naive -

but from these comsiderations we learn that any microscopic
realisation of the holographic Hamiltonian at the stretched horizon
must at (east satisfy the ETH hypothesis



A wild speculation

LIO{OQYGPI’H.C mafp

Hyperbolid billiards are (ong known to appear

near Stngularities =+



The succession of P 15 determined by a hyperbolic billiard game

Could this be a dual of the previous ~billiard  at
the strefched horizon?



More recently, we have seen a number of more
quantitative analysis which infroduce ideas from
quantum chaos tnto black hole dynamics

’ Quantum Lyapunov exponents

QO Covtact with ETH paradigm



Aun equivalent characterization of quantum Lyapunov exponents
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[ooks [tke a scattering amplifude
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For a thermal state, a bound on the Lyapunov exponent was derived

Maldacena, Shenker & Stanford

A< 27T
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AdS/CFT examples were worked

out tn advance, suggesting saturation of the bound
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Shenker, Stanford, -
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interaction
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Shenker, Stanford, -

t-translations act as

near-horizon boosts

L~ tscrambling

<X—|-| X—> ~1— O(GNTZ) 627th 4.

scrambling fime (s naturally
the free fall time to the strefched

horizon



The same behavior was famously seen by Kitaev tn a
microscopic model, the so called SYK random fFermion model

N
Hsyx = »  Jijkt Xi Xj Xk Xi

i’j7l{:7l
\/ randoha

couplings

Extensively studied tn the T/N expansion

Low energy behavior coutrolled by a Schwarztian effective action

Gravity picture tuvolves nontrivial AdSz dynamics



SYK model emerges also as a paradigm for the study of
ETH and gewneral chaotic long-time behavior

Cotler, Gur-Ari, Hanada, Polchinski, Saad, Shenker, Stanford, Streicher, Tezuka

Spectral form factor

g(B,t) =




continuous band

approximation good
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What are the general expectations from correlations of

ETH operators?

C(t)="Tr|pB(t) B(0)| = Tr [pB SitH B e—itH]
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e> /S

Heisenberg time scale
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Poincaré time scale



exp [ log(2n/Ag) e® ]

detailed Poincaré time scale



Aun tnteresting property of systems with AdS duals s
Fhe possibility of doing some amount of * Guantum noise fomography

[f we have a chaotic high-enerqy band and a non-chaotic low
enerqy band, the ETH ausatz has to be modified as
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Such coexistence 15 an expected property of AdS/CFT models

A

Entropy

/ large AdS black holes

chaotic

&

10dim black holes

strings

gravitons

gas
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ln such systems the noise tells of the existence of topological sectors
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COMPLEXITY

shortest exit
path
from here?

and
from here?

How difficult (s to “prepare specific butterfly effects?



ln the quantum realm, (ook at the Hilbert space as a (huge) sef

For a Hilbert space of complex dimension €

Ule”)
U —1)xU(1)

# cells ~ exp (eS log(1/e))

Exponentially larger than classical phase space



Assuming a notion of tensor factor locality tn Hilbert space

H=H1 QH2&®--- Q@ Hg

A tensor of S ndices gives a generic state




The tensor decomposition n small butlding blocks gives a notion of

“complexity

stmple complex

cf. M van Raamsdonk



Paths

ln general, shortest paths tn the Hilbert space correspond

to very won-local Hamiltonians



Paths

Restricting to " local Hamiltonians , tnvolving few gbuits at
a time leads to ergodically-long paths



Complexity can be roughly defined as the size of the minimal tensor
network butlding the state with e-accuracy

Complexity, < log[#cens] ~ € log(1/¢)



What (s the connection to black hole physics?

Teunsor networks as discrete butlding blocks of space

| Swingle
Vidal




What (s the connection to black hole physics?

Teunsor networks as discrete butlding blocks of space

Hartman & Maldacena
Maldacena & Susskind

s /—\ M. Van Raamsdonk




VOLUME / COMPLEXITY duality

AdS
Extremal boundary
codimension-1 y
”M
o Vol ()
GRads

A codimension-one generalisation of Ryu-Takayanagt <, i of af



IMPLEXITY duality

AdS
boundary

Susskind <t al




Things being done ... explorations

Sample qualitative tests of holographic complexity ansatze
i assorted black hole states

Stanford group, Kyoto group, Perimeter group

) .t talk by J. Martin Garcia

(inear growth of complexity

Growing wormholes <l

A First look at complexity of space-time singularities
Barbén & Rabinovic




“Second law” of quantum complexity theory ?

Susskind
(1near growth
for chaotic hamiltontans?
Complexity
oS
Firewalls?
Potncare
recurrence
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All black holes
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CONCLUSIONS

N/

€ Saturating quantum Lyapunov exponents are now part of the

check-(ist for “good models of holography.

N/

€ CTH emerges as a natural assumption of gemeric black hole
dynamics

€ Holographic complexity remains mysterious, especially its
definition on the CFT side.

N/

€ SYK type models a good playground for these questions
€ What can be said beyond A4S/CFT ?






