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In the middle of the XX-th century, starting from the very

simple notion of scheme, A. Grothendieck created a

geometric theory unifying algebraic geometry and

arithmetic. Now it is time to push forward the machinery

and to create a larger geometric theory including also in

the unification some “old complex analysis”, as classical

special functions: Hypergeometric functions, Kummer

functions, Bessel functions Mathieu and spheroı̈dal functions,

and “the special functions of the XXI-st century”, the Painlevé

functions (and their discrete analogs).

There are strong evidences of the fact that this picture is

very near of some theories of theoretical physics. A

simple example is the anomalous magnetic moment of

the electron (QED), with Gevrey divergent series and the

apparition of periods (in Kontsevich-Zagier sense) in the

coefficients of the series. Cf. also the CFT litterature, in

particular some Witten papers...

A big continent is just emerging from the mist...
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In the minicourse I will illustrate this picture with the

exemple of Painlevé equations, using classical algebraic

geometry (in a partially new way) but also a new

geometry, the “wild geometry”. I will not introduce a

heavy and complicated formalism and I will remain at a

quite elementary level. In a first step, I will return to

simple and classical examples using a “new” look (in the

line of Euler, Poincaré, Stokes, Ramanujan, Watson, Hardy...).

It is important to get rid of bad habits inherited in

particular from the use of classical asymptotics: the

so-called Poincaré asymptotics, used without the original

intuitions of Poincaré. A red thread to follow is to try to

deal with “exact formulae” allowing precise numerical

computations. The wild geometry is also related to a very

powerful “combinatorics”, the Ecalle resurgence theory.
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The Painlevé equations
The Painlevé property

Paul Painlevé discovered (some of) its equations in an

effort of classification of the second order algebraic

differential equations (in the complex domain) :

y ′′ = R(x , y , y ′),

with R rational, possessing the so called Painlevé

property, which controls the “ramification points”:

the only possible movable singularities of the solutions are

poles.

According to Painlevé and Gambier, such equations can

be reduced to a list of 50 equations (canonical forms) and

if one excludes ”already known” equations (linear

equations, Riccati equations, elliptic ODE...) it remains only 6

new families: PI , PII , PIII , PIV , PV , PVI , the so called

Painlevé differential equations.
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The Painlevé differential equations

PI :
d2y
dt2 = 6y2 + t .

PII :
d2y
dt2 = 2y3 + ty + α.

PIII :
d2y
dt2 = 1

y (dy
dt )

2 − 1
t

dy
dt + 1

t (αy2 + β) + γy3 + δ
y ·

PIV : d2y
dt2 = 1

2y (dy
dt )

2 + 3
2y3 + 4ty2 + 2(t2 − α)y + β

y ·

PV : d2y
dt2 = ( 1

2y + 1
y−1)(dy

dt )
2 − 1

t
dy
dt

+ (y−1)2

t
(αy + β

y
) + γ y

t
+ δ y(y+1)

y−1
·

PVI :
d2y
dt2 = 1

2
( 1

y
+ 1

y−1
+ 1

y−t
))( dy

dt
)2 − ( 1

t
+ 1

t−1
+ 1

y−t
) dy

dt

+ y(y−1)(y−t)
t2(t−1)2 (α+ β t

y2 + γ t−1
(y−1)2 + δ t(t−1)

(y−t)2 ).

With parameters α, β, γ, δ ∈ C.

Non-linear second order ODEs whose all moving

singularities are poles (Painlevé property).

Fixed singularities : ∞ for all equations, plus 0 for PII (generic),

PIII ,PIV ,PV ,PVI , plus 1 for PVI .
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Figure: Paul Painlevé 1863 – 1933
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The Painlevé equations
Painlevé property or isomonodromic deformations ?

In fact, the equation PVI was discovered by Richard

Fuchs (son of Lazarus Fuchs), in relation with

isomonodromic deformations of linear O.D.E. (1905-1907).

A completely different property.
Later, in 1919, Garnier discovered that the others Painlevé

equations translate similar phenomena: iso-irregular

deformations of linear O.D.E..

The equivalence between the two approaches: Painlevé

property and iso-monodromy (or iso-irregularity) is only true for

equations of order 2 (a miracle...).

All O.D.E. coming from isomonodromic (or more generally

iso-irregular) deformations have the Painlevé property (Mal-

grange, Miwa...) but the converse can be false for equations of

order > 2.
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Painlevé equations were forgotten for a long time. The

subject was rediscovered and received new impulsions

around 1980: Okamoto, Sato, Jimbo, Miwa, Ueno...

During the last 40 years the subject “exploded” and there

are an enormous number of papers, from the mathema-

tical viewpoint or in relation with some applications (in

particular in theoretical physics).

Some works are very technical and the technics are very

different. In this minicourse I will try to explain the main

ideas and how to cross the technics. I will also present

some approaches, simple, efficient and apparently new (it

is a work in progress in collaboration with Martin Klimes

and Emmanuel Paul).
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In order to study the Painlevé equations there are two, a

priori completely different, lines.

1 To use the methods of the holomorphic dynamical

systems and holomorphic foliations. The main

historical sources are Painlevé work (in particular the

Leçons de Stockholm and Poincaré and Dulac work.

The main tools are: blow-ups, ramified blow-ups

(Briot and Bouquet, Chiba...) formal normal forms,

analytic normal forms (Martinet-Ramis...), invariant

subspaces (Hadamard-Perron), k -summability

(Ramis), resurgence (Ecalle)...

An essential breakthrough in these lines is the work

of Kazuo Okamoto ?? (which began in Strasbourg

under the impulsion of Raymond Gérard): the

Okamoto space of initial conditions.
2 To use the dictionnary with deformations of linear

equations. The main historical sources are the works

of R. Fuchs and R. Garnier.
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priori completely different, lines.

1 To use the methods of the holomorphic dynamical

systems and holomorphic foliations. The main

historical sources are Painlevé work (in particular the
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priori completely different, lines.

1 To use the methods of the holomorphic dynamical

systems and holomorphic foliations. The main

historical sources are Painlevé work (in particular the
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To use the dictionnary with deformations of linear

equations. The main historical sources are the works of

R. Fuchs, L. Schlesinger and R. Garnier. An essential

breakthrough in these line is the work of Sato, Miwa,

Jimbo, Ueno followed later by the work of Newell-Flashka.

The main tools are Schlesinger equations, Lax pairs,

spaces of representations (character varieties),

generalized monodromy data and wild monodromy

representations (Jimbo-Miwa-Ueno, Martinet-Ramis, van der

Put-Saito, Boalch...), Riemann-Hilbert methods and

Deift-Zhu non-linear saddle method (Fokas, Its, Kapaev,

Kitaev, Novokhchenov).

The main heuristic principle is :

All the asymptotics of the solutions of a Painlevé equation

are parametrized by the (generalized) monodromy data of

the linearized equation.
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Painlevé equations

Character varieties

Isomonodromic deformations and Riemann-Hilbert

map

The dynamics of PVI



Wild Dynamics...

J.P. Ramis

Presentation

Contents

Examples of ODEs

Linear equations

Non-linear equations

The dynamics of
PVI
Representations of the free

group of rank 3 into

SL2(C). Character

varieties

Contents

Examples of algebraic differential equations and

presentation of the tools

Geometry of spaces of initial conditions of the
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EXAMPLES OF ALGEBRAIC ODEs

Basic bricks and basic tools
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Linear differential equations on P1(C)

Homogeneous equations :

Dy = an(x)y (n) + an−1(x)y (n−1) + · · · + ao(x)y = 0,

an,an−1, . . . ,a0 ∈ C(x) (C[x ] case is sufficient...), and :

D = an(d/dx)n + an−1(d/dx)n−1 + · · ·+ a0 ∈ C(x)[d/dx ];

D := C(x)[d/dx ], non commutative polynomials (Oystein

Ore 1933); a non-commutative version of the planar

algebraic geometry (symplectic structure on the co-tangent

space: C(x)[d/dx ] → C(x)[ξ]):

[

d

dx
, x

]

=
d

dx
x − x

d

dx
= 1, xξ − ξx = 0.

Linear differential equations ↔ D-modules

(Malgrange 1949-1950, Bernstein 1971, Sato-Kawai-Kashiwa-

ra 1970, ...).
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Linear ODEs on the projective line P1(C)

Coordinates on P1(C): xw = 1, wd/dw = −xd/dx .

Singularities Σ(D) ⊂ P1(C) of Dy = 0 : the zeroes of an

and (perhaps...) ∞. They are fixed singularities: the only

possible singularities of a solution are in Σ(D), “the

singularities of the equation”.

if x0 ∈ P1(C) \ Σ(D), then there exists a fundamental

system of solutions in a neighborhood of x0 (Cauchy) and

any germ of holomorphic solution can be uniquely

continued along any continuous path γ in P1(C) \ Σ(D)
with origin x0.

If γ is a loop at x0 (γ(0) = γ(1) = x0), then it induces a

linear automorphism of the vector space Solx0
(D) of

germs of solutions at x0. It is the monodromy isomor-

phism. it depends only of the homotopy class of γ, an

element of the fundamental group π1

(

P1(C) \ Σ(D), x0

)

.
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Linear equations: the basic bricks
(On C or on P1(C))

For a linear ODE there are two types of singular points :

the regular-singular points, the “simple case”,

completely understood at the end of XIX-th century;

the irregular singularities, completely understood

only during the eighties.

The Fuchs equations are the equations with only

regular-singular points. I will begin with very simple (and

however very interesting !) examples.

Examples of Fuchs equations

1. Non homogeneous equation : xy ′ = 1. Solutions :

y = log x + C, C ∈ C.

We have :

Dy =
d

dx

(

x
d

dx
− 1

)

y =

(

x
d

dx
− 1

)

d

dx
y = xy ′′+y ′ = 0

The space of solutions of the homogeneous equation

Dy = 0 is C + C′ log x , C,C′ ∈ C.
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The monodromy along a simple loop around the origin is

log x 7→ log x + 2iπ, 1 7→ 1. The monodromy matrix is
(

1 2iπ
0 1

)

. It is unipotent.

2. Dy = (xd/dx − α)y = xy ′ − αy = 0, α ∈ C.
Then y = Cxα = C eα log x (C ∈ C). Along a simple

positive loop around 0, log x 7→ log x + 2iπ and

y 7→ e2iπαy . The monodromy is the multiplication by

e2iπα; α is the monodromy exponent. Particular cases:

α ∈ Z, the monodromy is trivial, α ∈ Q, the monodromy is

of finite order.

3.

Dy = (xd/dx−α)(xd/dx−β)y = y ′′−(α+β)y−αβy = 0,

α, β ∈ C.

If α− β /∈ Z, then the space of solutions is C1xα + C2xβ.

If α− β ∈ Z (the resonant case), xα = xβ.

We saw above that, for α = 0, β = 1, the space of

solutions is C1 + C2 log x . The general case is similar :

xα(C1 + C2 log x).
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In the non-resonant case, the monodromy matrix is
(

e2iπα 0

0 e2iπβ

)

. It is semi-simple.

In the resonant case, the monodromy matrix is

e2iπα

(

1 2iπ
0 1

)

.
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Linear equations: singularities and monodromy
(Algebraic equations on P1(C))

a2y ′′ + a1(x)y ′ + a0(x) = 0, a2,a1,a0 ∈ C(x);
y ′′ + p1(x)y ′ + p0(x) = 0, p1,p0 ∈ C(x);
a is a regular point if p1 and p0 are analytic at x = a;

a is a regular singular point (singularity of Fuchs type) if

p1 has a pole of order ≤ 1 at a and p0 has a pole of order

≤ 2 at a;

x2y ′′ + xq1(x)y ′ + q0(x) = 0;

otherwise a is an irregular singular point.

At infinity: w = 1/x , xd/dx = −wd/dw .

Evident generalisations for equations of order n.
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An example of Irregular equation
The Euler equation, Euler De seriebus divergentibus 1760

The basic brick of the linear (or non-linear !) irregular

equations is the Euler equation :

x2y ′ + y = x .

Using this example we can introduce some fundamental

(inter-related) tools :

Formal solutions (divergent);

Poincaré asymptotic expansions;

Gevrey asymptotic expansions and 1-summability,

Borel-Laplace summation and resurgence;

Summation in astronomers sense or at the smal-

lest-term (Poincaré 1892).

Saddle-node singularity of foliations.
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Formal solutions of the Euler equation

We can search a formal power series solution

f̂ (x) = a0 + a1x + . . .+ anxn + · · · . We get an unique

solution: a0 = 0, a1 = 1, an+1 = (−1)nn!, that is the Euler

series :

f̂ (x) =

∞
∑

n=0

(−1)nn!xn+1.

This power series is clearly divergent. However, following

Euler, it is “meaningful” and in particular one can use it to

compute a very good appoximation (for x “small”) of f (x),
the value at x of the unique bounded solution f of the

ODE on R+.

The associated homogeneous equation is x2y ′ + y = 0,

its solution: y = Ce1/x . Therefore a formal solution of the

Euler equation is f̂ (x) + C e1/x .
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Homogeneous version : d
dx

(

x dy
dx + 1

x y
)

= 0.

A formal fundamental system of solutions at 0 is (f̂ ,e1/x).

At ∞ (xz = 1) : zy ′′ + (1 − z)y ′ − y = 0. It is a Kummer

confluent hypergeometric function E(1,1).
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Asymptotic solutions

One can obtain a particular solution of Euler equation by

the method of variation of the constant. After some

manipulations we get as Euler :

y = f (x) =

∫ +∞

0

e−t/x

1 + t
dt .

In the variable w = 1/x it is a Laplace transform :

f (1/w) =
∫ +∞

0
e−tw

1+t dt = L( 1
1+t )(w).

We set :

fn(x) := x − 1!x2 + · · · + (−1)n−1xn,

Rn(x) := (−1)n
∫ +∞

0
tne−t/x

1+t dt .
Then f (x) = fn(x) + Rn(x) and, for x ∈ R+

|f (x) − fn(x)| ≤ |Rn(x)| ≤ Γ(n + 1)xn+1 = n!xn+1.
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Let θ > 0 such that |θ| < π/2. If x belongs to the closed

sector :

V R+(θ) := {−θ ≤ arg x ≤ θ},

then : |Rn(x)| ≤ (1/ cos θ)nn!|x |n.
We set (Mn(θ) := (1/ cos θ)nn!)n∈N∗ , then:

∀x ∈ V R+(θ), ∀n ∈ N∗, |f (x) − fn(x)| ≤ |Rn(x)| ≤ Mn(θ)|x |
n+1.

According to Poincaré définition (1886), the Euler power

series f̂ is the asymptotic expansion at the origin of the

actual solution f on the open sector ℜx > 0 (opening π).

The asymptotic expansion is uniform on each closed

subsector V R+(θ) (and on each closed disc

{ℜ1/x ≥ a > 0}).
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Poincaré asymptotics

Poincaré asymptotics on an open sector V with its vertex

at 0, on C (or on the Riemann surface of the logarithm).

Let : ĝ(x) =
∑

anxn ∈ C[[x ]] be a formal power series,

∀n ∈ N, ĝn(x) :=

n
∑

i=0

aix
i , |g(x) − gn(x)| ≤ MW ,n|x

n+1|;

g holomorphic on V , W ⊂ V arbitrary strict subsector.

Notations: g ∼ ĝ ∈ C[[x ]] on V , g ∈ A(V ).

The Taylor map J : A(V ) → C[[x ]], J : g 7→ ĝ, is a

morphism of differential algebras; it is surjective

(Borel-Ritt) but never injective; AN ESSENTIAL FLAW:

0 → A<0(V ) → A(V )
J
−→ C[[x ]] → 0;

A<0(V ) holomorphic functions infinitely flat at the origin.
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The fundamental theorem of asymptotic expansions

Le théorème fondamental des développements

asymptotiques est extraordinaire (Pierre Deligne).

The fundamental theorem of asymptotic expansions says

that, given a formal solution of an algebraic (or analytic)

ODE, it is allways possible to represent it asymptotically

by an actual solution on a sufficiently small sector (the

bisecting line being arbitrary).

Theorem

Let G(x ,Y ,Y1, . . . ,Yn) be a polynomial in n + 2 variables

and f̂ ∈ C[[x ]] a formal power series solution of the ODE

G(x , y , y ′, . . . , y (n) = 0 i. e. G(x , f̂ , f̂ ′, . . . , f̂ (n) = 0)). (1)

There exists a real number k > 0 such that for every open

sector V at the origin of opening < π/k and with a suffi-

ciently small radius, there exists an actual solution f of (1)

asymptotic to f̂ on V .
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In this form, that is without any restrictive hypothesis, this

result is due to Ramis-Sibuya 1989. The idea and the first

particular cases are due to Poincaré and there are a lot of

intermediate results in between due to various authors.

It is possible to compute a minoration of k using a

Newton polygon algorithm (Malgrange, Ramis).

If f̂ is convergent, then its sum f is an actual solution. We

can ask if, in the divergent case, it is possible to get an

actual solution f by a process of resummation of f̂ .

It is true as we will explain. In the “generic case” the

k -summability works. In non generic situations it is

necessary to use a more sophisticated process, the

multisummability.

For applications to Painlevé equations, k summability

suffices.
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From Poincaré asymptotics to Gevrey asymptotics

In 1978, I rediscovered and extended some forgotten

(and stupidely despised !) definitions of George Watson

(1911). I introduced the notion of Gevrey-s asymptotic

expansion.

Let s ≥ 0. One modifies the Poincaré définition, replacing

(Mn) by more precise estimates (Mn = CAn(n!)s), for

some C,A > 0 (which can depend on the subsector W ).

Notation g ∼s ĝ.

Example: f̂ is the Gevrey-1 asymptotic expansion of the

actual solution f on the open sector ℜx > 0.

If g ∼s ĝ, then the power series ĝ =
∑∞

n=0 anxn is a

Gevrey-s power series : |an| ≤ CAn(n!)s.

Notations : ĝ ∈ C[[x ]]s; C[[x ]]s is a differential

sub-algebra of C[[x ]].
(Gevrey filtration: s ≥ 0; C[[x ]]0 = C{x}, C[[x ]]+∞ = C[[x ]]),

g ∈ As(V ); a differential subalgebra of A(V ).
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There is an essential difference between the two notions

of asymptotic expansions. It is related to the problem of

non unicity of the asymptotic expansions (i. e. to the

kernel of the Taylor map).

We suppose s > 0 and we set k := 1/s. Then we have a

dichotomy, according to the opening op(V ) of the sector

V .

if op(V ) ≤ π/k (a “small sector”), then the Taylor

map :

J : A1/k (V ) → C[[x ]]1/k

is surjective (Borel-Ritt-Gevrey theorem of

Malgrange-Ramis) but it is not injective; it is similar to

Poincaré asymptotics (“smoothness”);

if op(V ) > π/k (a “big sector”), then the Taylor map

J : A1/k (V ) → C[[x ]]1/k

is not surjective but it is injective; it is radically

different from Poincaré asymptotics (“rigidity”);
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k -summability
(Ramis 1980)

The idea of Poincaré was to define a notion of “sum” of a

divergent power series but his method has a flaw. If the

sum allways exists (good news), it is not unique (bad

news): it is defined up to infinitely flat functions. Poincaré

observed that in practical applications (as in celestial

mechanics) its method was numerically efficient (in

relation with the summation at the smallest term already

used by Euler: “la sommation des astronomes”) but gave

no explication.

If we use Gevrey-(1/k) asymptotics, then the problem is

the same on small sectors but on big sectors it is com-

pletely different: we have a notion of exact sum for some

divergent series and this sum possesses very nice

properties: it is compatible with the addition, the

multiplication and the derivaton; moreover it coincides

with the classical sum for convergent series.
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The notion of sum depends on a direction d = R+eiθ.

Definition. A power series ĝ ∈ C[[x ]] is k -summable in a

direction d if there exists an open sector V (on the

Riemann surface of the logarithm) with vertex at 0 and

bisected by d and an holomorphic function g ∈ A1/k (V )
such that ĝ = J(g). Then g is the k -sum of ĝ in the

direction d .

A series k -summable in all the directions is convergent. A

series k -summable in all the directions except a finite

number is said k -summable. Notation: ĝ ∈ C{x}1/k .

Tauberian theorem (Ramis): if k 6= k ′, then :

C{x}1/k ∩ C{x}1/k ′ = C{x}.

There are some (deep..) analogies with the Heisenberg

uncertainty principle and also with arithmetic. There is a

dictionary between exponential functions and prime num-

bers which motivates the name “wild” that I introduced in

analogy with the wild ramification of the Galois groups in

positive characteristic p :

exponential tori vs p-Sylows.
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Riemann surface of the logarithm) with vertex at 0 and
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Tauberian theorem (Ramis): if k 6= k ′, then :
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direction d .

A series k -summable in all the directions is convergent. A

series k -summable in all the directions except a finite

number is said k -summable. Notation: ĝ ∈ C{x}1/k .

Tauberian theorem (Ramis): if k 6= k ′, then :

C{x}1/k ∩ C{x}1/k ′ = C{x}.

There are some (deep..) analogies with the Heisenberg

uncertainty principle and also with arithmetic. There is a

dictionary between exponential functions and prime num-

bers which motivates the name “wild” that I introduced in

analogy with the wild ramification of the Galois groups in

positive characteristic p :

exponential tori vs p-Sylows.



Wild Dynamics...

J.P. Ramis

Presentation

Contents

Examples of ODEs

Linear equations

Non-linear equations

The dynamics of
PVI
Representations of the free

group of rank 3 into

SL2(C). Character

varieties

The notion of sum depends on a direction d = R+eiθ.
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such that ĝ = J(g). Then g is the k -sum of ĝ in the
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1-summability of the Euler series

We recall :

f̂ (x) =
∑∞

n=0(−1)nn!xn+1 and f (x) =
∫ +∞

0
e−t/x

1+t dt .

Let α > 0 such that |α| < π/2. We set A(α) := 1/ cosα,.

If x belongs to the closed sector :

V R+(α) := {−α ≤ arg x ≤ α},

then

∀x ∈ V R+(θ), ∀n ∈ N∗, |f (x) − fn(x)| ≤ A(α)nn!x |n+1.

Therefore f is Gevrey-1 asymptotic to f̂ on the positive

half-plane {ℜx > 0}.

Let d be a direction such that d 6= R−. We set

fd(x) =

∫

d

e−t/x

1 + t
dt

When d moves in C \ R−, the holomorphic functions fd
glue together by analytic continuation (residues formula

and limit).
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We get a function f holomorphic on the open sector

V := {−3π/2 < Arg(x) < 3π/2, op(V ) = 3π.

The function fd is Gevrey-1 asymptotic to f̂ on the positive

open half-plane bisected by d . Hence f is Gevrey-1

asymptotic to f̂ on the sector V and it is k -summable in

every direction d 6= R−: fd is the sum in the direction d .

The function f has two branches f + and f− on the

half-plane ℜx > 0: we get f− (resp. ) using d− “above”

R− (resp. d+ “under” R−). When d crosses R− there is a

JUMP of the sum. We can compute it using the residues

formula and a limit :

f +(x) − f−(x) =

∫

d+−d−

e−t/x

1 + t
dt

= −2iπRest=−1

(

e−t/x

1 + t

)

= −2iπe1/x .

The jump is exponentially small (“instanton”); R− is a

STOKES LINE.
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Stokes lines or anti-Stokes lines
A source of confusion and of misunderstanding !

When, turning into the positive sense, we extends

analytically f− and f +, it appears a radical change of

asymptotic expansions (in generalized Poincaré sense)

when one crosses the

ANTI-STOKES LINE

(or oscillationg line) Arg(x) = −π/2: −2iπe1/x “explodes”.

For people who think in Poincaré asymptotics spirit (and

they are a lot...) the Stokes-phenomena is the change of

asymptotics when one crosses an oscillating line (and

they name it a Stokes line !). We, as Stokes, think in

terms of EXACT summation, therefore for us the central

phenomena appears when one crosses a line of maximal

decay of the exponential e1/x (a singular line): a

exponentially small jump which is INVISIBLE with

Poincaré asymptotics. The VISIBLE change of

asymptotics is a by-product of a “HIDDEN JUMP”.
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Unfortunately a lot of (distinguished...) people stuck to a

fundamental misunderstanding of Stokes work. It is not a

good road towards summability and resurgence. In

particular the celebrated “smoothing of a Victorian

singularity” of John Berry (which can be reformulated with

the exponential torus action) is not necessarily a good

idea.
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Borel-Laplace summation

Formal Borel transformation

Let ĝ =
∑+∞

n=1 ∈ C[[x ]]1. We define its formal Borel

transform :

B̂ĝ(ζ) = f(ζ) =

+∞
∑

n=1

an
ζn−1

(n − 1)!

We have g ∈ C{ζ}: a convergent series.

We define B̂(1) = δ (Dirac mass at 0).

The operator B̂ is linear and transforms multiplication into

convolution.

Laplace transformation

If the sum of g extends analytically along the line d with

an at most exponential growth at infinity, then we can

define the Laplace transform in the direction d :

Ld(g)(x) :=
∫

d
g(ζ)e−ζ/xdζ.
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Borel-Laplace summation

We will say that ĝ is Borel-Laplace summable in the

direction d and that Ld(g) is its sum in the direction d .

This process extends the summation of the Euler series :

B̂(f̂ ) = 1 − x + · · · + (−1)nxn + · · · = 1/(1 + x).
The Borel-Laplace sum of a convergent series is its

classical sum.

Theorem

Let ĝ ∈ C[[x ]]1 it is Borel-Laplace summable in the direc-

tion d if and only if it is 1-summable in te direction d .

For the applications this result is very useful.

Borel-Laplace method gives an “explicit” formula for the

sum but the summability is difficult to prove (this can

explain why it remained quite impopular for nearly a

century among mathematicians1...). On the contrary

1-summability is in many applications (in particular in

dynamical systems) quite easy tp prove (cohomological

methods...).
1
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Boundary values

Let g be an holomorphic function on C \ R. One can

define its boundary value in different senses (elementary,

measures, distributions, Sato hyperfunctions) :

[g] = g(x + i0) − g(x − i0) = lim
ε→0

g(x + iε) − g(x − iε);

[g] is a function, a measure, a distribution, an

hyperfunction.

Let T ∈ D′(R) be a distribution with a compact support K .

The Cauchy transform of T is :

g(z) := 1
2iπ < Tt ,

1
t−z >;

g is an holomorphic function on C \ K .

We can recover T from g using a boundary value (in the

distributions sense) : T = [g].
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Boundary values
Examples. Some basic bricks of resurgence

We change our notation, replacing z by ζ. We set ℜζ := t .
[

1
ζ

]

= −2iπδ,
[

1
ζ+1

]

= −2iπδ−1

[

1
ζk+1

]

= 2iπ (−1)k+1

k! δ(k)

We consider the function log ζ defined on C \ R+ by

the principal determination of the logarithm, then

[log ζ] = −2iπH, H being the Heaviside function.

Let α ∈ C, ζα = eα log ζ . Then [ζα] = (1 − e2iπα)tα.
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Resurgence of the Euler series

St R−
f̂ (x) =

∫

d+−d−

f(ζ)e−ζ/xdζ = 2iπe1/x ;

Other computation using a boundary value :

f(ζ) = 1
1+ζ and :

∫

d+−d−

f(ζ)e−ζ/xdζ = −2iπ

∫

R−

[

1

1 + ζ

]

e−ζ/xdζ

= −2iπδ−1e−ζ/x = −2iπe1/x .

This second computation is the very beginning of the

resurgence. It is a basic brick of the alien derivations.

Roughly speaking the idea is to suppose that the sum g

of the Borel transform can be analytically continued on

the Riemann surface of C \ Ω (Ω ⊂ C a discrete subset).

Then one can take at each point ω̃ above ω ∈ Ω an

”holomorphic” variant of the boundary value “living

locally” at ω̃.
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Hypergeometric equations
Euler, Gauss, Riemann

The Euler and Gauss hypergeometric equations are the

simplest non-trivial linear ODEs on the Riemann sphere

with only regular singular points. Following a seminal idea

of B. Riemann (1857), one can associate to an hyper-

geometric equation its monodromy representation, that is

a representation of the free group Γ2 of rank 2 into the

linear group GL2(C) (up to equivalence).

Then one gets a “dictionary” between the hypergeometric

ODEs and purely algebraic objects, explicitely computa-

ble from the parameters (a,b, c) of the equation. It is the

first version of the Riemann-Hilbert map.

There are confluent versions of the hypergeometric ODEs

(Kummer, Whittaker) and a “confluent version” of the Rie-

mann idea. An essential tool for us.
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The next step of complexity after the hypergeometric

equations are the Heun equations. They are strongly

related to the Painlevé equations.

According to a seminal idea of Jimbo it is possible to “cut”

the linearized equation of PVI into two hypergeometric

equations. This reflects a cutting of the 4 punctured

sphere into two 3 punctured sphere (pants decompo-

sition).

Allowing confluent hypergeometric equations, Jimbo

method extends to PV and PIII but unfortunately NOT to

PIV , PII , PI .
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Hypergeometric series

Euler and Gauss defined (for a,b, c ∈ R, c /∈ −Z) the

hypergeomeric series :

2F1(a,b; c; z) =

∞
∑

n=0

(a)n(b)n

n!(c)n
zn,

where (u)n := u(u + 1) . . . (u + n − 1) (Pochhammer

symbol).

One extends to the cases a,b, c ∈ C, c /∈ −Z.

The coefficients of 2F1 satisfy some simple recurrence

equations (linear rational difference equations).
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Hypergeometric equations

Second order linear equations on P1(C) with 3 regular

singular points : 0, 1, ∞.

Ea,b,c : z(1 − z)y ′′ + (c − (a + b + 1)z) y ′ − ab = 0,

a, b, , c ∈ C. Other expression :

δ(δ + c − 1)y − z(δ + a)(δ + b)y = 0, δ := zd/dz

Fundamental system of solutions at the origin:

Φ(a,b; c; z) :=
(

2F1(a,b; c; z), z1−c
2 F1(a − c + 1,b − c + 1; 2 − c; z)

)

(generic case).

Monodromy around the origin: z → e2iπz (analytic

continuation along a simple loop around 0):

M0 :=

(

1 0

0 e−2iπc

)

.

Φ(a,b; c; e2iπz) = Φ(a,b; c; z)M0.
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Monodromy : linear map Mγ : Solz0
→ Solz0

associated

to the homotopy class of a loop γ at z0 (by analytic conti-

nuation).

We choose 3 monodromy (simple) loops :

γ0, γ1, γ∞, γ0γ1γ∞ = 1.

After the choice of a fundamental solution Φ at z0, we get

3 monodromy matrices M0, M1, M∞,

M0M1M∞ = I.

0 1

z0

X

Y

Figure: Monodromy loops of hypergeometic equations
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Monodromy exponents




0 1 ∞

0 0 a

1 − c c − a − b b




Riemann P-symbol of the general Riemann equation

(bijection) :

y(z) = P




m1 m2 m3

ρ1 σ1 τ1

ρ2 σ2 τ2


 ;

Riemann equation regular-singular points at m1, m2, m3,

with respective pairs of exponents

(ρ1, ρ2), (σ1, (σ2), (τ1, τ2) satisfying the Fuchs relation :∑
i=1,2(ρ1 + σ1 + τi) = 1.

Reduction to the hypergeometric case by Möbius trans-

forms on z: (m1,m2,m3) → (0,1,∞) and afterwards :

y = zρ1(z − 1)ρ2u.
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Irreducibility of representations

A representation :

̟ : G := π1

(
P1(C) \ {0,1,∞}

)
→ Gl2(C)

is determined by the two matrices :

M0 := ̟(γ0) and M1 := ̟(γ1).

If there exists a one-dimensional subspace of C2 invariant by

̟(G), then ̟ is said to be reducible. If not ̟ is said to be

irreducible.

We denote respectively (λ1, λ2), (µ1, µ2), (ν1, ν2) the

pairs of eigenvalues of M0, M1 and M1M2 = ̟(γ0γ1).

The representation ̟ is irreducible if and only if :

∀i , j , k = 1,2, λiµj 6= νk .

Moreover the representation ̟ is up to conjugation

determined by the two matrices :
(
λ1 1

0 λ2

)
,

(
µ1 0

ν1 + ν2 − (λ1µ1 + λ2µ2 µ2

)
,

Irreducibility implies UNICITY for a given triple of pairs of

eigenvalues (λ, µ, ν).
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Irreducibility of Riemann equations
Finding the monodromy from the exponents

B. Riemann ??

We denote R(ρ, σ, τ) the Riemann equation with

singularities at 0, 1, ∞ with respective pairs of exponents

ρ, σ, τ .

The equation R(ρ, σ, τ) is said to be (ir)reducibleif its

monodromy representation is (ir)reducible.

R(ρ, σ, τ) is irreducible if and only if :

ρi + σj + τk /∈ Z (i , j , k = 1,2).

Under this condition, the representation ̟ is expressed,
up to conjugacy by the following matrices :

M0 = ̟(γ0) =

(
e 2iπρ1 1

0 e 2iπρ2

)
M1 = ̟(γ1) =

(
e 2iπσ1 0

b e 2iπσ2

)
,

with : b = e−2iπτ1 + e−2iπτ2 − e 2iπ(ρ1+σ1) − e 2iπ(ρ2+σ2).
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How to compute the monodromy of E(a,b; c) ?

Riemann computed the monodromy (in the irreducible

case) up to conjugacy. The result is a transcendental

function of the exponents: exponential (or trigonometric)

functions.

If we want to compute the monodromy into the basis at 0

(
2F1(a,b; c; z), z1−c

2 F1(a − c + 1,b − c + 1; 2 − c; z)
)
,

or into the similar basis at 1 or ∞ and more generally the

connection formulae by analytic continuation between

such basis, the exponential function is no longer

sufficient, we need the Γ function. (Euler or Barnes

integral formulae.)
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Confluent Hypergeometric equations

Kummer confluent hypergeometric equations :

E(a, c; z) : zy ′′ + (c − z)y ′ − ay = 0; a, c ∈ C.

Notation :

2F0(a,b; z) =

∞∑

n=0

(a)n(c)n

n!
zn,

This divergent power series is 1-summable.

A fundamental system of formal solutions at ∞ (an

irregular point) is :

(
z−a

2F0(a,1 + a − c;−1/z), za−cez
2F0(c − a,1 − a; 1/z)

)
.
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Generically there are 2 Stokes lines R±.

E(a, c; z) can be interpreted as a “limit”, a confluence, of

Ea,b,c . In Ea,b,c we set z = t/b and we take the limit

b → ∞.

Ea,b,c : z(1 − z)y ′′ + (c − (a + b + 1)z) y ′ − ab = 0,
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Barnes integral formula
The classical case

The Euler formula Γ(z) =
∫ ∞

0
zs−1e−s ds translates a dic-

tionary between the differential equation y ′ − y = 0 and

the difference equation u(z + 1) − zu(z) = 0.

Similarly the Barnes integral (1908) translates a
dictionary between the hypergeometric equation
E(a,b; c) and a first order rational difference equation :

2F1(a,b; c; z) =
Γ(c)

Γ(a)Γ(b)

1

2πi

∫ i∞

−i∞

Γ(a + s)Γ(b + s)Γ(a + s)

Γ(−s)
(−z)sds

Using this formula we can compute effectively the repre-

sentation of a fundamental groupoı̈d of P1(C) \ {0,1,∞}
associated to E(a,b; c) (based at 3 points “near” the 3

singular points), that is the monodromy representation

and the connection formulae associated to the links.

Method of computation: deformation of the “vertical”

integration contour and residues formula.
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Barnes integral formula
The confluent case

We set :

ψ(a; c; z) =
1

2πi

∫ i∞

−i∞

Γ(a + s)Γ(1 − c − s)Γ(−s)

Γ(a)Γ(a − c + 1)
(−z)sds.

Then (ψ(a; c; z),e−zψ(c − a, c;−z)) is a fundamental

system of solutions of the confluent hypergeometric

equation E(a, c).

Formally :

ψ(a; c; z) = z−a
2F0(a,1 + a − c; 1/z);

The power series 2F0 is 1-summable.

Using the formula we can compute effectively the repre-

sentation of a fundamental groupoı̈d of P1(C) \ {0,∞}
associated to E(a, c) (based at 2 points near ∞), that is

the monodromy representation and the Stokes multipliers.
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The wild monodromy of the confluent hypergeometric equation
(Martinet-Ramis 1989)

We give the wild monodomy group representation

associated to E(a, c) (expressed using a formal basis).

Stokes multipliers (unipotent matrices) :

(
1 0

λ(a, c) 1

)
,

(
1 µ(a, c)
0 1

)
,

λ(a, c) = −2iπ
eiπ(c−2a)

Γ(a)Γ(1 − c + a)
µ(a, c) = −2iπ

1

Γ(1 − a)Γ(c − a)

Formal monodromy :

M̂(a, c) =

(
e−2iπa 0

0 e2iπ(a−c)

)

Actual monodromy :

M(a, c) =

(
1 µ(a, c)
0 1

) (
1 0

λ(a, c) 1

)
M̂(a, c)
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The analytic halo
P. Deligne, J.P. Ramis

In a letter to, Deligne proposed a geometric picture of the

Gevrey asymptotic theory.

One introduces a “blow-up” of the origin into C, the

analytic halo. One performs a real blow up of the origin

(polar coordinates), replacing {0} by S1. Afterwards one

fills the hole with a disc. More precisely, one replaces {0}
by {0}∪]0,+∞[×S1 (k ∈]0,+∞[, θ ∈ S1).

Then one can extends the sheaf O of holomorphic

functions on C∗ by a sheaf on C̃ := C ∪ halo: an

holomorphic function on a sector extends if its growth

towards 0 is not too big.

One gets a sheaf Õ of complex vector spaces (no

multiplication !).

The small point of the algebraic geometry is at the heart

of {0} and the singular point of log at the heart of the

algebraic point.
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The analytic halo
Pictures from M. Loday-Richaud and G. Pourcin

Analytic extension of the function e−1/x4

on the analytic halo

(k = 4.

INDEX THEOREMS FOR ORDINARY DIFFERENTIAL OPERATORS 1391

Moreover, the Theorems of Cauchy-Heine and of Ramis-Sibuya imply the

following equalities:

H°(X^)=C{x}^

\/k=s~
1
 >0, H°(B(0,k),:F) =C[[x]],+,

VA;=s-
1
 >0, H°(B(0,k),:F) =C[[x}},-.

With F we shall prove, in particular, index theorems of D in the

spaces C, C[[a;]]s+, C[[.r]]g- and C{x}.

A typical section of the sheaf T : exp q ( — } .
\x/

The definition set of the exponential function exp q ( — ) as a section

of F when deg q = k is an integer is likely the open shadowed subset in

Figure 2.1.

The disc B(0, k) is partitioned into sectors: on one over two sectors

exp q equals 0, on the others expg is undefined. The support of exp q is

precisely the intersection of its definition set with X \ £?(0, k). The closure

of the arcs of S
1
 x {k} limiting the sectors where exp q vanishes are the

singular big points of q (cf. Definitions 2.11 and 2.12). The singular big

points of the determining polynomials of D will play a central role with

respect to the indices of D.

Figure 2.1. (Here k = 4)

ASSUMPTION 2.1. — From now and without further mention, we make

the following assumptions:

1) Sectors (resp. annuli) are subsets ofX of the form I x [A;', A/') (resp.

S
1
 x [A/, A/')), z.e., they are closed on the lower edge.

Analytic extension of the function e−c/x4

on the analytic halo;

the circle k = 4) × S1 is blowed up into :

k = 4 × (C∗ ∪ ({0} ∪ {∞}) × S1.

1412
 M. LODAY-RICHAUD AND G. POURCIN

r C[[x]], if c = 0,

H°(B^{A;,c}),^) = ^ C[^]]^)- if 0 < c < +00,

I W},- if c = +00,

and if I is an interval of S
1

( H ^ I ^ A / A ^ ) i f c = 0 ,

^°(Jx[0,{A:,c}],^)= ^^<-^ ^^^

l^Z,^/^^) if c=+oo.

With ̂  we shall prove, in particular, index theorems of D in the

spaces C[[^]],, C[[^]](,), C[[^]^i/,)+ and C[[x}]^/^-.

NOTATIONS. — Similarly to the notations in Sections 2 and 3, we

denote by B(0, {fc, c}) the open disc in X
k
 centered at 0, union of the disc

B(0, k) and of the annulus S
1
 x [{k, 0}, {k, c}[ and we denote by B(0, {k, c})

its closure.

Recall that we denote by (0, {fc, p}) the polar coordinates in F^.

A typical section of the sheaf ̂ : expg(^) when degq = fc.

The definition set of the exponential function expq(-^ as a section
~- \ x /

of T when deg ̂  = k is an integer is likely the open shadowed subset in
Figure 4.1.

Figure 4.1 (Here k = 4)

Sectors are now replaced by petals. The complement of the support is

likely a daisy and exp q equals 0 on one petal over two. The closure of the



Wild Dynamics...

J.P. Ramis

Presentation

Contents

Examples of ODEs

Linear equations

Non-linear equations

The dynamics of
PVI
Representations of the free

group of rank 3 into

SL2(C). Character

varieties

The analytic halo
Pictures from M. Loday-Richaud and G. Pourcin

Analytic extension of the function e−1/x4

on the analytic halo

(k = 4.

INDEX THEOREMS FOR ORDINARY DIFFERENTIAL OPERATORS 1391

Moreover, the Theorems of Cauchy-Heine and of Ramis-Sibuya imply the

following equalities:

H°(X^)=C{x}^

\/k=s~
1
 >0, H°(B(0,k),:F) =C[[x]],+,

VA;=s-
1
 >0, H°(B(0,k),:F) =C[[x}},-.

With F we shall prove, in particular, index theorems of D in the

spaces C, C[[a;]]s+, C[[.r]]g- and C{x}.

A typical section of the sheaf T : exp q ( — } .
\x/

The definition set of the exponential function exp q ( — ) as a section

of F when deg q = k is an integer is likely the open shadowed subset in

Figure 2.1.

The disc B(0, k) is partitioned into sectors: on one over two sectors

exp q equals 0, on the others expg is undefined. The support of exp q is

precisely the intersection of its definition set with X \ £?(0, k). The closure

of the arcs of S
1
 x {k} limiting the sectors where exp q vanishes are the

singular big points of q (cf. Definitions 2.11 and 2.12). The singular big

points of the determining polynomials of D will play a central role with

respect to the indices of D.

Figure 2.1. (Here k = 4)

ASSUMPTION 2.1. — From now and without further mention, we make

the following assumptions:

1) Sectors (resp. annuli) are subsets ofX of the form I x [A;', A/') (resp.

S
1
 x [A/, A/')), z.e., they are closed on the lower edge.

Analytic extension of the function e−c/x4

on the analytic halo;

the circle k = 4) × S1 is blowed up into :

k = 4 × (C∗ ∪ ({0} ∪ {∞}) × S1.

1412
 M. LODAY-RICHAUD AND G. POURCIN

r C[[x]], if c = 0,

H°(B^{A;,c}),^) = ^ C[^]]^)- if 0 < c < +00,

I W},- if c = +00,

and if I is an interval of S
1

( H ^ I ^ A / A ^ ) i f c = 0 ,

^°(Jx[0,{A:,c}],^)= ^^<-^ ^^^

l^Z,^/^^) if c=+oo.

With ̂  we shall prove, in particular, index theorems of D in the

spaces C[[^]],, C[[^]](,), C[[^]^i/,)+ and C[[x}]^/^-.

NOTATIONS. — Similarly to the notations in Sections 2 and 3, we

denote by B(0, {fc, c}) the open disc in X
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Analytic continuation across the halo
Martinet-Ramis, Malgrange-Ramis

The Deligne sheaf of analytic functions on the halo has

two flaws :

no multiplication;

no analytic continuation.

This sheaf is “too smooth”. The situation is quite similar

to the case of the analytic geometry over a nonarchime-

dean field. The remedy is similar: one must rigidify the

sheaf. The rigidication is based on k -summability and

multisummability and uses a notion of “big point”. After

rigidification we recover a multiplication and a good no-

tion of analytic continuation along some continuous paths

across the halo. There are versions of Cauchy integral

and residues theorem into the halo.

In this minicourse I will only use this as

AN HEURISTIC PICTURE.
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Heuristics
The linear case.

Let D ∈ C{x}[d/dx ]. It admits some singularities (a finite

number) in the analytic halo. (There are algorithms

(implemented in computer algebra) to compute them.) These

singularities are “fixed”, therefore we can follow

analytically a solution along a continuous path entering

into the analytic halo and when the path leave the halo

we get a new solution in the ordinary world. It is a

component of the wild monodromy.

This component is “discrete” as the ordinary monodromy,

but there exists also another component which is

“continuous”. In particular the wild monodromy group

possesses a :

NON TRIVIAL LIE ALGEBRA.

With J. Martinet we called it the resurgence algebra

because it is generated by some operators ∆̇ which are

the algebraic counterpart of (generalizations) of the

Ecalle dotted alien derivations.
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This resurgence algebra comes from the exponential tori

(rescaling of the exponentials) by Fourier analysis of the

adjoint actions on the Stokes operators.

In the minicourse I will define and describe the wild

dynamics for some “simple” families of algebraic ODEs:

the linearized equations of the Painlevé equations.

The wild dynamics of the Painlevé equations

My initial intuition (seven years ago...) is that the Painlevé

property can be extended in some sense into the analytic

halo. Therefore there exists a wild dynamics as in the

linear case: following a (wild) path, a solution can

disappear into the halo at an irregular point and reap-

pears (resurges as a resurgent stream) after a travel into

the halo (underground).

In the minicourse I will define and describe this dynamics.

It is not easy...
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A microscope

The analytic halo is a “multilayered onion peel”. It is pos-

sible to zoom on a layer using a good microscope: the

Borel transform. More precisely a “conjugate” of a Borel

transform by a ramification operator x 7→ xk (k ∈ Q+∗): k

is the magnification parameter. Moving k one finds critical

layers {ki} × S1. Each critical layer can be explored using

the corresponding Borel plane. In most applications (and

in all the resurgence litterature...) there is only one critical

layer and the story ends. But in some cases it can be

necessary to zoom again on the analytic halo of a

singular point of the Borel plane... You can recognize a

process of desingularization.
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NON-LINEAR ALGEBRAIC ODEs
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Movable singularities
Simple examples

If an ODE is non-linear we can in general predict neither

where the singularities of solutions appear nor of what

kind the singularities are.

Examples :

Movable pole : x ′ − x2 = 0, y = − 1
t−C1

.

Movable algebraic branch point : mym−1y ′ = 1,

y = (x − C)1/m.

Movable logarithmic branch point : y ′′ + (y ′)2 = 0,

y = log(x − C1) + C2.

Movable essential singular point :(
yy ′′ − (y ′)2

)2
+ 4y(y ′)3 = 0, y = C1e−1/(x−C2).
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where the singularities of solutions appear nor of what

kind the singularities are.

Examples :

Movable pole : x ′ − x2 = 0, y = − 1
t−C1

.

Movable algebraic branch point : mym−1y ′ = 1,

y = (x − C)1/m.

Movable logarithmic branch point : y ′′ + (y ′)2 = 0,

y = log(x − C1) + C2.

Movable essential singular point :(
yy ′′ − (y ′)2

)2
+ 4y(y ′)3 = 0, y = C1e−1/(x−C2).
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Painlevé property

PROBLEM. Find all the algebraic differential equations

free of movable branch points and movable essential

singular points.

We say that such an algebraic ODE enjoys the Painlevé

property: its only movable singularities are poles.

For equations of order one, only movable branch points

appear. For such equations the problem was solved by L.

Fuchs and H. Poincaré (mainly).

For equations of order n ≥ 3 movable essential singu-

larities can appear (and it can be even worse for n ≥ 3...).
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For equations of order n = 2, the problem was solved by

Painlevé and his student Gambier (by a huge amount of

computations...). Any equation with the Painlevé property

reduces to an equation :

which can be integrated by quadrature,

or to a linear equation,

or to one of the six Painlevé equations.

For n ≥ 3 the problem remains largely open

(Chazy...).
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reduces to an equation :

which can be integrated by quadrature,

or to a linear equation,

or to one of the six Painlevé equations.
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Painlevé and his student Gambier (by a huge amount of

computations...). Any equation with the Painlevé property
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Riccati equations
A 1st order ODE satisfying Painlevé property

y ′ = a(x)y2 + b(x)y + c(x) = 0, a, c ∈ C(x).

By the change of unknown function y 7→ u,

y = − 1
a(t)

u′

u , the Riccati equation is transformed into the

linear equation :

u′′ −

(
a′(x)

a(x)
+ b(x)

)
u′ + a(x)c(x)u = 0.

Solutions of this equation admits only fixed singularities

(a = 0). Since a zero of u is of finite order, then the mo-

vable singularities of y are only poles.

By the change of unknown function y 7→ 1/w , the Riccati

equation is transformed into another Riccati equation :

w ′ = −c(x)w2 − b(x)w − a(x) = 0.
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Riccati foliation

The foliation defined by ω = dy −
(
ay2 + by + c

)
dx = 0

extends into an holomorphic singular foliation on

P1(C) × P1(C): the Riccati foliation.

There are a finite number of vertical leaves (above the

singular points) and the foliation is transversal to the non

singular fibres of :

P1(C) × P1(C) → P1(C), (x , y) → x .

The monodromy is a representation of the fundamental

group of the complex plane minus the singular points (a

free group of finite rank) into PGL(2,C) (the group of

Möbius transformations). The dynamics (the image of the

representation), translating the “multivaluation” of the

solutions, can be extremely complicated !
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Elliptic differential equations
A 1st order ODE satisfying Painlevé property

Assume that g2,g3 ∈ C, g3 − 27g2 6= 0. We consider the

elliptic curve :

{y2 = 4x3 − g2x − g3} ∪ {∞} ⊂ P2(C)

It is parametrized by (x = P(t), y = P′(t)), t ∈ C mod Λ,

where Λ ≈ Z2 is the lattice of periods.

The ODE for the Weierstrass function P is :

(x ′)2 = 4x3 − g2x − g3

The solutions are given by x(t) = P(t − b) where P(t) is

the Weierstrass P-function. The constant b can be

determined by the initial condition, so the solution

x(t) = P(t − b) has movable poles of order 2 at t = b

mod ? and no other singularity.
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Classification of 1st order ODEs with Painlevé property

Theorem [L. Fuchs, H. Poincaré, J. Malmquist, M. Matsuda]

A 1st order ODE (⋆) has the Painlevé property if and only if

it can be transformed into one of the following equations :

a Riccati equation,

an elliptic equation (the equation of the Weierstrass P

function)

or if one can integrate (⋆) algebraically.
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Theorem [L. Fuchs, H. Poincaré, J. Malmquist, M. Matsuda]
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PVI AND ITS DYNAMICS

Following Dubrovin, Mazzocco, Iwasaki, Saito, Cantat-Loray...
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Our presentation is in elementary purely algebraic terms

(no differential equations...). At the end we will introduce

some topology: fundamental groups of punctured

spheres.

We denote Γ3 :=< u0,ut ,u1 > the free group of rank 3

generated by the letters u0, ut , u1. It is identified with the

free group < u0,ut ,u1,u∞|u0utu1u∞ = 1 > generated by

u0, ut , u1, u∞ up to the relation u0utu1u∞ = 1.

Let ρ : Γ3 → SL2(C) be a linear representation. We set

Ml := ρ(ul) (l = 0, t ,1,∞). We denote el and e−1
l

(l = 0, t ,1,∞) the eigenvalues of Ml . The representation

ρ can be identified with (M0,Mt ,M1) ∈ (/SL2(C))3.

Therefore the set of such representations

Hom (Γ3,SL2(C)) modulo the adjoint action of SL2(C) can

be identified with (SL2(C))3 /SL2(C) (the set of triples of

matrices up to overall conjugation) :

Hom (Γ3,SL2(C)) /SL2(C) = (SL2(C))3 /SL2(C);

(SL2(C))3 is a complex affine variety of dimension 9.
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To a representation ρ : Γ3 → SL2(C) we associate its

seven Fricke coordinates (or trace coordinates), the four

“parameters” :

al := Tr Ml = el + e−1
l , l = 0, t ,1,∞

and the three “variables”:

X0 = Tr M1Mt , Xt = Tr M1M0, X1 = Tr MtM0.

These seven coordinates satisfy the Fricke relation
F (X ,a) = 0, where :

F (X ,a) := F ((X0,Xl ,X1); (a0,at ,a1,a∞))

= X0XtX1 + X 2
0 + X 2

t + X 2
1 − A0X0 − AtXt − A1X1 + A∞,

with :

Ai := aia∞ + ajak , for i = 0, t ,1

and :

A∞ := a0ata1a∞ + a2
0 + a2

t + a2
1 + a2

∞ − 4.
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The seven Fricke coordinates of ρ are clearly invariant by

equivalence of representations. Then, using the seven

Fricke coordinates, we get an algebraic map from

(Sl2(C))3 /SL2(C) to C7. The image is the six

dimensional quartic hypersurface of C7 defined by the

equation F (X ,a) = 0.

We fix the parameter a and denote S(a) or SA0,At ,A1,A∞
or

SVI(a) the cubic surface of C3 defined by the equation

F (X ,a) = 0. We call this surface the the character variety

of PVI.

By a theorem of Fricke, Klein and Vogt the equivalence

class of an irreducible representation is completely

determined by its seven Fricke coordinates.

Beware : for a reducible representation the Fricke coordinates

are not necessarily “good coordinates”.
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We denote S(a) the projective completion2 of S(a) in

P3(C). The family {S(a)}a∈C4 contains all smooth

projective cubic surfaces (up to linear transformations).

The list of projective cubic surfaces was given by Schläfli

over a century ago. There are 20 families of singular

projective cubic surfaces.

2As an abstract algebraic surface it is a del Pezzo surface of

degree 3.
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The surface S(a) is simply connected. It can be smooth

or have singular points according to the values of a. The

number of singular points is at most 4. Singular points of

S(a) appear from semi-stable representations which are

of two kinds :

Either Ml = ±I2
(
that is ρ(ul) belongs to the center of

SL2(C)
)

for some l = 0, t ,1,∞, hence el = ±1 and

al = ±2. This case is called the resonant case.

Or the representation is reducible. This condition can

be translated into an algebraic condition on a : we

have :

e0 e±1
t e±1

1 e±1
∞ = 1 (2)

for some triple of signs.
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An example of a singular cubic surface with 4 singular

points is the Cayley cubic. We get it for

(A0,At ,A1,A∞) = (0,0,0,−4) (this is true either if

a = (0,0,0,0) or if a = (±2,±2,±2,±2) with product

−16):

X0XtX1 + X 2
0 + X 2

t + X 2
1 − 4 = 0. (3)

We denote : FXi
:= ∂F (X ,a)

∂Xi
= XjXk + 2Xi − Ai . The

character variety SVI(a) = SA0,At ,A1,A∞
is equipped with a

“natural” algebraic symplectic form (Poincaré residue) :

ωVI,a :=
dXt ∧ dX0

2iπFX1

=
dX1 ∧ dXt

2iπFX0

=
dX1 ∧ dXt

2iπFXt

(4)

We have dF ∧ ωVI,a = − 1
2iπ dX0 ∧ dXt ∧ dX1. The Poisson

bracket associated to −2iπ ωVI,a is the Goldman bracket

defined by : {Xi ,Xj} = FXk
, and circular permutations.
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Representations of the fundamental group of a 4-punctured

sphere

Let S2
4 be the four punctured sphere. Its fundamental

group π1(S
2
4) is isomorphic to a free group of rank 3: we

can choose as generators the homotopy classes of three

simple loops turning around three punctures.

Therefore we can apply the preceding results to the study

of equivalence classes of representations of π1(S
2
4) into

SL2(C). It is a purely topological matter and the choice of

the punctures is indifferent up to an homeomorphism. But

in the following we will need the complex structure:

S2 = P1(C). Then, starting from 4 arbitrary punctures, up

to a Möbius transformation, we can choose as punctures

0, t ,1,∞ for some value of t . This explains our initial

notation.

We choose simple loops γl , l = 0, t ,1,∞, based at a point

z0 ∈ P1(C) \ {0, t ,1,∞}.
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For t ∈ P1(C) \ {0,1,∞} we set :

R̃ept := Hom
(
π1

(
P1(C) \ {0, t ,1,∞}

)
,SL2(C)

)
/SL2(C).

For small changes of t, the group π1

(
P1(C) \ {0, t ,1,∞}

)

remains constant, more precisely there exist canonical

isomorphisms :

π1

(
P1(C) \ {0, t1,1,∞}

)
→ π1

(
P1(C) \ {0, t2,1,∞}

)
.

Therefore there are canonical isomorphisms

R̃ept2
→ R̃ept1

.

Geometrically this says that the space of representations

R̃ep := {R̃ept}t∈P1(C)\{0,1,∞} can be interpreted as “a

local system of varieties” parameterized by

t ∈ P1(C) \ {0,1,∞};

the fibration R̃ep → P1(C) \ {0,1,∞} (whose fiber over t

is R̃ept ) has a natural flat Ehresmann connection.
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The homotopy classes of the loops γl gives an

isomorphism between π1

(
P1(C) \ {0,1,∞}; x0

)
sending

the class of γl on ul . We write :

ρ(γl) = ρ(ul) = Ml , al = Tr Ml

and :

X0 = Tr M1Mt = Tr ρ(γ1γt), Xt = Tr M1M0 = Tr ρ(γ1γ0),

X1 = Tr MtM0 = Tr ρ(γtγ0).

We can associate these trace coordinates to pants

decompositions of the 4 punctured sphere into

3-punctured spheres (γtγ0 ∼ (γ1γ∞)−1) :

z4 z1

z3 z2

!3 !2

!1!4

m4 m1

m3 m2

3

2

1 3

2

1

pC0,3

L

C0,3

R

a) b)

Figure 2: Basis of loops of π1(C0,4) and the decomposition C0,4 = CL
0,3 ∪ CR

0,3.
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a

b

c

d

a

c

b

d

a

d

b

c

Figure: Three decompositions of S2
4 into pairs of S2

3

Figure: A pair of pants ≈ S2
3
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Braids
If we move a = (a1,a2,a3,a4) ∈ P1(C), the points ai

remaining distinct, the topology of P1(C) \ {a1, . . . ,a4}

does not change, but the complex structure changes,

there are moduli.

Such a move is a path on the the configuration space :

B := C4 \
⋃

i 6=j

∆ij , where ∆ij := {xi = xj}.

A braid is a continuous path on the configuration space

from a configuration to itself up to the ordering of the

points. A pure braid is a continuous loop on the

configuration space.

Using the map P1(C) \ {0,1,∞} → B defined by

t 7→ (0, t ,1,∞), we get a map

π1

(
P1(C) \ {0,1,∞}

)
→ π1(B) ≈ PB3.
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Figure: Braids and punctured disks
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Figure: Pure braid and loop on the configuration space
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The space of representations :

R̃ep := {R̃ept}t∈P1(C)\{0,1,∞}

can be interpreted as “a local system of varieties”

parameterized by

t ∈ P1(C) \ {0,1,∞},

or equivalently by the configuration defined by the 4

punctures (0, t ,1,∞), a point of B.

We get a fibre bundle above B with an Ehresmann

connection. Then the fundamental group of the basis B,

that is the pure braids group PB3 acts on the fiber.
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PVI

The sixth Painlevé equation is :

d2y

dt2
=

1

2

(
1

y
+

1

y − 1
+

1

y − t

) (
dy

dt

)2

−

(
1

t
+

1

t − 1
+

1

y − t

)
dy

dt

+
y(y − 1)(y − t)

t2(t − 1)2

(
α+ β

t

y2
+ γ

t − 1

(y − 1)2
+ δ

t(t − 1)

(y − t)2

)
;

α, β, γ, δ ∈ C are the parameters.

The generic solution of PVI has essential singularities

and/or branch points in the points 0, 1,∞, the fixed

singularities. The other singularities, the moving

singularities (so called because they depend on the initial

conditions) are poles: it is the Painlevé property. A solu-

tion of PVI can be analytically continued to a meromor-

phic function on the universal covering of :

P1(C) \ {0,1,∞}.
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Transcendantes nouvelles

For generic values of the integration constants and of the

parameters α, β, γ, δ, a solution cannot be expressed via

elementary or classical transcendental functions. It is

called the irreducibility property of PVI (and similarly for

other Painlevé equations). For this reason, Painlevé

called these functions: “transcendantes nouvelles” (new

transcendental functions).

The first notion of reducibility appears in Painlevé “Leçons

de Stockolm”. The algebrization of this notion is due to

the Japanese school (at the end of nineties): K. Nishioka,

H. Umemura, H. Wanabe. The proof of irreducibility follows.
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Painlevé proposed to use Drach “differential Galois

theory” (rationality group 1898) to get a proof. His “proof”

for PI case in this line has some gaps (and worse also

Drach theory...).

Recently some proofs were obtained in this line (using

Malgrange-Galois pseudogroup, Morales-Ramis-Simo

theory,...): Casale 2007-2008, Casale-Weyl, Cantat-Loray,

Acosta-Humanez-van der Put-Top, Horozov, Stoyanova,

Christov, Morales-Ruiz...
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In modern formulation, solutions of PVI parameterize

isomonodromic deformations (in t) of rank two

meromorphic connections over the Riemann sphere

having simple poles at the 4 points 0, t ,1,∞.

We consider traceless 2 × 2 linear differential systems

with 4 fuchsian singularities (logarithmic) on the Riemann

sphere P1(C), parameterized by a complex variable t :

dY

dz
= A(z; t)Y , A(z; t) :=

A0(t)

z
+

At(t)

z − t
+

A1(t)

z − 1
(5)

with the residue matrices Al(t) ∈ sl2(C) (l = 0, t ,1) having

± θl
2 as eigenvalues (independantly of t). We set

θ := (θ0, θt , θ1, θ∞): it encodes (through transcendental

maps) the local monodromy data.
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Choosing a germ of a fundamental matrix solution Φ(z, t)
of the above system near some nonsingular point z0, one

has a linear monodromy representation

(anti-homomorphism) :

ρ : π1

(
P1(C) \ {0, t ,1,∞}; z0

)
→ SL2(C)

such that the analytic continuation of Φ along a loop γ
(based at z0) defines another fundamental matrix solution

Φ ρ(γ).

The equivalence class of ρ in SL2(C) is independant of

the choice of the fundamental solution Φ. The system (5)

is said isomonodromic if this conjugation class is locally

constant with respect to t , or equivalently if the matrices

Al (l = 0, t ,1) depends on t in such a way that the

monodromy of a fundamental solution Φ(z : t) does not

change for small deformations of t .
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A meromorphic connection ∇ can be interpreted as an

equivalence class of systems modulo rational equiva-

lence (gauge transformation). If two systems :

dY

dz
= A(z; t)Y and

dY

dz
= B(z; t)Y ,

satisfying the conditions (5), are rationally equivalent on

P1(C), that is if there exists a rational matrix P such that :

B = P−1AP − P−1 dP

dz
,

then the two corresponding monodromy representation

are equivalent. The isomonodromy property is invariant

by a rational equivalence. We can speak of :

isomonodromic deformations of connections.



Wild Dynamics...

J.P. Ramis

Presentation

Contents

Examples of ODEs

Linear equations

Non-linear equations

The dynamics of
PVI
Representations of the free

group of rank 3 into

SL2(C). Character

varieties

Schlesinger (??) found that the isomonodromy condition

is equivalent to having the linear differential equation :

dY

dt
= B(z, t)Y , with B(z, t) := −

At(t)

z − t
Y . (6)

We define the Schlesinger system as the system (5) and

(6) :
dY

dz
= A(z, t)Y ,

dY

dt
= B(z, t)Y ,

Then the isomonodromy of the system (5) is equivalent to

the complete integrability condition (also called zero

curvature condition) of the Schlesinger system :

∂B

∂z
−
∂A

∂t
= [A,B]. (7)

Expliciting this condition, we see that the

isomonodromicity of the system (5) is expressed by the

following equations (called the Schlesinger equations).
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Schlesinger equations

dA0

dt
=

[At ,A0]

t
,

dAt

dt
=

[A0,At ]

t
+

[A1,At ]

t − 1
,

dA1

dt
=

[At ,A1]

t − 1
.

This is a non-linear differential system with the unknown

function (A0,At ,A1) (9 scalar unknown functions).

General version: t1, . . . , tm logarithmic singular points. If :

∂Ai

∂tj
=

[Ai ,Aj ]

ti − tj
,

∂Ai

∂ti
= −

∑

j 6=i

[Ai ,Aj ]

ti − tj
,

then we have an isomonodromic deformation.

Conversely, in the generic case, an isomonodromic

deformation satisfies the Schlesinger equations.
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Figure: Ludwig Schlesinger 1864-1933, follower and son-in-law

of Lazarus Fuchs
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We suppose now that the Schlesinger equations are

satisfied by the matrix A of the system (5) and we will

derive PVI for some values of the parameter (under some

genericity condition on the local monodromy exponents ±θl/2).

We set A∞ := −A0 − At − A1 and we suppose that the

matrices Al (l = 0, t ,1,∞) are semi-simple. The eigen-

values of the Al (l = 0, t ,1,∞) are independant of t and

we denote them by el ,e
−1
l . We suppose el 6= ±1 or

equivalently θl /∈ Z; non-resonance conditions.

From Schlesinger equations we get
dA∞

dt
= 0, therefore,

up to a constant gauge transformation, we can suppose

A∞ =

(
θ∞ 0

0 −θ∞

)
.
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We denote [A]ij the (i , j) entry of the matrix of the diffe-

rential system (5). We suppose that the system is

irreducible. Then [A]12 is not identically 0. We have

A0 + At + A1 = −A∞, therefore [A0 + At + A1]12 = 0.

Hence z(z − t)(z − 1)[A]12 is linear in z and it admits a

unique zero at the point z = q(t), where :

q(t) = −
t [A0]12

t [At ]12 + [A1]12

The point q(t) is an apparent singularity of the second

order linear ODE satisfied by the first component y of any

solution Y of the system (5).
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We denote :

p(t) := [A (q(t), t))]11 +
θ0

2q
+

θt

2(q − t)
+

θ1

2(q − 1)
.

Then the Schlesinger system is equivalent to the Hamil-

tonian system of PVI whose (non autonomous)

Hamiltonian is HVI :

t(t − 1)HVI(q,p, t) := q(q − 1)(q − t)p2

− (θ0(q − 1)(q − t) + θ1q(q − t) + (θt − 1)q(q − 1)) p

+
1

4

(
(θ0 + θ1 + θt − 1)2 − θ2

∞)(q − t)
)
.

Now we can write the Hamiltonian system in PVI form

with the following values for the parameters :

α = (θ∞−1)2/2 β = −θ2
0/2, γ = θ2

1/2, δ = 1− θ2
t /2.
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PVI as an Hamiltonian system

PVI is equivalent to a Hamiltonian system :

{
dq
dt = ∂HVI

∂p
dp
dt = −∂HVI

∂q

,

HVI ∈ C(t)[q,p, θ].

The corresponding Hamiltonian (rational) vector field is :

XVI =
∂

∂t
+
∂HVI

∂p

∂

∂q
−
∂HVI

∂q

∂

∂p
.

The field is regular on (C \ {0,∞}) × C2. We set

L := P2(C) \ C2 ≈ P1(C);
XVI has a pole along (C \ {0,∞}) × L.
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The Riemann-Hilbert correspondence RH is the map

between the space of linear systems (5) with prescribed

poles and local exponents ±θl/2, modulo SL2(C)-gauge

transformations, on one side (the source or “left hand

side”), and the space of monodromy representations with

prescribed local exponents modulo conjugation in SL2(C)
on the other side (the target or “right hand side”).

Parameters:

el = eiπθl , al = Tr Ml = 2 cos 2πθl .

We will see that the Riemann-Hilbert correspondence can

be translated into a correspondence between solutions of

PVI and equivalence classes of monodromy represen-

tations.
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Okamoto space of initial conditions

The naı̈ve phase space of the non-linear system PVI is(
P1(C) \ {0,1,∞}

)
× C2.

It is not a good phase space because the solutions have

poles: the Painlevé flow is not complete.

Using a series of blowing-ups K. Okamoto introduced a

good space of initial conditions Mt0(θ) at any point

t0 ∈ C \ {0,1} (1979). It is a convenient semi com-

pactification of the naı̈ve phase space C2, an open

rational surface. (A 8 points blow-up of the Hirzebruch

surface Σ2 minus an anti-canonical divisor.)
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The Okamoto variety is endowed with an algebraic

symplectic structure given by the extension of the

standard symplectic form dp ∧ dq.

The pole divisor of this extension is the anticanonical

divisor of a compactification of the Okamoto variety: the

vertical leaves. The vertical leaves configuration is

described by an extended Dynkin diagram. Today a “good

list” of the Painlevé equations is labelled by such

diagrams.

2

1 1 1 1

!̃4

e D̃4 :

3

•

2 • • • 4

1

•
5

Figure: PVI . Divisor: 2E0 + E1 + E2 + E3 + E4

D̃4
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The Okamoto variety of initial conditions at t0 can be

identified with the moduli space of meromorphic

connections over the Riemann sphere3 having simple

poles at the four points 0, t0,1,∞ with local exponents

{±θl}l=0,t ,1,∞.

3In the non resonant case. In the resonant case, that is if one of

the θl is an integer, thenMt0(θ) is the moduli space of parabolic

connections.
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For θ fixed, we have a fiber bundle :

πθ : M(θ) → P1(C) \ {0,1,∞};

the fiber above t0 is Mt0(θ).

The naı̈ve Painlevé foliation extends to this fiber bundle.

This extension is transverse to the fibers and we get a

complete (symplectic) flow, the Painlevé flow. For all

t0, t1 6= 0,1,∞ this flow induces an analytic symplectic

diffeomorphism : Mt0(θ) → Mt1(θ).
Mx(κ) : space of initia

πκ

Q

Painlevé flow
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We get also analytic maps (Riemann-Hilbert maps) :

RH : Mt(θ) → SPVI
.

Such a map can be interpreted as an analytic map:

RH : Mt(θ) → SA0At A1A∞
,

where :

Ai = 4
(
cos θi cos θ∞ + cos θj cos θk

)
,

((i , j , k) is a permutation of (0, t ,1)), and

A∞ = 16(cos θ0 cos θt cos θ1 cos θ∞)

+ 4(cos2 θ0 + cos2 θt + cos2 θ1 + cos2 θ∞ − 1).

This map is allways proper. If the cubic surface SA0At A1A∞

is smooth, then this map is an analytic symplectic

isomorphism.
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In the singular case, the proper map RH realizes an

analytic minimal resolution of singularities of the cubic

surface SA0At A1A∞
.

Along the irreducible components of the exceptional

divisor, PVI restricts to a Riccati equation.

The singular points of type A1 , A2 , A3 and D4 on the cubic

surface yield 1, 2, 3 and 4 exceptional Ricatti curves.

e0

e1

e2

e3

moduli space cubic surface

RHx,κ

resolution of

singularity

S(θ)

Mx(κ)

D4

Figure 8: Resolution of singularities by Riemann-Hilbert correspondence

Figure: From Iwasaki-Uehara
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“Pulling back” the fiber bundle R̃ep → P1(C) \ {0,1,∞}
and its connection by the Riemann-Hilbert map (i. e.

keeping the base and changing the fibers through RH)

yields the fiber bundle M → P1(C) \ {0,1,∞} with its PVI

connection. This allows one to give an important

interpretation of the non-linear monodromy of PVI using a

braid group.
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An algebraic dynamics on the character variety induced by a

braids group. Comparison with the dynamics of PVI

We interpret the isomonodromic deformations as an

Ehresmann connection on a bundle above the ”space of

configurations” B (the space of complex planes minus 4

points) whose fiber is S(A,B,C,D).

The fundamental group of the basis B is the pure braids

group PB3 and it acts algebraically and symplectically on

S(A,B,C,D). Moreover it is “easy” to compute explicitely the

action. The computation of the conjugate by RH of the

monodromy of PVI follows :

π1(P
1(C) \ {0,1,∞}, ⋆) → Aut(S(A,B,C,D)).

The algebraic dynamics on S(A,B,C,D) depends algebrai-

cally on (A,B,C,D).

Application: Computation of the Galois-Malgrange

groupoid of PVI (Cantat-Loray 2007).
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The fundamental group of the basis B is the pure braids
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The Wuhan conjectures

In 2012, I presented a program at a conference in Wuhan

(China).

Roughly speaking this program was to extend the results

obtained for PVI to the others Painlevé équations :

PV , PIV , PIII , ,PII , PI .

We will explain the problems and afterwards we will

present the state of the arts for PII and PV , a joint work (in

progress...) with Martin Klimes and Emmanuel Paul for

PII and a work of Klimes for PV .
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The Wuhan conjectures

In 2012, I presented a program at a conference in Wuhan

(China).

Roughly speaking this program was to extend the results

obtained for PVI to the others Painlevé équations :

PV , PIV , PIII , ,PII , PI .

We will explain the problems and afterwards we will

present the state of the arts for PII and PV , a joint work (in

progress...) with Martin Klimes and Emmanuel Paul for

PII and a work of Klimes for PV .
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The Wuhan Program (2012)

Figure: Sakuras blossom in Wuhan Campus, China
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The Wuhan Program (2012)

During the spring of 2012, in a lecture at a conference in

Wuhan university in China, I proposed a program about :

the definition of a “natural dynamics” on the (wild)

character variety of each Painlevé differential

equation,

a rationality conjecture for this dynamics,

its conjectural relations with the Malgrange-Galois

groupoids of the equations,

the possible confluences of the dynamics according

to the confluence scheme of the Painlevé equations.

In 2012 everything was well known for PVI . The

program was a “natural generalization” for the others

Painlevé equations: the main idea was to replace the

classical dynamics (non-linear monodromy) by a “wild

dynamics”.

At that time everything, even some definitions..., was

conjectural !!!
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equation,

a rationality conjecture for this dynamics,

its conjectural relations with the Malgrange-Galois

groupoids of the equations,

the possible confluences of the dynamics according

to the confluence scheme of the Painlevé equations.

In 2012 everything was well known for PVI . The

program was a “natural generalization” for the others
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Painlevé equations: the main idea was to replace the

classical dynamics (non-linear monodromy) by a “wild

dynamics”.

At that time everything, even some definitions..., was

conjectural !!!



Wild Dynamics...

J.P. Ramis

From PVI to the
others Painlevé
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The wild dynamics of a linear meromorphic ODE

One can associate to a linear meromorphic differential

equation on P1(C) (or more generally a complete Riemann

surface) a wild monodromy representation. It is in general a

groupoid (not a group) representation. It is built using the

classical monodromy, the Stokes multipliers and some links.

14 EDWARD WITTEN

q
p

p1

W U

V

Figure 2. A Riemann surface C, here taken to be of genus gC = 1,
with an irregular singularity at a point p. A basepoint is taken at
q. Show are the Stokes rays near p and the important paths in
defining the generalized monodromy data.
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We can “put” also in this representation the exponential

tori action (derived from the formal exponential

exponents). This allows to reformulate the things in a

“resurgent style” (Martinet-Ramis).

One can replace the notion of isomonodromic defor-

mation of a linear system by a notion of iso-irregular

deformation. This was discovered by R. Garnier (1919) in

relation with the Painlevé equations: these equations are

derived from iso-irregular deformations (Lax pairs).
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The wild dynamics of some meromorphic ODEs

For a linear equation with irregular singularities, one must

replace the classical notion of monodromy representation

(Poincaré dynamics) by the notion of wild monodromy

representation (Jimbo-Miwa-Ueno, Martinet-Ramis, van der

Put-Saito, Boalch ...).

Similarly for PV ,...,PI it is necessary to replace the non

linear monodromy representations :

π1(P
1(C) \ {0, 1,∞}, ⋆) → Aut(•).

by non linear wild monodromy representations.

At the Wuhan conference I conjectured the existence and

the description of these objects. Today it is possible to

give rigorous definitions due to the work of Amaury Bit-

tmann (2016) on the doubly resonant saddle nodes of C3

(extending the works of Setsuji Yoshida and Kyoichi Takano

around 1980).
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The rationality conjecture for the wild dynamics

Wild character varieties: wild representations up to equi-

valence (cubic surfaces); van der Put-Saito, Boalch....

Natural symplectic structure.

Wild Riemann-Hilbert map: (generically...) symplectic

analytic isomorphisms between the Okamoto spaces of

initial conditions and the wild character varieties.

The wild dynamics of the Painlevé equations act locally

on the Okamoto varieties of initial conditions. Conjugating

by the wild RH isomorphisms, we get symplectic local

dynamics on the wild character varieties. We put the

exponential tori actions in this dynamic. It is an important

ingredient !

Conjecture. These local dynamics on the character va-

rieties (cubic surfaces) extend into global rational dyna-

mics.
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equations

The rationality conjecture for the wild dynamics

Wild character varieties: wild representations up to equi-

valence (cubic surfaces); van der Put-Saito, Boalch....

Natural symplectic structure.

Wild Riemann-Hilbert map: (generically...) symplectic

analytic isomorphisms between the Okamoto spaces of

initial conditions and the wild character varieties.

The wild dynamics of the Painlevé equations act locally
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The strong rationality conjecture for the wild dynamics

Conjecture. These local dynamics on the character va-

rieties (cubic surfaces) extend into global rational dyna-

mics.

There is a stronger conjecture (2019).

Conjecture. The rational wild dynamics on the character

varieties χω depends rationnally of the local data para-

metrizing the families of cubic surfaces.

This would extends the known results for PVI .
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The wild dynamics and the Galois-Malgrange groupoid
(New transcendental functions...)

The Galois-Malgrange groupoid:

“What algebra sees fom the dynamics” (Malgrange).

More formally: Zariski closure of the dynamics (it is

difficult to formalize !).

Conjecture. The wild dynamics of the Painlevé equations

are made of solutions of the Malgrange groupoid.

Main observation: If the wild dynamics is “rich” (for

example chaotic...), then the Malgrange groupoid is “big”.

Conjecture.

The Malgrange groupoids of the Painlevé equations are

the biggest possible: “Vol” (except for some exceptionnal

cases).

There are many results in this direction obtained by Guy

Casale, Jacques-Arthur Weil and Damien Davy using

different methods (PI , PII,0 and for generic values for the

others).
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The Riemann Hilbert maps
Picture in the generic case...

The map:

regular singular connection −→ monodromy representation

up to equivalence

is, by definition, the Riemann Hilbert map (RH).

The map:

connection −→ wild monodromy representation

up to equivalence

is, by definition, the generalized (or wild) Riemann Hilbert

map (RHw ). These maps are transcendental.

The maps RH and RHw induce equivalences of cate-

gories.

De Rham side −→ Betti side
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Figure: Plato’s cave
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Actual world −→ Algebraic (ideal...) world

Complex analysis RH Algebraic geometry

Complicated Simple

(transcendental computations) (algebraic computations)

For the Painlevé equations:

Actual world. Okamoto varieties of initial conditions

(iso-irregular families) and analytic dynamics on these

varieties: actual non-linear monodromy, Stokes

dynamics, actions of exponential tori, reflecting the

“fundamental group” of a “configuration space” (??).

Algebraic world. Character varieties (cubic surfaces) and

rational dynamics on these varieties reflecting the “funda-

mental group” of a “configuration space” (??). Effective

algebraic computations.

This picture works for PV (Martin Klimes 2018). For the

others Painlevé equations it is a work in progress. In the

following, we will begin by detail the PII case.
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equations

Actual world −→ Algebraic (ideal...) world

Complex analysis RH Algebraic geometry

Complicated Simple

(transcendental computations) (algebraic computations)

For the Painlevé equations:
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Actual world. Okamoto varieties of initial conditions

(iso-irregular families) and analytic dynamics on these

varieties: actual non-linear monodromy, Stokes

dynamics, actions of exponential tori, reflecting the

“fundamental group” of a “configuration space” (??).

Algebraic world. Character varieties (cubic surfaces) and

rational dynamics on these varieties reflecting the “funda-

mental group” of a “configuration space” (??). Effective

algebraic computations.

This picture works for PV (Martin Klimes 2018). For the
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For PII , in the Plato ideal word (that is on the character

varieties), the wild dynamics is rational and explicit and

the formulas are very simple and very nice, but unfortu-

nately the proofs are difficult and technical (and remain

today uncomplete...).

In the actual world, “Nous pataugeons dans la gadoue”

as Jane Birkin song at the end of the ninetees !
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Van der Put-Saito classification
Wild monodromy representations of the linearized equations

Dynkin Painlevé equation r(0) r(1) r(∞) r(t) dimP

D̃4 PVI 0 0 0 0 4

D̃5 PV 0 0 1 - 3

D̃6 PVdeg= PIII(D6) 0 0 1/2 - 2

D̃6 PIII(D6) 1 - 1 - 2

D̃7 PIII(D7) 1/2 - 1 - 1

D̃8 PIII(D8) 1/2 - 1/2 - 0

Ẽ6 PIV 0 - 2 - 2

Ẽ7 PII 0 - 3/2 - 1

Ẽ7 PII - - 3 - 1

Ẽ8 PI - - 5/2 - 0

Figure: Van der Put-Saito Table

r(•) is the Katz-rank (the slope of the Newton-Ramis

polygon) at the singular point • of the linearized

equation.

P is the parameter space.

PII , r(∞) = 3/2 is PFN
II (our model) and

PII , r(∞) = 3 is PJM
II .
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Dynkin Painlevé equation r(0) r(1) r(∞) r(t) dimP

D̃4 PVI 0 0 0 0 4

D̃5 PV 0 0 1 - 3

D̃6 PVdeg= PIII(D6) 0 0 1/2 - 2

D̃6 PIII(D6) 1 - 1 - 2

D̃7 PIII(D7) 1/2 - 1 - 1

D̃8 PIII(D8) 1/2 - 1/2 - 0
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(Wild) character varieties of the Painlevé equations

(Van der Put-Saito; Chekhov-Mazzocco-Rubtsov version)

P-eqs Polynomials
PV I x1x2x3 + x2

1 + x2
2 + x2

3 + ω1x1 + ω2x2 + ω3x3 + ω4

PV x1x2x3 + x2
1 + x2

2 + ω1x1 + ω2x2 + ω3x3 + 1 + ω
2
3 − ω3(ω2+ω1ω3)(ω1+ω2ω3)

(ω2

3
−1)2

PVdeg x1x2x3 + x2
1 + x2

2 + ω1x1 + ω2x2 + ω1 − 1
PIV x1x2x3 + x2

1 + ω1x1 + ω2(x2 + x3) + ω2(1 + ω1 − ω2)
PIII x1x2x3 + x2

1 + x2
2 + ω1x1 + ω2x2 + ω1 − 1

PIIID7 x1x2x3 + x2
1 + x2

2 + ω1x1 − x2

PIIID8 x1x2x3 + x2
1 + x2

2 − x2

PIIJM x1x2x3 − x1 + ω2x2 − x3 − ω2 + 1
PIIFN x1x2x3 + x2

1 + ω1x1 − x2 − 1
PI x1x2x3 − x1 − x2 + 1

Correction: permute PJM
II and PFN

II .

Affine cubic surface: {F⋆ = 0} ⊂ C3; polynomial F⋆ :

F⋆ = x1x2x3 + ǫ⋆

1x2
1 + ǫ⋆

2x2
2 + ǫ⋆

3x2
2 + ω

⋆

1x1 + ω
⋆

2x2 + ω
⋆

3x3 + ω
⋆

4,

⋆ = VI, V , Vdeg, . . . , I, ǫ
⋆

i = 1 or 0, ω
⋆

3 ∈ C.
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A fundamental heuristic idea

In order to understand the dynamics and the wild

dynamics on the character varieties and the confluence

mechanisms, it is essential to look at THE LINES ON

THESE SURFACES and their configuration, the “surface

skeleton”.



Wild Dynamics...

J.P. Ramis

From PVI to the
others Painlevé
equations

The generic PVI case, S(A,B,C,D): 27 = 24 + 3 lines

Figure: Clebsch surface: 27 lines
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Figure: A mikado game !

CONFLUENCE = REMOVE STICKS
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equations

Figure: Conical (or nodal) singularity: A1 type
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The Cayley surface (a PVI case and some PII cases) :
S(0,0,0,1) = {xyz + x2 + y2 + z2 − 1 = 0} ⊂ C3.

For the complete surface (in P3(C)), there are 9 lines

(6+3 at infinity) and 4 nodal singular points.

Figure: The Cayley surface.
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Confluences of Painlevé equations

PD6

III

!!❉
❉❉

❉❉
❉❉

❉
"" PD7

III

!!❉
❉❉

❉❉
❉❉

❉❉
"" PD8

III

PV I
"" PV

""

##⑤⑤⑤⑤⑤⑤⑤⑤

$$❇
❇❇

❇❇
❇❇

❇❇
P

deg
V

!!❊
❊❊

❊❊
❊❊

❊

%%③③③③③③③③

P JM
II

"" PI

PIV

%%②②②②②②②②②
"" PFN

II

%%③③③③③③③③③

Figure: Confluence scheme of Painlevé equations according to

Ohyama-Okumura

The remarkable idea of Martin Klimes is to interpret the

confluences on the (wild) character varieties as a pure

process of algebraic geometry involving birational

transformations (a mikado game !).

In the Plato ideal world, all the (difficult) analysis disap-

pears !
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The character variety of PII

The second Painlevé equation :

(PII,α) y ′′ = 2y3 + xy − α, α ∈ C.

The second Painlevé equation can be interpreted as an

iso-irregular deformation equation of a linear equation.

There are two models (Lax pairs) Flaschka-Newell (FN) and

Jimbo-Miwa (JM).

In the first model, the Flaschka-Newell model, the

deformed linear equation admits 6 Stokes matrices at

infinity (defined by 3 parameters s1, s2, s3) and the cha-

racter variety χα of PII is defined by the cubic equation :

s1s2s3 + s1 − s2 + s3 = −2 sin πα
in C3 (α corresponds to the monodromy exponent of the

linear equation at the origin).

We denote: X := s1, Y := −s2, Z := s3 and

Gα(X , Y , Z ) := XYZ − X − Y − Z − 2 sin πα.
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We denote:

X := s1, Y := −s2, Z := s3 and :

Gα(X , Y , Z ) := XYZ − X − Y − Z − 2 sin πα.

The complex gradient of Gα is :

∂Gα

∂X
= YZ − 1,

∂Gα

∂Y
= XZ − 1,

∂Gα

∂Z
= XY − 1.

One equation of χα in C3 is : Gα = 0.

A (quadratic) rational parametrization of χα is:

(X , Y ) 7→ Z :=
X + Y + 2 sin πα

XY − 1
; (X , Y ) ∈ C2 \ {XY = 1},

We have also the two other parametrizations obtained by

circular permutations.

If α /∈ 1
2 + Z, then χα is smooth and the images of the

three rational parametrizations cover the surface χα:

X = Y = Z = ±1 if and only if sin α = ∓1, or equivalently,

α ∈ 1
2

+ Z.

If α ∈ 1
2 + Z, then χα is singular (Cayley cubic surface) and

“it admits another component” isomorphic to P1(C).
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The Z/3Z symmetries

Let ω ∈ C be a third root of unity : ω3 = 1.

Let t̃ 7→ ỹ (̃t) be a solution of the differential equation:

d2ỹ

d t̃2
= 2ỹ3 + t̃ ỹ − α.

If:

t := ω−1 t̃ and y(t) := ωỹ (̃t) = ωỹ(ωt),

then t 7→ y(t) is a solution of the differential equation:

y ′′ =
d2y

dt2
= 2y3 + ty − α.

Therefore the cyclic group Z/3Z acts on the set of

solutions of PII .

This action extends to the Okamoto semi-compacti-

fication. On the character variety, the corresponding

action is the cyclic permutation of the coordinates :

(X , Y , Z ) 7→ (Y , Z , X ) 7→ (Z , X , Y ).
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The symplectic structure on the character

variety

There exists a rational symplectic structure on χα:

ω =
dX ∧ dY

∂Gα

∂Z

=
dY ∧ dZ

∂Gα

∂X

=
dZ ∧ dX

∂Gα

∂Y

,

ω =
dX ∧ dY

XY − 1
=

dY ∧ dZ

YZ − 1
=

dZ ∧ dX

ZX − 1
·

It is the Poincaré residue of the volume form :

dX ∧ dY ∧ dZ .

The RH map gives analytic symplectic isomorphisms

between each Okamoto variety of initial conditions and

χα (up to a choice of constant).

The symplectic structure is clearly invariant by the Z/3Z

action.
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Interpretation of PII using iso-irregular deformations.

Lax pairs:

structure group G := SL2(C),

∂Ψ

∂ξ
= AΨ,

∂Ψ

∂t
= UΨ,

A, U “meromorphic” matrices (rational in ξ, ramified in

t ∈ C∗) with values in sl2(C), Ψ unknown matrice with

values in sl2(C).

Compatibility condition:

dA
dt

− d U
dξ

+ [A,U ] = 0.
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Compatibility condition:

dA
dt

− d U
dξ

+ [A,U ] = 0.

More precisely A, U are rational in (ξ, y , z := dy
dt ). The

compatibility condition is equivalent to PII . If y is a

solution of PII , then the compatiblity condition is satisfied.

Conversely if, for a unknown function y (of t), the

compatibility condition is satisfied, then y is a solution of

PII .

Each solution y of PII gives an iso-irregular family of

linear differential systems (in ξ): ∂Y
∂ξ = A(ξ, t)Y . The

deformation parameter of an iso-irregular family is t .
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From the analytic classification to the Lax

pairs

Our approach is to start from the point of view of the

classification (as in van der Put-Saito). Then the PII case

corresponds to a unipotent matrix A0 and to the case

(0, 3/2). We get the FN system – Its-Kapaev version – (in

ξ) after a ramified shearing of order two of the initial

system (in x): ξ2 = x−1. Therefore there are in fact two

systems corresponding to ξ 7→ −ξ (Bäcklund transfor-

mation):
∂Ψ

∂ξ
= A∗Ψ,

∂Ψ

∂t
= U∗Ψ,

A∗(ξ, t) := −A(−ξ, t), U∗(ξ, t) := U(−ξ, t)

Compatibility condition for the second system:

dA∗

dt
− d U∗

dξ
+ [A∗,U∗] = 0.
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Compatibility condition for the second system:

dA∗

dt
− d U∗

dξ
+ [A∗,U∗] = 0.

It is equivalent to the PII equation with the parameter α
changed in −α:

PII,−α : y ′′ =
d2y

dt2
= 2y3 + ty + α.
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Explicit formulae
Newell-Flashka, Its, Kapaev, Kitaev, Novokshenov...

Pauli spin matrices:

σ1 :=

(

0 1

1 0

)

, σ2 :=

(

0 −i

i 0

)

, σ3 :=

(

1 0

0 −1

)

,

{

A(ξ, t) = −i(4ξ2 + t + 2y2)σ3 −
(

4yξ + α
ξ

)

σ2 − 2zσ1

U(ξ, t) = −iξσ3 − yσ2















A∗(ξ, t) = −A(−ξ, t)

= i(4ξ2 + t + 2y2)σ3 −
(

4yξ + α
ξ

)

σ2 + 2zσ1

U∗(ξ, t) = U(−ξ, t) = iξσ3 − yσ2
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σ2σ1σ2 = −σ1, σ2σ3σ2 = −σ3

A∗ = σ2Aσ2

Irregular types:

qt(ξ) := −i

(

4

3
ξ3 + tξ

)

, q∗
t (ξ) := qt(−ξ) = i

(

4

3
ξ3 + tξ

)
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To each Stokes line Γk is associated an unipotent

Stokes-matrix Sk , defined by Sk := Ψ−1
k Ψk+1. We have:

S2p−1 =

(

1 0

s2p−1 1

)

, S2p =

(

1 s2p

0 1

)

, p = 1, 2, 3.

From A(−ξ, t) = −σ2A(ξ, t)σ2, we get Sk+3 = σ2Skσ2,

therefore sk+3 = −sk .

We have:

S1S2 . . . S6 = M,

therefore:

s1 − s2 + s3 + s1s2s2 = −2 sin πα.

We get the equation of an affine cubic surface of C3:

X := s1, Y := −s2, Z := s3,

Gα(X , Y , Z ) = XYZ − X − Y − Z − 2 sin πα = 0.
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Stokes lines and Stokes multipliers of ∂Ψ
∂ξ = AΨ

Γk : π

6
+ (k − 1)π

3
, k = 1, . . . , 6
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The lines on the character variety

We suppose α /∈ 1/2 + Z and α /∈ Z.

There are 9 = 6 + 3 lines on χα plus 3 lines at infinity:

YZ = 1, ZX = 1, XY = 1, X = 0, Y = 0, Z = 0.

There are 3 nodal singularities at infinity.

The 6 lines form a non planar hexagon: 6 edges;

XY = 1 (resp. ...) defines two parallel lines.

The 3 lines form a triangle: 3 edges.

The 9 lines and the 9 points correspond to “special solu-

tions” of PII that one can identify using asymptotic

properties at infinity t → ∞ (non trivial...) :

Gevrey asymptotics, summability, resurgence, Boutroux

tronquées and tritronquées solutions...

The 9 lines are the “skeleton” of 6 symplectic rational

dynamics on χα ; in particular one parameter groups,

corresponding via RH to actions of exponential tori.
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The 12 lines picture

Each pair of parallel lines of the hexagon cut one of the

lines of the triangle at two points and one of the lines of

the triangle at infinity at one point.
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SOLUTIONS OF PII

NON LINEAR STOKES PHENOMENA
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Asymptotics solutions of PII at infinity

In the complex t plane, there are 6 sectors (at infinity)

separated by the half lines :

arg t = kπ/3 (k = 0, 1, 2, 3, 4, 5).

Our presentation is based upon some works of :

– P. Boutroux (1913):

In general the asymptotics in each sector of a solution are

elliptic ; for some exceptional solutions (tronquées,

tri-tronquées, bi-tronquées) the asymptotics are

“classical” in some sectors (in 2 or 4 sectors).

– A. Its, A. A. Kapaev, Kitaev, V.Yu. Novokshenov... (the

“Russian school”):

All the asymptotics are explicitly parametrized by the

Stokes data (s1, s2, s3) = (X ,−Y , Z ) (Andrei Kapaiev).

The proofs are technical and difficult: the so-called

Riemann-Hilbert method, Deift-Zhou method...

– E. Delabaere, O. Costin, Ramis-Sibuya, Bittmann... :

k -summability and resurgent methods.
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Figure: Poles of solutions near infinity. From Marcel Wonk
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Boutroux tronquées and tritronquées solutions of PII

Figure: Poles of a truncated solution.

For PII : 4 pole free sectors (among 6) for the tritronquées

and 2 pole free sectors for the tronquées (4 pole free

sectors for the bitronquées).
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Truncated solutions
“The Russian Orientation Table”

s  ,  1+s  s

s  ,  1+s  s

s  ,  1-s  s s  ,  1+s  s

s  ,  1+s  s
s  ,  1-s  s

1        1  3

3         2  3

2         2  3

1         1  2

2         1  2

3        1  3

Figure 2: Combinations of the Stokes multipliers whose non-triviality yields the

elliptic asymptotic behavior of Painlevé function in the corresponding sector

Figure: Following Its-Kapaiev; X = s1, Y = −s2, Z = s3
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Asymptotics solutions of PII at infinity
Puiseux asymptotics: perturbative solutions (tritruncated, weak

separatrices at ∞)

It is easy to check that, for the solutions of PII , the only

possible classical asymptotics at the first order are :

σ
√

−t/2 (σ = ±1) and − α/t (if α 6= 0).
Then it is possible to compute recursively formal Puiseux

solutions: perturbative solutions ŷpert :

ŷpert = i
t1/2

√
2

∑

n≥0

an

t3n/2
, a0 = 1, a1 = − i

α√
2
,

ŷpert = −α

t

∑

n≥0

bn

t3n
, b0 = 1.

These solutions are (in general) divergent, but summable,

and their sums are actual solutions of PII :

using RH, we get the hexagon edges in the first case and

the triangle edges in the second case. (Tritronquées,

0-instantons, weak separatrices.)
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One parameter solutions of PII
(Tronquées, proper transseries, 1-instantons)

Boutroux discovered that the Painlevé equations PI and

PII admit a finite number of 1-parameter truncated solu-

tions) “formally represented” by a sum:

ŷ = (Puiseux power series) + (exponential terms)

ŷ = ŷpert + ŷnonpert .

In the terminology of resurgence (Ecalle) such an expres-

sion is named a (proper) transseries. In the physicists

terminology (quantum field theory) it is named a (formal)

1-instanton solution (the perturbative part ypert is a formal

0-instanton solution).
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One parameter (C ∈ C) formal solutions:

ŷpert + ŷnonpert = ŷpert + (−t)−
3
2
σα− 1

4

∑

m≥1

Cme± 2
√

2 m
3

(−t)3/2

ŷ (m)

or

ŷpert + ŷnonpert = ŷpert + t−1/4
∑

m≥1

Cme± 2m
3

t3/2

ŷ (m).

The ŷ (m) (m ∈ N∗) are (ramified) summable power series.

With the good sign (according to the sectors) we get proper

convergent transseries whose sums are actual solutions

(C small).

The map : C 7→ Φ(C) = (X (C), Y (C), Z (C)) ∈ C3,

induced by RH, extends analytically to C ∈ C and, in all

cases, it is an affine map.

It is an important and difficult result coming from the

russian works (explicit formulas).
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Stokes phenomena and exponential tori: a first approach
The picture on the 9 = 6 + 3 lines skeleton

The Stokes maps transform a sum of (Puiseux) power

series solution to another, that is, via RH, an edge of the

hexagon or the triangle to a contiguous one.

Comparing the sums of the ŷ (m), we can extend the

Stokes maps along the lines of χα (cf. the russian works).

We get translations on each line, obtained, via RH from :

C 7→ C + a.

The exponential tori actions on the formal one parameter

solutions :

C 7→ τC (τ ∈ C∗)

give, via RH, affine transforms on the lines (each one

fixing an edge).

Hexagon : a = − 2πσi
Γ( 1

2
−σα)

2− 5
2
σα− 7

4 . Triangle: a = i sin πα√
π

.

(Examples of russian computations.)
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Elliptic asymptotics: the Boutroux ansatz
(using Jacobi elliptic functions)

Large |t | asymptotics of the generic solutions in the 6

open basic sectors (cf. the russian orientation table):

y(t) ≈ i√
1 + κ2

sn

(

2

3
c t3/2 + K log Z − iK ′ log(1 − ZX );κ

)

;

κ, c transcendental functions of arg t .

Shift (automorphism) : K log Z − iK ′ log(1 − ZX ).

There is a mysterious relation with the exponential tori

dynamics on χα.
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WILD DYNAMICS ON THE CHARACTER VARIETY OF PII

The heart of the matter
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Painlevé equations at infinity
(Orbifolds, following Hayato Chiba)

H. Chiba introduced orbifold compactifications of the

Painlevé equations (2014). For PII he get the weighted

projective space CP3(2, 1, 2, 3). After some weighted

blow-ups, he can recover the Okamoto picture and at

infinity (the essential singularity) he gets an autonomous

Hamiltonian vector field on C2 (in fact C2/Z2) :

2X3
∂

∂Y3
+ (4Y 3

3 + 2Y3)
∂

∂X3
;

HII = X 2
3 − Y 4

3 − Y 2
3 .

There are 3 = 2 + 1 singular points :

(X3, Y3) = (0,±i/
√

2) and (X3, Y3) = (0, 0), There is a

corresponding non linear Stokes-phenomena at these

points. We will describe it using recent technics

introduced by Amaury Bittmann : transversally symplectic

doubly-resonant saddle nodes in C3.
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Analytic classification of doubly-resonant saddle nodes in C3

(Following Amaury Bittmann)

Notation: (ε, y) = (ε, y1, y2) ∈ C3.

Doubly-resonant analytic saddle node:

X := ε2 ∂

∂ε
+ (−λy1 + F1(ε, y))

∂

∂y1
+ (λy2 + F2(ε, y))

∂

∂y2
,

with λ ∈ C∗, F1, F2 germs of analytic functions at the ori-

gin vanishing at order at least two.

Eigenvalues of the linear part (0,−λ, λ): two resonances.

A. Bittmann classified the doubly-resonant analytic sad-

dle-nodes up to analytic fibered diffeomorphisms using

the cohomological method of Martinet-Ramis for the two

dimensional saddle-nodes. It is more difficult...
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Bittmann formal normal forms

I skip some technical conditions... Normal forms :

Xnorm =
ε2 ∂

∂ε + (−λy1 + a1ε + c1(v))) y1
∂

∂y1
+ (λy2 + a2ε + c2(v)) y2

∂
∂y2

,

where v := y1y2, c1, c2 ∈ εC[[ε]], a1, a2 ∈ C with

a1 + a2 = res(X ).

Even if X is convergent, c1 and c2 can be divergent.

In the case of the transversally Hamiltonian saddle-nodes

(the case of the Painlevé equations at the irregular

singularity at infinity), a1 + a2 = 1 and c1 + c2 = 0.

Moreover, if X is convergent, then c1 = −c2 is also

convergent.

This is related to the classication of germs of (generic) analytic

Hamiltonians in the one degree of freedom case in a

neighborhood of a stationary point (elimination of the

non-resonant terms): resonant monomial y1y2. (Cf. HII .)
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Integrability of the normal form

Notation:

c(v) = c1(v) =
∑

k∈N∗ ck vk ; c̃(v) :=
∑

k≥2
ck

k−1
vk .

The Bittmann normal form is integrable in closed form:

{

y1(ε) = C1 exp (λ/ε − c̃(C1C2ε))ε
a−C1C2

y2(ε) = C2 exp (−λ/ε + c̃(C1C2ε))ε
1−a+C1C2

We have C1C2 = y1y2

ε : y1y2

ε is a first integral.

This is a parametrization of the space of leaves of Xnorm

which are not contained in {ε = 0}.

Exponential torus action : τ ∈ C∗ acts on the leaves by

C1 7→ τC1 and C2 7→ τ−1C2 (eλ/ε 7→ τeλ/ε).
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Summability of the normalizing transormation and non-linear

Stokes phenomena

Bittmann proves that the normalizing transformation is

1-summable onto two “big sectors”. By comparison we

get two Stokes diffeomorphisms. There are also two

actions of the exponential torus.

Be careful: the sums exists only on “effilated domains”

For the Painlevé equations (except of course PVI), one

obtains a rigourous definition of the wild dynamics. It we

translate these dynamics on the corresponding character

varieties (using RH), we get a priori local dynamics: 9 in

the PII case.

In the PII case, we know already the dynamics on the

lines (the skeleton). Then the local dynamics extend in

some neighborhoods of the lines. We have sewed some

flesh on the 9 lines skeleton. Now, we will do better !
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1-summable onto two “big sectors”. By comparison we

get two Stokes diffeomorphisms. There are also two

actions of the exponential torus.

Be careful: the sums exists only on “effilated domains”

For the Painlevé equations (except of course PVI), one

obtains a rigourous definition of the wild dynamics. It we

translate these dynamics on the corresponding character

varieties (using RH), we get a priori local dynamics: 9 in

the PII case.

In the PII case, we know already the dynamics on the

lines (the skeleton). Then the local dynamics extend in

some neighborhoods of the lines. We have sewed some

flesh on the 9 lines skeleton. Now, we will do better !
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The 3 hexagonal tori dynamics

For τ ∈ C∗, we define T3,τ : C3 \ {Z = 0} 7→ C3 \ {Z = 0} by:

X ′ = T3,τ (X ) :=
1 − τ

Z
+ τX ,

Y ′ = T3,τ (Y ) :=
1 − τ−1

Z
+ τ−1Y ,

Z ′ = T3,τ (Z ) := Z .

Similarly we define T2,τ and T1,τ . For j = 1, 2, 3, we have :

Tj,τ2
◦ Tj,τ1

= Tj,τ2τ1
.

Therefore each {Tj,τ}τ∈C∗ is a one parameter subgroup

of rational transformations.

Proposition

We suppose α /∈ 1
2 + Z. For j = 1, 2, 3, {Tj,τ}τ∈C∗ is a

one parameter subgroup of rational transformations on χα.

This group fixes (globally) 4 lines and two points.
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The 3 triangular tori dynamics

For τ ∈ C∗, we define T ′
3,τ : C3 \ {Z = 0} 7→ C3 \ {XY = 1}

by :

X ′ = T ′
3,τ (X ) := τX , Y ′ = T3,τ (Y ) := τ−1Y ,

Z ′ = T3,τ (Z ) :=
τX + τ−1Y + 2 sin πα

XY − 1
.

Similarly we define T ′
2,τ and T ′

1,τ . For j = 1, 2, 3, we have :

T ′
j,τ2

◦ T ′
j,τ1

= T ′
j,τ2τ1

.

Therefore each {T ′
j,τ}τ∈C∗ is a one parameter subgroup

of algebraic transformations.

Proposition

We suppose α /∈ Z. For j = 1, 2, 3, {T ′
j,τ}τ∈C∗ is a one pa-

rameter subgroup of rational transformations on χα. This

group fixes (globally) 2 lines and one point.
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The 3 triangular tori dynamics

For τ ∈ C∗, we define T ′
3,τ : C3 \ {Z = 0} 7→ C3 \ {XY = 1}

by :

X ′ = T ′
3,τ (X ) := τX , Y ′ = T3,τ (Y ) := τ−1Y ,
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τX + τ−1Y + 2 sin πα

XY − 1
.

Similarly we define T ′
2,τ and T ′

1,τ . For j = 1, 2, 3, we have :

T ′
j,τ2

◦ T ′
j,τ1

= T ′
j,τ2τ1

.

Therefore each {T ′
j,τ}τ∈C∗ is a one parameter subgroup

of algebraic transformations.

Proposition

We suppose α /∈ Z. For j = 1, 2, 3, {T ′
j,τ}τ∈C∗ is a one pa-

rameter subgroup of rational transformations on χα. This

group fixes (globally) 2 lines and one point.
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The 6 Exponential Tori Dynamics on χα

“Theorem”

We suppose α /∈ 1
2

+ Z and α /∈ 1
2

+ Z. The 3 groups

{Tj,τ}τ∈C∗ and the 3 groups {T ′
j,τ}τ∈C∗ , j = 1, 2, 3, corre-

sponds, via RH, to exponential tori actions on the Okamoto

varieties of initial conditions.

Up our (strong) rationality conjecture, this theorem follows

from simple unicity results for the rational one-parameter

groups acting on χα and from the knowledge of the

exponential tori dynamics on the lines (cf. the results of

the russian school).
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sponds, via RH, to exponential tori actions on the Okamoto
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The one parameter group {T3,τ}τ∈C∗ is generated by the
following field:

XZ − 1

Z

∂

∂X
− YZ − 1

Z

∂

∂Y
=

∂Gα

∂Y

∂

∂X
− ∂Gα

∂X

∂

∂Y
·

It is the hamiltonian field associated to the Hamiltonian :

H(X , Y , Z ) = log Z ,

using the symplectic form ωα.

The one parameter group {T ′
3,τ}τ∈C∗ is generated by the

following field:

X
∂

∂X
− Y

∂

∂Y
·

It is the hamiltonian field associated to the Hamiltonian :

H(X , Y , Z ) = log(XY − 1),

using the symplectic form ωα.
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Stokes maps on the character variety χα

We know the existence of the Stokes maps on a

neighborhood of the skeleton.

We conjecture that the Stokes maps belongs to the

dynamics generated by the 6 exponential tori dynamics.

More precisely it is possible to guess explicit (simple)

formulas looking at what we know on the skeleton. The

rationality of the Stokes maps would follow.
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RESURGENCE(S) of PII
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Resurgence of PII

We recall the Bittmann formal normal form :

{

y1(ε) = C1 exp (λ/ε − c̃(C1C2ε))ε
a−C1C2

y2(ε) = C2 exp (−λ/ε + c̃(C1C2ε))ε
1−a+C1C2

We use :

εC1C2 = eC1C2 log ε.

Then, using Bittmann results, we get two parameters (C1

and C2) series solutions in y1, y2 with summable power

series coefficients (2-instantons solutions), therefore

transasymptotic series solutions of some type. They give

actual solutions in convenient domains.

The apparition of log ǫ in the transasymptotic series is

related to the symplectic resonance.
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In the case α = 0 (only the hexagon Stokes phenomena

exists), Ricardo Schiappa and Ricardo Vaz 2015 obtained

formally (ansätz and recursion relations) two parameters

transasymptotic series solutions.

By comparison it would be possible to prove the summa-

bility of the power series coefficients in Schiappa-Vaz

formulas. Their resurgence is another story !
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Wild Dynamics...

J.P. Ramis

Contents

The character
variety of PII

Solutions of PII

Wild dynamics on
the character
variety of PII

Resurgence(s) of
PII

Confluences

The character varieties of the Painlevé equations
(Following M. van der Put-M.H. Saito, Chekhov-Mazzocco-Roubtsov...)

ϕ

PVI x1x2x3 + x
2
1 + x

2
2 + x

2
3 + ω1x1 + ω2x2 + ω3x3 = ω4

PV x1x2x3 + x
2
1 + x

2
2 + ω1x1 + ω2x2 + ω3x3 = ω4

PIV x1x2x3 + x
2
1 + ω1x1 + ω2x2 + ω2x3 + 1 = ω4

PIII x1x2x3 + x
2
1 + x

2
2 + ω1x1 + ω2x2 = ω1 − 1

PII x1x2x3 + x1 + x2 + x3 = ω4

PI x1x2x3 + x1 + x2 + 1 = 0

Figure: Affine cubic surfaces
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Confluence scheme of the Painlevé equations

e PIV

!!!!!

PVI "" PV

##"""

$$!!! PII "" PI

PIII

%%"""

Figure: Painlevé-Okamoto confluence scheme
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Confluence scheme (or coalescent diagram)
of the Painlevé equations

PIII

!!

"" P
D7
III

!!

"" P
D8
III

PVI
"" PV

""

##

$$

P
deg
V

!!

%%

P
JM
II

"" PI

PIV

%%

"" P
FN
II

%%

Figure: From Y. Ohyama, S. Okumura 2006
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Confluence and unfolding of linear systems

According to: Garnier, Ramis, Duval, Zhang, Schäfke,...

The model is the confluence of the hypergeometric

equations. We rescale : (0, 1,∞) → (0, 1/ε,∞) and

afterwards : ε → 0 (“1 → ∞”);

ξ(ξ − ε)d/dξ → ξ2d/dξ.

The semi-simple part of the monodromy of a vanishing

loop (in between 1/ε and ∞) swirls : NO LIMIT ! (e 2iπ/ε).

The unipotent part of this monodromy admits in some

sense a limit, giving birth to the Stokes maps.

MAIN IDEA. It is not so good to consider a continuous

confluence. It is better to consider discrete confluences:
(

1
εn

= 1
ε0

+ n
)

. Then it is possible to fix the monodromy of

a vanishing loop. A change of discretization corresponds

to an exponential torus action (τ = e 2iπ/ε0 ∈ C∗).

This idea was firstly developed by Zhang 1996.
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Confluence of dynamics on character

varieties

The affine character varieties χVI and χV of PVI and PV

are birationnally equivalent. The Fricke coordinates of PVI

do not pass to the limit. The idea of M. Klimes is to repla-

ce these coordinates by some rational functions passing

to the limit. Then he gets “good coordinates” on the (wild)

character varieties χV .

Afterwards he translates the (algebraic) braids action on

χVI (half-monodromies) into a rational dynamics on χV .
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The wild dynamics on χV
(Tout est pour le mieux dans le meilleur des mondes possibles)

The wild dynamics on χV (Stokes, exponential tori ac-

tions...) is built using Bittmann work on doubly resonant

saddle nodes as we explained before.

In order to translate this wild dynamics on χV (by RH), M.

Klimes uses unfoldings of the Bittmann saddle nodes.

This allows him to prove the rationality conjecture and to

compute explicitely the rational wild dynamics
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Our project is to extend Klimes method to the

confluences :

PV → P
deg
V → PFN

II

in order to prove the conjectures presented before in the

PII case.

Next step : the differential Galois groupoid of PII is “big”

for all the values of α.

Heuristics:

If α 6∈ 1/2 + Z and α 6∈ Z, the hexagonal AND the

triangular dynamics are “rich”.

If α ∈ 1/2 + Z, the triangular dynamics is “rich” (the other

is “lost” : Ricatti-Airy solutions, singular point of type A1).

If α ∈ Z, the hexagonal dynamics is “rich” (the other is

“lost” : rational solutions).
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Figure: 27 lines on a cubic surface
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Motivations
Lines on cubic surfaces and Painlevé equations

The (wild) character varieties, that is the variety of (wild)

monodromy representations (up to equivalence) of the

linearized equations of the Painlevé equations are affine

cubic surfaces S:

S = X \ {3 lines at infinity}.

The lines on S correspond to some special represen-

tations : they are locally reducible (classically or wildly).

On the Painlevé equations side (the left side of RH), the

lines correspond to classical (or less classical...) one

parameter families of solutions: truncated solutions (or

less classical variants...)

The intersections of two lines correspond to some

“special solutions” : tri-truncated solutions or bi-truncated

solutions (or variants...).
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As far as I know the systematic relations :

1 lines on cubic surfaces ←→ local reducibility of represen-

tations (or wild-representations)

2 lines on cubic surfaces ←→ special solutions of Painlevé

equations

are new :

E. Paul, J.P. Ramis for PII , 2017;

M. Klimes, E. Paul, J.P. Ramis for PVI , PV and

degenerated PV , 2019.

1 is proved for all cases;

2 is a work in progress.
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Singularities on the character variety S

In some cases S has some singularities (the maximal

number is 4). They are isolated rational singularities.

Generically the RH map is an analytic diffeomorphism. In

all cases it is a proper map. It is conjectured (proved for

PVI) that RH is a minimal desingularization. The inverse

image of a singular point of S is a family of Riccati

solutions.



Wild Dynamics...

J.P. Ramis

Contents

The cubic surface

Lines on cubic surfaces

Smooth cubic surfaces

The lattice A(S) and the

divisor class group Pic S

Existence of a line

Singular cubic surfaces

Figure: Conical (or nodal) singularity: A1 type

In local coordinates : z2 = xy .
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The Cayley surface (a PVI case and some PII cases) :

4 nodal singular points.

Figure: The Cayley surface.
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There are several ways of studying the smooth cubic

surface S ⊂ P3 and its 27 lines :

using elementary coordinate geometry in P3;

as blowup of P2 in 6 points, or of P1 × P1 in 5 points;

....

Approaches in this style do not give the full symmetry of

the configuration of lines. The symmetry group of the

configuration has order 51 840 = 27.34.5 = 2× 25920. It

is the Weyl group W (E6) of the complex linear algebraic

group E6 (of dimension 78): the automorphism group of the

unique simple group of order 25920.

The configuration of lines does have an entirely sym-

metric description in terms of a certain lattice :

A(S) = PicS = H2(S; Z) ≈ H2(S; Z).
The lines ℓ ⊂ S are the solutions in this lattice of the

equations hℓ = 1, ℓ2 = −1, where h is the class of the

hyperplane section.



Wild Dynamics...

J.P. Ramis

Contents

The cubic surface

Lines on cubic surfaces

Smooth cubic surfaces

The lattice A(S) and the

divisor class group Pic S

Existence of a line

Singular cubic surfaces

There are several ways of studying the smooth cubic

surface S ⊂ P3 and its 27 lines :

using elementary coordinate geometry in P3;

as blowup of P2 in 6 points, or of P1 × P1 in 5 points;

....

Approaches in this style do not give the full symmetry of

the configuration of lines. The symmetry group of the

configuration has order 51 840 = 27.34.5 = 2× 25920. It

is the Weyl group W (E6) of the complex linear algebraic

group E6 (of dimension 78): the automorphism group of the

unique simple group of order 25920.

The configuration of lines does have an entirely sym-

metric description in terms of a certain lattice :

A(S) = PicS = H2(S; Z) ≈ H2(S; Z).
The lines ℓ ⊂ S are the solutions in this lattice of the

equations hℓ = 1, ℓ2 = −1, where h is the class of the

hyperplane section.



Wild Dynamics...

J.P. Ramis

Contents

The cubic surface

Lines on cubic surfaces

Smooth cubic surfaces

The lattice A(S) and the

divisor class group Pic S

Existence of a line

Singular cubic surfaces

There are several ways of studying the smooth cubic

surface S ⊂ P3 and its 27 lines :

using elementary coordinate geometry in P3;

as blowup of P2 in 6 points, or of P1 × P1 in 5 points;

....

Approaches in this style do not give the full symmetry of

the configuration of lines. The symmetry group of the

configuration has order 51 840 = 27.34.5 = 2× 25920. It

is the Weyl group W (E6) of the complex linear algebraic

group E6 (of dimension 78): the automorphism group of the

unique simple group of order 25920.

The configuration of lines does have an entirely sym-

metric description in terms of a certain lattice :

A(S) = PicS = H2(S; Z) ≈ H2(S; Z).
The lines ℓ ⊂ S are the solutions in this lattice of the

equations hℓ = 1, ℓ2 = −1, where h is the class of the

hyperplane section.



Wild Dynamics...

J.P. Ramis

Contents

The cubic surface

Lines on cubic surfaces

Smooth cubic surfaces

The lattice A(S) and the

divisor class group Pic S

Existence of a line

Singular cubic surfaces

Lines on cubic surfaces of P3



Wild Dynamics...

J.P. Ramis

Contents

The cubic surface

Lines on cubic surfaces

Smooth cubic surfaces

The lattice A(S) and the

divisor class group Pic S

Existence of a line

Singular cubic surfaces

Important points

Let X be a nonsingular cubic surface of P3. A triangle is a

set of 3 distinct coplanar lines ℓ1, ℓ2, ℓ3 ⊂ X such that

ℓ1 + ℓ2 + ℓ3 = X ∩ H is a hyperplane section. We will

prove :

X contains at least one line;

any 2 intersecting lines determine a triangle;

if ℓ1, ℓ2, ℓ3 is a triangle and ℓ′ a fourth line of X , then

ℓ′ meets exactly one ℓi ;

if ℓ is a line of X , then there is exactly 10 lines

meeting ℓ, falling into 5 coplanar pairs; the pairs are

disjoint;

there exist 2 disjoint lines (a pair of skew lines).

Some points are evident but some others not at all !
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We admit the following (non trivial...) result. We will prove

it later.

In what follows k is an algebraically closed field of

characteristic 0.

Theorem

A cubic suface X ⊂ P3(k) (smooth or not) allways contains

a line.
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Pencil of planes defined by ℓ ⊂ S

Figure: Generic section and tritangent section

The section is a cubic curve: ℓ ∪ C, C: conic curve.

If C degenerates into 2 lines, then we have a

tritangent plane.
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There are 5 tritangent planes in a pencil

Proposition

We suppose X ⊂ P3 smooth. Given a line ℓ ⊂ X :

(i) there exists exactly 5 planes containing ℓ such that

the conic C is decomposed into 2 lines ℓi , ℓ
′

i ;

(ii) moreover, for i 6= j , (ℓi ∪ ℓ
′

i) ∩ (ℓj ∪ ℓ
′

j) = ∅

Algebraic geometry (selected topics) 37 

Lemma 4. If the point PES, then al11ines I on S through Pare cop1anar 

(since all such I C Tp(S)) and there are at most three such lines. 

Lemma 5. If the line I C S, then there exist exactly 5 planes Ill, ... ,115 for 

which the corresponding conicQ = (SnIT)\1 is reducible, that is, SnITi = IU(/,u/D 
(see the figure) 

I' 
1 

Proof. Let us choose the coordinates so that the line I has equation I : 

{z = t = O} and write the equation of the cubic surface in the form 

where al, b1, Cl are linear forms, a2, b2 quadratic forms a.lld a3 a cubic form. A 

bundle of planes through I has equation IT : JJZ = At, and one obtains the following 

equation of the conic in the intersection S n IT: 

This conic is reducible if and only if the corresponding determinant 

• 

equals zero. This is an equation of the fifth degree in A. It has at most five roots, 

that is, at most five corresponding planes in which the conic is reducible. Let us 

prove that there are exactly five such planes, i.e., that all these roots are different. 

This will 'follow from nonsingularity of the cubic surface S. We could suppose 

that one of the roots is A = 0 i.e., that IT = {z = O} is one of these planes. The 

intersection S n IT consists of three lines with one of the above two configuration 

types. 

Type 1. We can choose coordinates in such way that the three lines in the 

plane z = 0 are t = 0, x = 0 and x = t. The corresponding equation f is then f = 
x(x - t)t + Z9 where 9 is quadratic form. Comparing the corresponding coefficients, 

we obtain al = t + az, a2 = _t2 + zdl where d1 is linear form, and zlb1. Cl! b2 , a3. 

Since S is nonsingular at the point (0: 1: 0: 0), one has Cl = 1z, 1 =F O. 

Type 2. We can choose coordinates in such way that the three lines in the 

plane z = 0 are t = 0, x = 0 and y = O. The corresponding equation f is then 
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Proof

Homogeneous coordinates (u, v ,w , t) ∈ (k4)∗. Suppose

that ℓ = {w = t = 0}. Then X = V (f ), with :

f (u, v ,w , t) = Au2 + Buv + Cv2 + Du + Ev + F ,

where A,B,C,D,E ,F ∈ k [w , t ], A,B,C linear forms, D,E
quadratic forms, F a cubic form.

If we consider f = 0 as a conic in (u, v) then it is singular

if and only if :

∆(w , t) :=

∣

∣

∣

∣

∣

∣

A B D

B C E

D E F

∣

∣

∣

∣

∣

∣

= 4ACF+BDE−AE2−B2F−CD2 = 0.

Π = {µw = λt}. If µ 6= 0, we can assume µ = 1, then

Π = {w = λt} and ∆(w , t) has 5 roots in λ counted with

multiplicities. Using the smoothness of X it is easy to

prove that the roots are simple.
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The magic number 27

We start from a given tritangent plane (3 lines: ℓ1, ℓ2, ℓ3)

and we count. It meets 3.4 = 12 other tritangent planes in

each of which there are 2 other lines which gives :

3 + 12.2 = 27

lines on X .
e 27 lines.

ℓ1

ℓ2

ℓ3

Figure: 27=3+8+8+8 lines
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More on lines configuration

45 tritangent planes

135 points

216 pairs of skew-lines

36 doublesix

Figure: Schläfli doublesix
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Proposition

A smooth cubic surface X ⊂ P3(k) is a rational surface.

Using a pair of skew lines (ℓ1, ℓ2) on X , we can define a

birational map :

ϕ : X → ℓ1 × ℓ2 ≈ P
1 × P

1.

If M ∈ X \ ℓ1 ∪ ℓ2, then there exists a unique line ℓ ⊂ P3

through M which meets both ℓ1 and ℓ2. Then we set :

ϕ(M) := (ℓ ∩ ℓ1, ℓ ∩ ℓ2).

If P ∈ ℓ1, Q ∈ ℓ2, we set ℓ := PQ. Generically this line cut

X into 3 points P,Q,M. We set ψ(P,Q) := M.

The map ψ is rational. The maps ϕ and ψ are mutual

inverses.
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A claim

We choose a pair of skew lines ℓ, m. The line ℓ takes part

in exactly 5 triangles ℓ, ℓi , ℓ
′

i and m meets exactly one

ℓi , ℓ
′

i for each i = 1,2,3,4,5. By renumbering let these

be ℓi . Then the 10 lines meeting m form 5 triangles

m, ℓi , ℓ
′′

i . We have 17 = 2 + 5 + 5 lines.

The following result is easy. We denote (i , j , k , l ,m) a

permutation of (1,2,3,4,5).

Claim

There are 10 more lines ℓklm which meet ℓk , ℓl , ℓm
and not ℓi , ℓj ;

ℓ′i , ℓ
′′

j , ℓklm is a triangle.



Wild Dynamics...

J.P. Ramis

Contents

The cubic surface

Lines on cubic surfaces

Smooth cubic surfaces

The lattice A(S) and the

divisor class group Pic S

Existence of a line

Singular cubic surfaces

The lattice A(X )
(X nonsingular)

The lattice A(X ) is a Z-module defined by generators and

relations. The generators are the 27 lines and the

relations are roughly speaking “triangle=constant”. More

precisely A(X ) is the free abelian group on the 27 lines

modulo the relations ℓ+ ℓ′ + ℓ′′ = m + m′ + m′′ (for each

pair of triangles).

Lemma

The lattice A(X ) is generated by the 7 elements

ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ
′

5, ℓ
′′

5.

The proof is easy : ℓ+ ℓi + ℓ′i = ℓ+ ℓ5 + ℓ′5 . . .. Then :

ℓ′i = ℓ5 + ℓ′5 − ℓi ℓ′′i = ℓ5 + ℓ′′5 − ℓi ℓklm = ℓ+ ℓi − ℓ′′j

ℓ = 2(ℓ5 + ℓ′5 + ℓ′′5) − ℓ′5 − ℓ1 − ℓ2 − ℓ3 − ℓ4.
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Scalar product and A(X ) ≈ Z7

(X nonsingular)

One verifies easily that there existes a unique scalar

product A(X ) × A(X )→ Z such that :

– if ℓ, ℓ′ are distinct, then ℓ. ℓ′ = 0 or 1 according as

they are disjoint or intersect;

– for any line ℓ, ℓ2 = −1;

– for any line ℓ and any triangle m, m′, m′′,

ℓ(m + m′ + m′′) = 1.

Let :

e0 := ℓ5 + ℓ′5 + ℓ′′5 , ei := ℓi , i = 1,2,3,4, e5 := ℓ′5, e6 := ℓ′′5 .

Proposition

(i)

e2
0 = 1, e2

i = −1, i = 1,2,3,4, eiej = 0, i 6= j .

(i) (ei)i=0,...,6 is a Z-basis of A(X ).
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The scalar product can be diagonalized to

Diag(−1,1, . . . ,1).

Let h ∈ A(X ) be the class of a triangle. Then h2 = 3 and,

for all x ∈ A(X ), hx = x2 mod 2.

The 27 lines are the solutions of the equations hℓ = 1 and

ℓ2 = −1.

It is a symmetric characterization of the lines.
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Interpretations: A(X ), H2(X ; Z), H2(X ; Z), Pic X
(k := C)

If ℓ ⊂ X is a line then its homology class [ℓ] belongs to

H2(X ; Z). The map ℓ 7→ [ℓ] induces an isomorphism

A(X )→ H2(X ; Z).

The hyperplane section defines a cohomology class

h ∈ H2(X ; Z) such that h2 = 3 and hx = x2 mod 2 for all

x ∈ H2(X ; Z).

Let α, α′ be linear forms on P3 such that the planes

{α = 0} and {α′ = 0} cut out respectively two triangles T

and T ′ on X . Then α/α′ ∈ k(X ) and div(α/α′) = T − T ′.

Two triangles are linearly equivalent. One gets a map :

A(X )→ Pic X = Div X/ ∼ .

It is a bijection.
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Blow-up of a point in a plane

{X := ((x , y), [z : w ])| xz − yw = 0} ⊂ A2 × P
1

(w = 1, y = xz, saddle surface);

π : X → A2 is an isomorphism away from (0,0); the

exceptionnal divisor is π−1(0,0) ≈ P1
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The cubic surface as a blow up of P2

General position for 6 points in the plane:

the points are distinct, no 3 collinear points, not all 6 points on

a conic.

Theorem

Every nonsingular cubic surface is the blow up of 6 points

in general position in the projective plane P2.

We can describe the 27 lines from this point of vue.

6 skew lines are the inverse images of the 6 points;

there is a single conic in the plane for each choice of

5 points, the strict inverse images give 6 skew lines;

each line through 2 points of the plane gives a line

(15 lines).
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The cubic surface as a blow up of P2

(A del Pezzo surface)

Let Σ := {Pi}i=1,2...,6 be a set of six points in general

position in the plane. Let X be the corresponding blow-up

at the 6 points.

The vector space V of 3 forms on P2 vanishing at Σ is 4

dimensional. If (Fj)j=1,2,3,4 is a basis of V , then the

rational map P2 → P3 defined by P 7→ (Fj(P)) induces an

isomorphism of X with a cubic surface of P3.

This construction can be extended to special

configurations of 6 points. We get singular cubic surfaces.

If 3 points are collinear, then the corresponding line is

contracted into a singular point of X .
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The canonical divisor class of a cubic surface

Let X be a non-singular (projective) variety of dimension n.

Let f1, f2, . . . , fn ∈ k(X ) such that k(f1, f2, . . . , fn) ⊂ k(X ) is

a finite algebraic extension. A rational n-form on X is by

definition ω := gdf1 ∧ df2 ∧ . . . ∧ dfn, with g ∈ k(X ). In local

coordinates z1, z2, . . . , zn, s = Jg df1 ∧ df2, with

J := D(f1,f2,...,fn)
D(z1,z2,...,zn)

. If Γ is a prime divisor on X , then we set

vΓ(s) := vΓ(Jg) and div s =
∑

Γ vΓ(s)Γ; the class of div s

(modulo linear equivalence) is independent of the choice

of s, it is the canonical divisor class of X :

KX := (class of) div s.

The canonical divisor class of Pn is KPn = −(n + 1)H,

where H is the class of the hyperplane Pn−1 ⊂ Pn.

Adjunction formula : if X ⊂ Y , then KX = (KY + X )X .

If X ⊂ P3 is a non-singular cubic surface, then

KX = (KP3 + X )X = (−4H + 3H)X = −HX = −h.
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More generally, let X be a non-singular hypersurface of

degree d of Pm. Let f = 0 be an equation of degree d of

X ∩ Cm. Then the Poincaré residue on X of the

meromorphic form f−1dz1 ∧ . . . ∧ dzm vanishes of order

d − m − 1 at infinity, and so ωX ≈ OX (d − n − 1).
If d = n = 3, then ωX ≈ OX (−1), i. e. KX = −HX .

Let Y be a compact connexed complex manifold of

dimension n. Its canonical sheaf ωY is the sheaf of

holomorphic n-forms, that is of the holomorphic sections

of holomorphic line bundle defined by the n-th exterior

power of the holomorphic cotangent bundle of Y .

If the anticanonical sheaf ω
−1
Y is ample, then, for some

k ∈ N∗, the linear system |ω−k
Y | embeds Y in a projective

space. By definition Y is a Fano variety.

The hypersurface X is a Fano variety if and only if d ≤ m.

The Fano varieties of dimension 2 are called del Pezzo

surfaces. A smooth cubic surface is a del Pezzo surface.
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Monodromy, star points

We consider a family {Xt}t∈T of nonsingular cubic

surfaces. The 27 lines give a 27-covering Λ→ T . Moving

along a closed loop in T permutes the 27 lines. We get

an homomorphism π1(T , t0)→W (E6).

A star point (also called Eckardt point) on a nonsingular

cubic surface is the intersection point of 3 lines on the

surface. A non-singular cubic surface does not have more

than 18 star points.

One can move a nonsingular cubic surface with star

points in such a way that these points disappear.
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Existence of a line on a cubic surface
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Theorem

A cubic surface X ⊂ P3(k) (smooth or not) allways con-

tains a line.

We recall the definition of the Plücker coordinates of a

line in P3. Let V ⊂ k4 be a vector plane. To

x = (x0, x1, x2, x3), y = (y0, y1, y2, y3) ∈ V , we associate

the six numbers pij := xiyj − xjyi (i , j = 0,1,2,3, i < j).

We suppose that x , y generates V . Then

p := (pij) ∈ k6 \ {0} is independant of the choice of x , y
up to a scaling. We can associate to V an element of P5.

We have the Plücker relation :

p01p23 − p02p13 + p03p12 = 0.
Then G(2,4), the Grassmanian of 2 planes in k4, or

equivalently the variety of lines in P3, is identified with an

hypersurface G4 ⊂ P5.

For r , k ∈ N∗, we have dim H0(Pr ;OPr (k) =
(

r+k
r

)

. If

r = k = 3, then
(

r+k
r

)

= 20.
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Therefore we can identify the variety of cubic surfaces in

P3 with P19.

We can define the incidence variety Z ⊂ G4 × P19 :

Z := {(ℓ,X )| ℓ ⊂ X}.

We have two maps :

p : Z → G4, q : Z → P19

induced by the natural projections.

Any line ℓ is contained in a (say reducible) cubic surface,

therefore p is surjective. If ℓ = {x2 = x3 = 0}, then ℓ ⊂ X

if and only if the 4 coefficients of x3
0 , x

2
0 x1, x0x2

1 , x
3
1 in an

homogeneous form of degree 3 defining X vanishes.

Therefore the dimension of the fibres of p is 19− 4 = 15

and the dimension of Z is 15 + dim G4 = 15 + 4 = 19.
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There exists a cubic surface X0 with a finite set of line.

Consider X0 := {x1x2x3 − x3
0 = 0}: in the part in k3 the

surface X0 does ot contain any line, whereas in the plane

at infinity it contains 3 lines (x1x2x3 = 0).

The fiber q−1(X0) is finite. The image q(Z ) ⊂ P19 is

closed and we have 0 = dim q−1(X0) ≥ dim Z − dim q(Z ).
Therefore dim q(Z ) = 19 = dim P19 and q(Z ) = P19: the

map q is surjective.

Remark

We consider the quartic surfaces in P3. The dimension of

the variety of quartics is 35 − 1 = 34. The dimension of

the incidence variety Z ′ is 33, therefore the map q′ can-

not be surjective. There exists a quartic surface in P3 on

which there are no line at all.
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SINGULAR CUBIC SURFACES



Wild Dynamics...

J.P. Ramis

Contents

The cubic surface

Lines on cubic surfaces

Smooth cubic surfaces

The lattice A(S) and the

divisor class group Pic S

Existence of a line

Singular cubic surfaces

ON THE CLASSIFICATION OF CUBIC SURFACES 255

We make one final observation. If the codimension of a given type is c, and its

number of distinct singularities is k then the number of distinct lines is

in all cases.

i(8-c)(7-c) + A:-

Type

Codi-

mension

Class

No. of lines

Nonsing.

0

12

27

A,

1

10

21

1AX

2

8

16

A2

2

9

15

3AX

3

6

12

A,A2

3

7

11

A3

3

8

10

4 4 i

4

4

9

A2/,A^

4

5

8

A3A,

4

6

7

2^2

4

6

7

A,

4

7

6

£>4

4

6

6

- 4 3 2 ^

5

4

5

2 , 4 ^

5

4

5

A^Ay

5

5

4

A5

5

6

3

5

5

3

3A2

6

3

3

A5Al

6

4

2

6

4

1

4. T/*e universal unfolding of E6

Finally we describe the connection with the £6 singularity and its universal un-

folding. The complex vector space of cubic surfaces C
20

 has an algebraic action of

the algebraic group G/(4, C) by change of co-ordinates. If A
3
 +1 # 0 then <£A =

x0
3
+xt

3
+x2

3
 + 3Xxox1x2 = 0 is a cone on a non-singular cubic curve and an affine

space transverse to the tangent space of the orbit of 0A is

This space, a transversal to the <j)x orbit, picks up each type of surface which specializes

to (f>x for some A. But this includes every type of surface with only isolated singularities.

For if we choose a plane cutting F = 0 in a nonsingular cubic then by a change of

co-ordinates we can write F = x3f2(x0, xit x2, x3)+^x, x3 = 0 cutting F = 0 in

</>A = 0. Substituting x3 = tx3 we see that for t # 0 this is a legitimate change of

co-ordinates and for / = 0 we obtain the cone <f)x = 0.

However setting x3 = 1 in (*) above we see that we have a universal unfolding

of the £6 singularity (f)x. Looijenga [4; §7.8] has determined the possible types of

singular fibres appearing in this unfolding, and his result can be described as follows.

In the extended Dynkin diagram of type D6 (see diagram) we may obtain subdiagrams

by deleting vertices and their adjoining edges. If we associate to each connected

subdiagram its corresponding simple singularity the resulting collection will appear

on some singular fibre, and conversely. Using this (and noting that (*) has no

Figure: Bruce-Wall table
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Verification “by hand” on the equations (elementary but a

little bit boring...).

P-eqs Polynomials
PV I x1x2x3 + x2

1 + x2
2 + x2

3 + ω1x1 + ω2x2 + ω3x3 + ω4

PV x1x2x3 + x2
1 + x2

2 + ω1x1 + ω2x2 + ω3x3 + 1 + ω
2
3 −

ω3(ω2+ω1ω3)(ω1+ω2ω3)
(ω2

3
−1)2

PVdeg x1x2x3 + x2
1 + x2

2 + ω1x1 + ω2x2 + ω1 − 1
PIV x1x2x3 + x2

1 + ω1x1 + ω2(x2 + x3) + ω2(1 + ω1 − ω2)
PIII x1x2x3 + x2

1 + x2
2 + ω1x1 + ω2x2 + ω1 − 1

PIIID7 x1x2x3 + x2
1 + x2

2 + ω1x1 − x2

PIIID8 x1x2x3 + x2
1 + x2

2 − x2

PIIJM x1x2x3 − x1 + ω2x2 − x3 − ω2 + 1
PIIFN x1x2x3 + x2

1 + ω1x1 − x2 − 1
PI x1x2x3 − x1 − x2 + 1

Correction: permute PJM
II and PFN

II .
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CONJECTURE. (Wild) character varieties of Painlevé

equations cannot appear in the columns 12, 16, 17, 18,

20, 21 of the Bruce-Wall table.
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We recall the equation of the Fricke cubic S(a) :

F (X0, Xt , X1, a) = X0XtX1+X 2
0 +X 2

t +X 2
1−A0X0−AtXt−A1X1+A∞.

The equation of the projective surface S(a) ⊂ P3(C) in

projective coordinates (X̃0, X̃t , X̃1, T̃ ) is :

X̃0X̃t X̃1+X̃ 2
0 T̃+X̃ 2

t T̃+X̃ 2
1 T̃−A0X̃0T̃ 2−At X̃t T̃

2−A1X̃1T̃ 2+A∞T̃ 3 = 0.

The plane at infinity T̃ = 0 is a tri-tangent plane and its

intersection with the surface is the triangle {X̃0X̃t X̃1 = 0}.

Therefore the affine cubic surface S(a) contains exactly

24 affine lines. We will describe these lines.
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S(θ)

S(θ)

L3

L2 L1

Figure: The triangle at infinity
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Each line at infinity is contained in 4 tri-tangent planes

different from the plane at infinity. The intersection of

such a tri-tangent plane and S(a) is a triangle, therefore

the intersection with S(a) is the union of 2 affine lines with

a common point. Therefore for each line at infinity we get

8 affine lines on S(a). Using the coordinates X0, Xt , X1 we

see that for each l = 0, t , 1 there exists 4 exceptional

values of Xl such that {Xl = 0} ∩ S(a) is the union of 2

affine lines.

We will interpret the 24 lines on S(a) using some

properties of representations.
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24 lines into S(a)
(distinct or not)

Let a0, at , a1, a∞ ∈ C arbitrary. The 24 lines distinct or not

defined in C3 by the following equations are contained in

the cubic surface S(a) ⊂ C3:

Xk = eie
−1
j + eje

−1
i , eiXi + ejXj = a∞ + eiejak ,

Xk = eie
−1
j + eje

−1
i , eiXj + ejXi = ak + eieja∞,

Xk = eiej + e−1
i e−1

j , Xi + eiejXj = ejak + eia∞,

Xk = eiej + e−1
i e−1

j , Xj + eiejXi = eja∞ + eiak ,

Xk = eke−1
∞ + e∞e−1

k , e∞Xi + ekXj = ai + eke∞aj ,

Xk = eke−1
∞ + e∞e−1

k , ekXi + e∞Xj = aj + eke∞ai ,

Xk = eke∞ + e−1
k e−1

∞ , Xi + eke∞Xj = ekaj + e∞ai ,

Xk = eke∞ + e−1
k e−1

∞ , Xj + eke∞Xi = ekai + e∞aj .
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There are strong relations between the classical geome-

try of a smooth complex cubic surface (27 lines, 45

tritangent planes...) and some properties of the repre-

sentations into SL2(C) of a free group of rank 3. As far as

we know these simple but important relations remained

unnoticed until recently.
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Let :

ω : Γ2 =< u, v >→ SL2(C)

be a linear representation. We set :

M ′ := ω(u) and M ′′ := ω(v).

We denote e′ and (e′)−1 (resp. e′′ and (e′′)−1) the eigen-

values of M ′ (resp. M ′′). We denote e and e−1 the

eigenvalues of M := M ′M ′′.

The following assertions are equivalent

(i) The representation ω is reducible.

(ii) The pair (M ′, M ′′) is reducible.

(iii) We have : e = e′e′′ or e = e′(e′′)−1 or e = (e′)−1e′′

or e = (e′)−1(e′′)−1.

(iv) We have Tr M = e′e′′ + (e′e′′)−1 or

Tr M = e′(e′′)−1 + (e′)−1e′′.
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Reducibility and mixed basis

Let ω be a representation and M ′, M ′′ as above.

We suppose that Tr M ′ 6= ±2 and Tr M ′′ 6= ±2. Then M ′

and M ′′ are diagonalisable. There allways exists a mixed

basis {v ′, v ′′} of C2 formed by an eigenvector of M ′ and

an eigenvector of M ′′. In general there are (up to

rescaling of the eigenvectors) 4 ways one can form such

a basis.

The 4 cases of reducibility of ω correspond to the

degeneracy of one of these 4 basis.

We recall that if ω is irreducible, then it is determined, up

to equivalence, by the traces of M ′, M ′′ and M.
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We will describe a relation between a notion of partial

reducibility of a representation of Γ3 and the lines on the

cubic surface S(a). This relation is apparently new.

If we replace representations by wild representations,

then this relation can be extended to all the Painlevé

equations.
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We denote Γ3 :=< u0, ut , u1 > the free group of rank 3

generated by the letters u0, ut , u1 and we set

u∞ = u−1
1 u−1

t u−1
0 .

Let ρ : Γ3 → SL2(C) be a linear representation. We set

Ml := ρ(ui) (i = 0, t , 1,∞) and we denote el and e−1
l the

eigenvalues of Ml .

We will say that the representation ρ is partially reducible

if there exists i , j ∈ {0, t , 1,∞}, i 6= j , such that the pair of

matrices
(

ρ(ui), ρ(uj)
)

is reducible.
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We have the following characterizations of smoothness (some

are classical and some are apparently new).

Let a ∈ C4. We suppose al 6= ±2 (l = 0, t , 1,∞) (non

resonance). The following conditions are equivalent :

(i) The affine cubic surface S(a) is smooth.

(ii) The projective cubic surface S(a) is smooth.

(iii) The 24 lines described before are pairwise distinct.
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(iv) The 3 following conditions are satisfied:

the 4 numbers built from the el (l = 0, t , 1,∞)

ete
−1
1 + e1e−1

t , ete1 + e−1
t e−1

1 ,

e0e−1
∞

+ e∞e−1
0 , e0e∞ + e−1

0 e−1
∞

are pairwise distinct;

the 4 numbers :

e1e−1
∞

+ e∞e−1
1 , e1e∞ + e−1

1 e−1
∞

,

ete
−1
0 + e0e−1

t , ete0 + e−1
t e−1

0

are pairwise distinct,

the 4 numbers :

e1e−1
∞

+ e∞e−1
1 , e1e∞ + e−1

1 e−1
∞

,

ete
−1
0 + e0e−1

t , ete0 + e−1
t e−1

0

are pairwise distinct.
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(v) We have the 8 conditions: e0 e±1
t e±1

1 e±1
∞ 6= 1 (the 3

signs are chosen independantly).

(vi) If ρ is a representation such that Tr ρ(ul) = al for all

l = 0, t , 1,∞, then it is irreducible.

If we use the parameters θl , then the conditions (v) are

translated into:

θ0 ± θl ± θ1 ± θ∞ ∈ Z

These conditions already appeared in several papers:

Jimbo, Guzzetti, Lisovyy-Gavrilenko....
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We suppose that the surface S(a) is smooth. For each

pair (l , m) of elements of {0, t , 1,∞}, each of the 2

planes :

{

Xn = elem + e−1
l e−1

m

Xn = ele
−1
m + e−1

l em

with (l , m, n) =

{

(i , j , k)

(k ,∞, k)

(1)

intersects S(a) at 2 lines. The resulting 4 lines cor-

respond to the reducibility of the pair of matrices

(Ml , Mm).
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More precisely if two matrices Ml and Mm are

diagonalizable, for each of them there exists a pair of

invariant subspaces giving rise to a basis. Then there are

in general 4 possibilities of pairing of invariant subspaces

out of which one can form a mixed basis. The cases of

reducibility of the pair (Ml , Mm) corresponds to the

degeneracy of (at least) one of these mixed bases. Each

of the 4 lines corresponds to such a case of degeneracy.
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Partial reducibility of representations and

lines

Proposition

Let a ∈ C4 arbitrary and ρ : Γ3 → SL2(C) a representation

such that Tr ρ(ul) = al (l = 0, t , 1,∞).

(i) If the representation ρ is partially reducible, then its

equivalence class belongs to one of the 24 lines

(distinct or not) defined before.

(ii) We suppose that S(a) is smooth. Then ρ is partially

reducible if and only if its equivalence class belongs

to one of the 24 lines of S(a).
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Fibration by coordinates

We suppose that we are in the ”generic case” (i. e. SVI(a)
is smooth).

Let Π0 : SVI(a) → C, Π0 : (X0, Xt , X∞) 7→ X0. We recall :

SVI(a) =
{

(X0, Xt , X1) ∈ C
3|F (X0, Xt , X1) = 0

}

F (X0, Xt , X1) = X0XtX1+X 2
0 +X 2

t +X 2
1 −A0X0−AtXt−A1X1+A∞.

For c ∈ C, Π−1
0 (c) is interpreted as an affine conic in the

(Xt , X1)-plane:

X 2
t + X 2

1 + cXtX1 − AtXt − A1X1 − cA0 + A∞ = 0.



Wild Dynamics...

J.P. Ramis

Contents

The geometry of
S(a)

The character
variety of the free
group of rank 3

Partial reducibility
of representations
and lines on
character varieties

Lines in the
character varieties
and special
solutions

The dynamics on
PVI
A dynamics onS

FromS to PVI

Partial reducibility
of wild
representations

The generic fiber of Π0 is isomorphic to C∗. The

exceptional fibers are of of two types :

either X0 = ±2, then X 2
t + X 2

1 ± 2XtX1 = (Xt ± X1)
2,

the fiber is a parabola and it is isomorphic to C ;

either we are in a partially reductible case, that is in

one of the 4 cases :

X0 = ete
−1
1 + e1e−1

t or X0 = ete1 + e−1
t e−1

1 or

X0 = e0e−1
∞ + e∞e−1

0 or X0 = e0e∞ + e−1
0 e−1

∞ ,

then the fiber is degenerated into two lines. The

intersection of these two lines is a critical point of Π0.

Its image is a critical value of Π0.
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either X0 = ±2, then X 2
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the fiber is a parabola and it is isomorphic to C ;

either we are in a partially reductible case, that is in

one of the 4 cases :

X0 = ete
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1 + e1e−1
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1 or
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∞ + e∞e−1

0 or X0 = e0e∞ + e−1
0 e−1

∞ ,

then the fiber is degenerated into two lines. The

intersection of these two lines is a critical point of Π0.

Its image is a critical value of Π0.
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If we remove the 6 exceptional fibers (that is 8 lines and

two curves) from SVI(a) then we can parameterize the

remaining set by a Zariski open set of C × C∗. Such

“pants parameterizations” already appeared in many

papers, following Jimbo (Lisovyy ?) :

(X 2
1 − 4)X0 = D0,+s + D0,−s−1 + D0,0

(X 2
1 − 4)Xt = Dt ,+s + Dt ,−s−1 + Dt ,0,

with coefficients given by (using X1 = 2 cos 2πσ1) :

D0,0 := X1At − 2A0, Dt ,0 = X1A0 − 2At ,

D0,± := 16
∏

ǫ=±1

sin π(θt ∓ σ1 + ǫθ0) + sin π(θ1 ∓ σ1 + ǫθ∞),

Dt ,± := −D0,± e∓2iπσ1 .
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LINES ON THE CHARACTER VARIETIES

AND

SPECIAL SOLUTIONS

The PVI case
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Some special solutions of PVI (Riccati solutions, rational

solutions, algebraic solutions) are known for special

values of the parameters. For generic values of the

parameters, as far I know, the only known special

solutions are the 12 Kaneko solutions.

I will return to this question using the dictionnary between

the 24 lines and the partial reducibility of the

representations and the RH map.
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The Kaneko solutions
(Interpreted as central solutions)

Kaneko searched for formal solutions of PVI at the fixed

singularities t = 0, 1 or ∞. He got 4 solutions for each

singularity and these formal power series are convergent

(Briot and Bouquet).

The (extended) Painlevé Hamiltonian vector field XVI has

12 = 3 × 4 singularities over t = 0, 1 or ∞. We can

perform a local study of the field nearby these

singularities. It is transversally symplectic and the

eigenvalues are (λ,−λ, µ). We normalize µ := 1. The

singular points satisfy the hypothesis of Hadamard-Perron

theorem, therefore there exists two local analytic invariant

dimension 2 manifolds which intersect on an analytic

central solution, a Kaneko solution.
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We have already used this method for PII . The formal

Puiseux solutions correspond (generically) to 9 singular

points of the Hamiltonian vector field XII extended using

Chiba orbifold technic.

We can do the same for PV . Over t = 0 we get 3 singular

points corresponding to the 3 Kaneko-solutions. The

situation is similar to the PVI case and the central

solutions (intersection of 2 analytic invariant manifolds)

are convergent.

Over t = ∞ it is more difficult. There are 5 formal

solutions and there are (in general) divergent. It it not so

easy to get them (one can use Bruno power geometry1 or

Chiba methods). Afterwards we can use the Bittmann

results as for PII .

1Newton polygons, cf. A. Bruno, I.V. Goryuchkina, around 2010.
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Special solutions of PVI
(In the generic case)

We return to PVI . We will see that there are some special

solutions corresponding by RH to some points on the 24

lines or at the intersections of two of these lines. By ana-

logy with the case pf PII and with Boutroux terminology

we call them2 truncated, tri-truncated and bi-truncated.

There are (generically) :

24 one-parameter families of truncated solutions,

12 tri-truncated solutions, the Kaneko solutions,

96 bi-truncated solutions.

2It is only a terminology; for these solutions,the asymptotic picture

is different !
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We recall that the reducible locus of each pair (Mi , Mj)
defines 4 lines into 2 parallel planes {Xk = const}. We

return to this question in more details.

We choose a mixed basis taking an eigenvector of Mi and

an eigenvector of Mj . In such a basis, we have :

Mi =

(

ei 0

fi e−1
i

)

Mj =

(

ej fj
0 e−1

j

)

Let Di := diag(ei , e−1
i ), Dj := diag(ej , e−1

j ). We have :

Tr MiMj = Tr DiDj + fi fj

Such a pair is reducible if and only if fi = 0 or fj = 0, i. e.

if and only if :

Tr MiMj = Tr DiDj .
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Then the pair (Mi , Mj) is reducible if and only if

Xk = eiej + e−1
i e−1

j or Xk = eie
−1
j + e−1

i ej .

Let c−
i,j := eiej + e−1

i e−1
j and c+

i,j := eie
−1
j + e−1

i ej ;

ℓ+
i,j := eiXi + ejXj − akeiej − a∞,

ℓ+
i,j = e−1

i Xj + e−1
j Xi − a∞e−1

i e−1
j − ak .

We recall (F = F (X , a)) :

F = (Xk − c+
i,j)(FXk

− Xk + c+
i,j) − ℓ+

i,j ℓ
+
i,j

Therefore the plane {Xk = c+
i,j} intersects the cubic

surface on the union of two lines :

L+
i,j := {Xk = c+

i,j , ℓ
+
i,j = 0} L+

i,j := {Xk = c+
i,j , ℓ

+
i,j = 0}.

We denote p+
i,j := L+

i,j ∩ L+
i,j . We call it a central point.
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Let :

ℓ−i,j := eiXi + e−1
j Xj − akeie

−1
j − a∞,

ℓ−i,j = e−1
i Xj + ejXi − a∞e−1

i ej − ak .

The plane {Xk = c−
i,j} intersects the cubic surface on the

union of two lines :

L−
i,j := {Xk = c−

i,j , ℓ
−
i,j = 0} L−

i,j := {Xk = c−
i,j , ℓ

−
i,j = 0}.

We denote p−
i,j := L−

i,j ∩ L−
i,j . We call it a central point.

From the relation M0MtM1M∞ = I, we have :

Xk = Tr MiMj = Tr MkM∞,

therefore the reducible locus of the pair (Mk , M∞) ap-

pears in the two other planes :

Xk = eke∞ + e−1
k e−1

∞ = c−
k ,∞

and eke−1
∞ + e−1

k e∞ = c+
k ,∞

.

The 8 lines meet the same line Lk at infinity.
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The 12 central points are p±
i,j for any pair {i , j} in

{0, t , 1,∞}. These points correspond to a representation

such that Mi and Mj have 2 common eigenvectors (p+
i,j is

defined by fi = fj = 0).

Using RH we can see what happens on the solutions

side.

Proposition

(i) RH sens the 12 Kaneko solutions (central solutions)

to the 12 central points.

(ii) The solutions in the 2 invariant planes at a Kaneko

point correspond by RH to the points on the 2 lines

intersecting at the corresponding central point.

Proofs: (i) follows from Kaneko work (Jimbo method); (i)

and (ii) can be proved using the dynamics on each side of

RH.
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Bi-truncated solutions of PVI

The bi-truncated solutions of PVI correspond to the

intersection of two invariant surfaces relative to two

different Kaneko points. RH send them to intersections

of lines which are not central points.

Such a solution is simply characterized by the fact that it

is bounded at both of the singular points when approa-

ched along certain logarithmic spiral.
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THE DYNAMICS OF PVI
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An algebraic symplectic dynamics on S
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Antisymplectic involutions on S(a)

We denote Lh and qh the 3 edges and the 3 vertices of

the triangle at infinity ∆ of S(a) (h = 0, t ,∞).

S(θ)

S(θ)

L3

L2 L1

Figure: The triangle ∆

The affine cubic S(a) is a (2, 2, 2) surface: if we fix 2 co-

ordinates Xi , Xj , then F (X , a) is a polynomial of degree 2

in Xk . The exchange of the two roots, Xi , Xj remaining

fixed, defines an involution σk on S(a).
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The 3 involutions σh are antisymplectic. We have a

geometric interpretation of these involutions. A line in

P3(C) passing by the vertice qh (and not contained into the

plane at infinity) cut S(a) in 2 points (distinct or not). The

bijection of S(a) exchanging these 2 points is σh.

We denote A :=< s0, st , s1 > the subgroup of Aut[S(a)]
generated by the 3 involutions.

σ0 =











X0 7→ X0

Xt 7→ −X1 − X0Xt + A1

X1 7→ Xt

σt =











X0 7→ X1

Xt 7→ Xt

X1 7→ −X0 − XtX1 + A0.

σ1 =











X0 7→ −Xt − X1X0 + At

Xt 7→ X0

X1 7→ X1.

Quadratic transformations.
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Theorem [Èl’-Huti 1974, Cantat-Loray 2009]

(i) The group A is isomorphic to the free product :

Z/2Z ∗ Z/2Z ∗ Z/2Z =< s0 > ∗ < st > ∗ < s1 > .

(ii) The group A is of finite index (≤ 24) into Aut[S(a)].
Generically A = Aut[S(a)].

(iii) The group Aut[S(a)] is generated by A and the group

of affine transformations of C3 which preserves S(a).
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We set : g
1

:= σt ◦ σ0, g
0

:= σ1 ◦ σt , g
t
:= σ0 ◦ σ1.

We have :

g
1
(X0, Xt , X1) =

(

A0 − X0 − XtX1, At − A0X1 + X1X0 + (X 2
1 − 1)Xt , X1

)

A quadratic diffeomorphism of C3 which preserves the

coordinate fibration by Π1. On each fiber (a conic) it is

induced by an affine transformation of C2.

The fixed points of g
1

are 4 central points and the cor-

responding 8 lines (meeting L1 at infinity) are (globally)

invariant by g
1
.
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From the dynamics on S to the non-linear monodromy of PVI
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PARTIAL REDUCTIBILITY OF WILD REPRESENTATIONS

AND

LINES ON CHARACTER VARIETIES
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For all Painlevé equations there exists a characterization

of the lines on the (wild) character varieties by a property

of (wild) reducibility of the (wild) representation of the

linearized equation.

By definition, the (wild) reducibilty corresponds to the

degeneracy of certain “mixed bases” of privileged

solutions, that is to (wild) monodromy representations for

which the corresponding pair of solutions is linearly

dependent.

The way how these locally defined privileged solutions

are continued is of essential importance.
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The one-dimensional subspaces of the solution space

from which come these bases are the following:

1 for each regular singularity there is a pair of

eigenspaces for the monodromy if diagonalizable

(Levelt basis) or a single eigenspace if nonline-

arizable,

2 for each irregular singularity and each Stokes

direction there is a unique associated space of

subdominant solutions.
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The 18 lines on SV from wild reducibility
(Klimes-Paul-Ramis)

(a)

(b)

Figure 2: (a) Pairing on the distinguished subspaces of the solution space cor-
responding to the 18 lines on SV .
(b) The two pairs of subspaces of the solution space (each attached to one
anti-Stokes direction) corresponding to the sectoral bases YI± .
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The 12 lines on Sdeg
V from wild reducibility

(Klimes-Paul-Ramis)

(a)

(b)

Figure 3: (a) Pairing on the distinguished subspaces of the solution space cor-

responding to the 12 lines on S
deg
V .

(b) The pair of subspaces of the solution space corresponding to the sectoral
basis YO.
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ON THE CLASSIFICATION OF CUBIC SURFACES 255

We make one final observation. If the codimension of a given type is c, and its

number of distinct singularities is k then the number of distinct lines is

in all cases.

i(8-c)(7-c) + A:-

Type

Codi-

mension

Class

No. of lines

Nonsing.

0

12

27

A,

1

10

21

1AX

2

8

16

A2

2

9

15

3AX

3

6

12

A,A2

3

7

11

A3

3

8

10

4 4 i

4

4

9

A2/,A^

4

5

8

A3A,

4

6

7

2^2

4

6

7

A,

4

7

6

£>4

4

6

6

- 4 3 2 ^

5

4

5

2 , 4 ^

5

4

5

A^Ay

5

5

4

A5

5

6

3

5

5

3

3A2

6

3

3

A5Al

6

4

2

6

4

1

4. T/*e universal unfolding of E6

Finally we describe the connection with the £6 singularity and its universal un-

folding. The complex vector space of cubic surfaces C
20

 has an algebraic action of

the algebraic group G/(4, C) by change of co-ordinates. If A
3
 +1 # 0 then <£A =

x0
3
+xt

3
+x2

3
 + 3Xxox1x2 = 0 is a cone on a non-singular cubic curve and an affine

space transverse to the tangent space of the orbit of 0A is

This space, a transversal to the <j)x orbit, picks up each type of surface which specializes

to (f>x for some A. But this includes every type of surface with only isolated singularities.

For if we choose a plane cutting F = 0 in a nonsingular cubic then by a change of

co-ordinates we can write F = x3f2(x0, xit x2, x3)+^x, x3 = 0 cutting F = 0 in

</>A = 0. Substituting x3 = tx3 we see that for t # 0 this is a legitimate change of

co-ordinates and for / = 0 we obtain the cone <f)x = 0.

However setting x3 = 1 in (*) above we see that we have a universal unfolding

of the £6 singularity (f)x. Looijenga [4; §7.8] has determined the possible types of

singular fibres appearing in this unfolding, and his result can be described as follows.

In the extended Dynkin diagram of type D6 (see diagram) we may obtain subdiagrams

by deleting vertices and their adjoining edges. If we associate to each connected

subdiagram its corresponding simple singularity the resulting collection will appear

on some singular fibre, and conversely. Using this (and noting that (*) has no

Figure: Bruce-Wall table
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(Wild) character varieties of some Painlevé equations
(Upper Bruce-Wall table)

Column 1: generic PVI , 27 = 24 + 3 lines, smooth;

Column 2: generic PV , 21 = 18 + 3 lines, 1

singularity A1 (at infinity);

Column 4: generic P
deg
V , 15 = 12 + 3 lines, 1

singularity A2 (at infinity);

Column 5: generic PII , 12 = 9 + 3 lines, 3

singularities A1 (at infinity);

Column 7: PII,α with α ∈ Z, 10 = 7 + 3 lines, 1

singularity A3;

Column 8: PII,α with α ∈ 1
2 + Z, 9 = 6 + 3 lines, 4

singularities A1;

Column 9: PI , 8 = 5 + 3 lines, 1 singularity A2 and 2

singularities A1.
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singularities A1.
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Column 1: generic PVI , 27 = 24 + 3 lines, smooth;

Column 2: generic PV , 21 = 18 + 3 lines, 1

singularity A1 (at infinity);

Column 4: generic P
deg
V , 15 = 12 + 3 lines, 1

singularity A2 (at infinity);
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singularities A1 (at infinity);

Column 7: PII,α with α ∈ Z, 10 = 7 + 3 lines, 1

singularity A3;

Column 8: PII,α with α ∈ 1
2 + Z, 9 = 6 + 3 lines, 4

singularities A1;

Column 9: PI , 8 = 5 + 3 lines, 1 singularity A2 and 2

singularities A1.



Wild Dynamics...

J.P. Ramis

Contents

The geometry of
S(a)

The character
variety of the free
group of rank 3

Partial reducibility
of representations
and lines on
character varieties

Lines in the
character varieties
and special
solutions

The dynamics on
PVI
A dynamics onS

FromS to PVI

Partial reducibility
of wild
representations

Properties of (wild) reducibility of the (wild) monodromy of

a linear equation are also strongly related to spectral

problems.

In 1975 Y. Sibuya studied an eigenvalues problem for

the Schrödinger equations y ′′ − P(x)y = λy , with

P(x) := xm + a1xm−1 + · · · + an−1x + am, in relation

with Stokes multipliers.

He proposed to define eigenvectors as the solutions

which are subdominant in two different sectors (a

natural generalisation of the classical scattering3).

3Not in the L2 spirit but in the pure spirit of Schrödinger original

paper on the hydrogen atom !
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In a joint work (in progress...) with F. Richard-Young

and J. Thomann we give a relation between the

spectrums of the spheroidal differential equations

and the reducibility of their monodromy (which can

be considered as the wild reducibility of the wild

monodromy...). This gives in particular a nice picture

for the 4 Floquet spectrums of the Mathieu equation.

The relation gives also a quite good method of

numerical computation of the eigenvalues.
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