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Natural Language Processing
(Recurrent NN, Attention NN)

Price
($1000)
2104 5 45 460
1416 3 40 232
1543 3 36 315

Feature-based Data
(Fully Connected NN)
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Neural Networks

Bioinformatics
(Graph NN)

Computer Vision
(Convolutional NN)

Al luxt — a computer program Lhat
can beat a champion Go player s

ALL SYSTEMS GO

Reinforcement Learning
(Policy NN, Q NN)
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Representation Learning in CV

Image
Representation

input layer hidden Iyer 1 hiden Iyer 2 hidden layer 3 Tr-a i n a n e u ra I n etwo rk ( Res N et) 0 n

ImageNet (1M data, 1000 classes)

output layer

Cat Representation (feature extractor):
The mapping from image to the
second-to-the-last layer.

2\
227 PN
2 NN
«OA‘A“E{:\
AN
& N
SN\

hiaaen layer 1 nhiaaen layer 2 niaaen iay;

output layer

W
p
897

0

Dog Fix the representation, just re-train
the last linear layer.
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Example

input layer hidden layer 1 hidden layer 2 hidden layer 3

output layer

Source tasks
(for training
representation):

ImageNet

ResNet
Target task: o V\({lthou"f reprejentatlon Ie_ar(r’nng:
Few-shot Learning 5% - 10% (random guess = 5%)

on VOCO7 dataset M* .

(20 classes, 1-8
examples per class) o

With representation learning:
50% - 80%
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Examples

Final hidden state:
Sentence representation

Natural ho h, hr
Language — — > aa —> —
Processing T T
Wo Wt
Graoh node vector
ra
P _ — NN
Representation fru—-R N o Y,
Learning R
O Feature representation,
embedding

[Bengio et al. 2012] i

University of Washington



Two Questions

@When? @ Why?

What are the necessary and
sufficient conditions?

What is the mechanism?
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Formulation

Source Tasks Target Task
Task 1 Task T Target Task
Task-specific Jd1, - 9gr, [ € G: prediction class
prediction 91 9t T f : s
\W __ (e.g., linear classifier)
Shared } Representation t ,
(C;r:m;; . Learning h € H: representation class
Representation) : } (e.g., multi-layer NN)
B 1 ot 1
N\ N\ N\ N\
Input (28 ) (2t ) |[27) [ 2t )
\_/ \_/ \_/ \_/
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Formulation

Representation Learning Predictor Learning
* T source tasks, each with n4 data: * 1 target task, with n, << n, data:
T ta
{(xf,yH) ... (xfll,yﬁl)}tzl (12, y1%) .. (xnz;ynz) %
e Learning representation: * Training for the target task:

nq
TR TORCACCHRD pip D40 (1<),
t=1 1=1

£: quadratic loss Representatlon h(-) is fixed
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Standard Statistical Learning Theory

Training with data only from the target domain: Target Task
n;

. ta ta Target Task

min_ Z e(f (h(xf*)), ¥£ o

: K8

Theorem ( Example )
C(H)+C(G) t
E(xt“,yt“)“'u [f(f(h(xta))»yta)] = 0( n, ) &

C(H): complexity measure of the representation class.

C(G): complexity measure of the prediction class. /
E.g., # of variables (linear function class), VC-dimension,
Rademacher complexity, Gaussian width, etc
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Ideal Theory for Representation Learning

|dentify a set of (natural) assumptions:
1. If the data satisfies these assumptions, representation learning provably helps.
2. Without assumptions, representation learning does not help.

Theorem (Example)

C(H) C(9)
ta ta\l — —\vJ
E (yta ytay, [€(f (R(x), ¥*)] = O( wr nz )
When # of tasks (T) is larger, much better than ‘ ‘
O(C’(?f) + (3(9))
n, for learning the for learning the
representation predictor
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Asmp 1: Existence of a Good Representation

Assumption 1: Existence of a Good Representation

There exist a representation h* € H and predictors g1, 95, ....,g7, f € G such that
Eceuyoral €01 (1 Ge0))ve)] = 0V = 1,..,T
[E(xtarYta)“’ﬂ[f(f*(h*(xta))’yta)] =0

A shared good representation for all source tasks and the target task:
This is why we use representation learning.
(Without this assumption, we should not use representation learning)

University of Washington 11



Existence of Good Rep is NOT Enough

Source tasks:
Classify types of
cats.

Target task:
Cat or dog?

Source tasks can learn a good representation for cats,
but not a good representation for both cats and dogs.

University of Washington
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Existence of Good Rep is NOT Enough

Input: 1000 dimensional 0/1 vector, {0,1}1900

Good representation: first 100 dimension
e All tasks (source and target) only need first 100 digits for accurate prediction.
* Predicting whether the 10t-digit is 1, predicting the sum of first 100 digits, etc.

Bad scenario:
* Source tasks only need to use first 50 digits: e.g., whether the 10th-digit is 1
* Target tasks need to use all first 100 digits: e.g., predicts the sum of first 100 digits

Source tasks cannot give the full information about the good representation! ”O\‘

University of Washington 13



Assumption 2: Diversity of Source Tasks

Representation learning is useful only if source tasks can give the full information
about the good representation, a.k.a., diversity of the source tasks.

e What is the definition of diversity?

University of Washington
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Formulation

Source Tasks
Task 1 Task T
1 R
Task-specific
prediction 9 9t ‘ gr |
Shared h } Representation
(Common — Learning
Representation) ]
B 1 1 1
N N N
Input (28 ) (2t ) |[27)
_ S
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Target Task

Target Task

f

A

Jd1i, - g7, f € G: prediction class
(e.g., linear classifier)

h € H': representation class
(e.g., multi-layer NN)
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Diversity for Linear Predictors

G: linear prediction class (last layer of neural networks)

Assumption 1: Existence of a Good Representation

There exist a representation h* € H,h*(x) € R* and wi,w;, ..., ws, w;, € RX:

E (e y~p EQWe, R (X)), y)l =0ve =1,..,T
Ex,q.yea) [ (Wia B (X)), Y2a)] = 0

Assumption 2: Diversity of Source Tasks for Linear Predictor

W* = [w{,w;, ...,wr] € R¥*T is full rank (=k).

Need T = k: cover the span of the good representation.

University of Washington
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Linear Representation (Subspace Learning)

Input: x € R?. Linear representation class #: matrices of size k X d (k < d).

Assumption 1: Existence of a Good Representation

There exists a linear representation B* € R*¥*4 and w{,ws, ..., ws, w;, € R¥:
E(x,y)~u  LUWe, B %), y)| =0Vt =1, ..., T
E(xta,yta)~y [€(<W£ka: B*xta>» Yta)] =0

Theorem [D. Hu Kakade Lee Lei, 2020]

Under Assumption 1 &2, we have [E(xta’yta),vu [f(f(h(xta)),yt“)] = 0(:11; + X ).

np

Without representation learning, directly learning a linear predictor on R¢: O(n—).
2

University of Washington
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Main Result for General Representation Class

Assumption 1: Existence of a Good Representation

There exist a representation h* € H, h*(x) € R* and wi,w;, ..., ws, w;, € RX:

Ee,y)~p EQWE R (), )] =0Vt =1,..,T
E(xrqyea)~ulf (Wea, B (Xea)), Yea)] = 0

Theorem [D. Hu Kakade Lee Lei, 2020]

C(H) . k

Under Assumption 1 &2, we have E(yta ytay.,, [2(F(h(xt9)),y'?)| = O(W +—=).

np

C(H): Gaussian width of the representation class H.
e Measures how well the function in the class can fit the noise.
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Comparison with Previous Work

Theorem [D. Hu Kakade Lee Lei 2020]

Under Assumption 1 &2, we have E(xta’yta)%[f(f(h(xta)),yta)] = 0( L ).

Theorem [Maurer Pontil Romera-Paredes 2016]

Under Assumption 1, and that all tasks (source and target) are i.i.d. sampled from a
distribution over tasks,

we have E(yta yta), [2(F(h(xt9)),y*)]| = 0(% + n% ).

1\ . 1) . .. .
0 (;) , instead of O (ﬁ), is tight for the setting in [Mauer et al. 2016].

1

University of Washington
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Why Does Rep learning Help: Proof Intuition

Joint optimization of representation and prediction'
T

min ) min zf(gt h(xt)

hed gteg
t=

Main Ildeas:

* Optimization on representation is over all tasks.

* We must find a shared good representation for all tasks, otherwise, the loss cannot
be small: joint optimization forces to learn a good representation.

University of Washington
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Key Message

and

are key conditions that enable representation learning to
improve sample efficiency.
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Reinforcement Learning

@Q Yes
Response?
.

{":' Google DeepMind
Challenge Match

(ServerZ) ‘ Server3 i 1 Server4i

[Levine et al 16] [Ng et al 03] [Singh et al 02] [Let et al 12]
[Mandel et al 14] [Tesauro et al 07] [Minh et al 15] [Silver et al 16]

University of Washington
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Reinforcement Learning

Markov Decision Process

43

State|  Reward action
S r a

A policy  : States(S) — Actions (A),a = m(s)

Goal: maximize the expected total reward E [r1 + 15 £ - | n]

" optimal policy (maximizes the expected total reward)

University of Washington
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Multi-task Reinforcement Learning

Autonomous driving on different situations

A class of different but related tasks.
e Each task has a different optimal policy.
e Share the same state space and action space.

University of Washington
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Imitation Learning

Trajectories from the optimal policy ™ (expert) are available:

{(sp, m*(s1)) Y=g

Multi-task Imitation learning:

T source tasks, each task we have n; samples from experts.
1 target task with n, samples from the expert.

University of Washington
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Representation Learning for Imitation Learning

Source Tasks Target Task
Task 1 Task T Target Task
t f I -
o o %, Ve ( \
Model the optimal policy 7™: Task-specific | . ‘ - | ‘ f

 Source tasks,t =1, ..., T: prediction \W
m:(s) = gt(h(s)) |

* Target task:

Shared h 1 Representation f

* = (Common — Learning
Mta (S) f (h (S)) Representation) ] A ‘
| | |
R /"I“\ /"I‘\ 77\ /"I‘\
Input (28 ) (2t) (2F) ()
_ ./ __/ N4
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Representation Learning for Imitation Learning

Learning representation:

Source Tasks

T nq
: : Task 1 Task T
min Y min Y ¢ (h st ) (st
min ) min » (9. (h(sD), (D) L 1
t=1 i=1
: . Task-specific
£: loss function orediction g1 gt ‘ gr |
Training for target task: - \W
na
r)pelél z 2(f (h(sfa)) , T (st%)) Shared h i Representation
i=1 (Common — Learning
Representation h(:) is fixed Representation) .
- t ot
Input . \'l |'/ 2t \'| "'/;,;7 \'|
/S
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Experiments

NoisyCombinationLock, BC SwimmerVelocity, BC
12 o
c _ C —38 . w
£ 10 = ® ¢
+J ® 4
o 8 - 4 o —-4.01%
Q (]
% 6~ ] ® g Q
o ? o —4.2- e z
© 418 hd ® ® o
, Lo o ¢ ~4.41%
10 20 30 40 10 20 30 40
# trajectories for target task # trajectories for target task
—— baseline — 1 expert(s) — 2 expert(s) — 4 expert(s) 8 expert(s) 16 expert(s)
Control the agent towards a target location Control the agent with a target velocity (MuloCo)

Representation learning helps:
* Beats the baseline for small n, (# trajectories for target task).

* Increasing # of source tasks (experts) helps.
[Arora D. Kakade Luo Saunshi ICML 2020]
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Summary

When and Why Does Representation Learning Help?

* When: existence of a good representation & diversity of source tasks.

* Why: joint optimization forces to learn a good representation.
* Open Problem: optimization theory for representation learning.

Representation Learning for Other Settings:
* Imitation learning.

* Future directions: reinforcement learning? control?

University of Washington
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Thank You



Two-layer Over-parameterized NN

H': ReLU neural networks. h(x) = o(Bx).
x € R% B € R**4 (k very large), o: RelU.

Assumption 1: Existence of a Good Representation

There exist a linear representation B* € R**4 and Wi, Wy, ., Wp, Wi, € RK:

Eox,y)~u LUWe, 0(B™x)), y) = 0vt =1,..,T
E(xta,yta)~u [£(<W;a' O-(B*xta»: Yta)] =0

Assumption 2: Diversity of Source Tasks for Linear Predictor

w;, is contained in the span of W* = [w;,w,, ...,wr ] € R*¥T,

The optimal predictor of the target task is covered by the those of source tasks.

University of Washington
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Main Result for Two-layer Over-parameterized NN

Theorem [Du Hu Kakade Lee Lei, 2020]

Under Assumption 1 &2, we have

[E(xta,yta),vu ['g(f(h(xta))i yta)] =0 (\7% T ”j/lTll_zp )

where X is the covariance of input x

Without representation learning, directly learning with a two-layer over-parameterized
tr(Z))
iz 7

neural network: O(

University of Washington 32



