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Neural Networks
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Computer Vision
(Convolutional NN)

Natural Language Processing
(Recurrent NN, Attention NN)

Bioinformatics
(Graph NN)

Feature-based Data
(Fully Connected NN) Reinforcement Learning

(Policy NN, Q NN)

Size
(feet2)
x1

# of
rooms
x2

Age
(years)
x3

Price
($1000)

y

2104 5 45 460

1416 3 40 232

1543 3 36 315
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Representation Learning in CV
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Cat

Train a neural network (ResNet) on
ImageNet (1M data, 1000 classes)

Representation (feature extractor):
The mapping from image to the
second-to-the-last layer.

Image
Representation

New linear
classifier

Dog Fix the representation, just re-train
the last linear layer.



Example
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ResNet

Source tasks
(for training
representation):
ImageNet

Target task:
Few-shot Learning
on VOC07 dataset
(20 classes, 1-8
examples per class)

• Without representation learning:
5% - 10% (random guess = 5%)

• With representation learning:
50% - 80%



Examples
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Final hidden state:
Sentence representation

Natural
Language
Processing

Graph
Representation

Learning

[Bengio et al. 2012]



Two Questions
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What are the necessary and
sufficient conditions?

Q1:

What is the mechanism?

Q2:When? Why?

University of Washington



Formulation
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Q2:

University of Washington

ℎ ∈ ℋ: representation class
(e.g., multi-layer NN)

𝑔!, … 𝑔", 𝑓 ∈ 𝒢: prediction class
(e.g., linear classifier)



Formulation

8

• 𝑇 source tasks, each with 𝒏𝟏 data:
𝑥!$, 𝑦!$ … 𝑥%!

$ , 𝑦%!
$

$&!
"

• 1 target task, with 𝒏𝟐 ≪ 𝒏𝟏 data:
𝑥!(), 𝑦!$* … 𝑥%"

$*, 𝑦%"
$* ∼ 𝜇

• Learning representation:

min
𝒉∈𝓗

4
$&!

"

min
𝒈𝒕∈𝓖

4
0&!

%!

ℓ(𝑔$ ℎ 𝑥0$ , 𝑦0$)

ℓ: quadratic loss

• Training for the target task:

min
𝒇∈𝒢

4
0&!

%"

ℓ(𝑓 ℎ 𝑥0$ , 𝑦0$)

Representation 𝒉(⋅) is fixed

University of Washington

Representation Learning Predictor Learning



Standard Statistical Learning Theory
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Training with data only from the target domain:

min
3∈𝒢,5∈ℋ

4
0&!

%"

ℓ(𝑓 ℎ 𝑥0$* , 𝑦0$*)

𝒞 ℋ : complexity measure of the representation class.
𝒞 𝒢 : complexity measure of the prediction class.
E.g., # of variables (linear function class), VC-dimension,
Rademacher complexity, Gaussian width, etc

ℎ

Theorem（Example）

𝔼 7$%,8$% ∼: ℓ 𝑓 ℎ 𝑥$* , 𝑦$* = 𝑂(
𝒞 ℋ + 𝒞 𝒢

𝑛;
)



Ideal Theory for Representation Learning
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Identify a set of (natural) assumptions:
1. If the data satisfies these assumptions, representation learning provably helps.
2. Without assumptions, representation learning does not help.

for learning the
representation

for learning the
predictor

Theorem (Example)

𝔼 7$%,8$% ∼: ℓ 𝑓 ℎ 𝑥$* , 𝑦$* = 𝑂(
𝒞 ℋ
𝒏𝟏𝑻

+
𝒞 𝒢
𝑛;

)

When # of tasks (𝑻) is larger, much better than

𝑂(
𝒞 ℋ + 𝒞 𝒢

𝑛;
)



Asmp 1: Existence of a Good Representation
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A shared good representation for all source tasks and the target task:
This is why we use representation learning.

(Without this assumption, we should not use representation learning)

Assumption 1: Existence of a Good Representation
There exist a representation ℎ∗ ∈ ℋ and predictors 𝑔!∗, 𝑔;∗, … , 𝑔"∗ , 𝑓∗ ∈ 𝒢 such that

𝔼 7$,8$ ∼:$ ℓ 𝑔$
∗ 𝒉∗ 𝑥$ , 𝑦$ = 0 ∀𝑡 = 1,… , 𝑇

𝔼 7$%,8$% ∼: ℓ 𝑓∗ 𝒉∗ 𝑥$* , 𝑦$* = 0



Existence of Good Rep is NOT Enough
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Source tasks:
Classify types of
cats.

Target task:
Cat or dog?

Source tasks can learn a good representation for cats,
but not a good representation for both cats and dogs.



Existence of Good Rep is NOT Enough
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Input: 1000 dimensional 0/1 vector, 0,1 !===

Bad scenario:
• Source tasks only need to use first 50 digits: e.g., whether the 10th-digit is 1
• Target tasks need to use all first 100 digits: e.g., predicts the sum of first 100 digits

Good representation: first 100 dimension
• All tasks (source and target) only need first 100 digits for accurate prediction.
• Predicting whether the 10th-digit is 1, predicting the sum of first 100 digits, etc.

😭Source tasks cannot give the full information about the good representation!



Assumption 2: Diversity of Source Tasks
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Representation learning is useful only if source tasks can give the full information
about the good representation, a.k.a., diversity of the source tasks.

Q: What is the definition of diversity?



Formulation
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Q2:

University of Washington

ℎ ∈ ℋ: representation class
(e.g., multi-layer NN)

𝑔!, … 𝑔", 𝑓 ∈ 𝒢: prediction class
(e.g., linear classifier)



Diversity for Linear Predictors
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𝒢: linear prediction class (last layer of neural networks)

Assumption 1: Existence of a Good Representation
There exist a representation ℎ∗ ∈ ℋ, ℎ∗ 𝑥 ∈ ℝ> and 𝑤!∗, 𝑤;∗, … , 𝑤"∗ , 𝑤$*∗ ∈ ℝ>:

𝔼 7$,8$ ∼:$ ℓ ⟨𝑤$
∗, ℎ∗ 𝑥$ ⟩, 𝑦$ = 0 ∀𝑡 = 1,… , 𝑇

𝔼 7$%,8$% ∼: ℓ ⟨𝑤$*∗ , ℎ∗ 𝑥$* ⟩, 𝑦$* = 0

Assumption 2: Diversity of Source Tasks for Linear Predictor
𝑊∗ = 𝑤!∗, 𝑤;∗, … , 𝑤"∗ ∈ ℝ>×" is full rank (=k).

Need 𝑇 ≥ 𝑘: cover the span of the good representation.



Linear Representation (Subspace Learning)
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Input: 𝑥 ∈ ℝ@. Linear representation class ℋ: matrices of size 𝑘 × 𝑑 (𝑘 ≪ 𝑑).

Assumption 1: Existence of a Good Representation
There exists a linear representation 𝐵∗ ∈ ℝ>×@, and 𝑤!∗, 𝑤;∗, … , 𝑤"∗ , 𝑤$*∗ ∈ ℝ>:

𝔼 7$,8$ ∼:$ ℓ ⟨𝑤$
∗, 𝐵∗𝑥$⟩, 𝑦$ = 0 ∀𝑡 = 1,… , 𝑇

𝔼 7$%,8$% ∼: ℓ ⟨𝑤$*∗ , 𝐵∗𝑥$*⟩, 𝑦$* = 0

Theorem [D. Hu Kakade Lee Lei, 2020]

Under Assumption 1 &2, we have 𝔼 7$%,8$% ∼: ℓ 𝑓 ℎ 𝑥$* , 𝑦$* = 𝑂( @>
𝒏𝟏𝑻

+ >
%"
).

Without representation learning, directly learning a linear predictor on ℝ@: 𝑂( @%").



Main Result for General Representation Class
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Assumption 1: Existence of a Good Representation
There exist a representation ℎ∗ ∈ ℋ, ℎ∗ 𝑥 ∈ ℝ> and 𝑤!∗, 𝑤;∗, … , 𝑤"∗ , 𝑤$*∗ ∈ ℝ>:

𝔼 7$,8$ ∼:$ ℓ ⟨𝑤$
∗, ℎ∗ 𝑥$ ⟩, 𝑦$ = 0 ∀𝑡 = 1,… , 𝑇

𝔼 7$%,8$% ∼: ℓ ⟨𝑤$*∗ , ℎ∗ 𝑥$* ⟩, 𝑦$* = 0

𝒞 ℋ : Gaussian width of the representation class ℋ.
• Measures how well the function in the class can fit the noise.

Theorem [D. Hu Kakade Lee Lei, 2020]

Under Assumption 1 &2, we have 𝔼 7$%,8$% ∼: ℓ 𝑓 ℎ 𝑥$* , 𝑦$* = 𝑂(𝒞(ℋ)𝒏𝟏𝑻
+ >
%"
).



Comparison with Previous Work
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Theorem [D. Hu Kakade Lee Lei 2020]

Under Assumption 1 &2, we have 𝔼 7$%,8$% ∼: ℓ 𝑓 ℎ 𝑥$* , 𝑦$* = 𝑂( @>𝒏𝟏𝑻+
>
%"
).

Theorem [Maurer Pontil Romera-Paredes 2016]
Under Assumption 1, and that all tasks (source and target) are i.i.d. sampled from a
distribution over tasks,

we have 𝔼 7$%,8$% ∼: ℓ 𝑓 ℎ 𝑥$* , 𝑦$* = 𝑂(@>𝑻 +
>
%"
).

𝑂 !
" , instead of 𝑂 !

%!"
, is tight for the setting in [Mauer et al. 2016].



Why Does Rep learning Help: Proof Intuition
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Joint optimization of representation and prediction:

𝐦𝐢𝐧
𝒉∈𝓗

4
$&!

"

min
𝒈𝒕∈𝓖

4
0&!

%!

ℓ(𝑔$ ℎ 𝑥0$ , 𝑦0$)

Main Ideas:
• Optimization on representation is over all tasks.
• We must find a shared good representation for all tasks, otherwise, the loss cannot

be small: joint optimization forces to learn a good representation.



Key Message
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Existence of a good representation and diversity of tasks
are key conditions that enable representation learning to

improve sample efficiency.



Reinforcement Learning
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[Levine et al 16] [Ng et al 03]

[Mandel et al 14]

[Singh et al 02]
[Tesauro et al 07]

[Let et al 12]
[Minh et al 15] [Silver et al 16]

University of Washington



Reinforcement Learning
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State
𝑠

Reward
𝑟

action
𝑎

Agent

Environment

A policy 𝜋 : States S → Actions A , a = 𝜋(𝑠)

Goal: maximize the expected total reward 𝔼 𝑟! + 𝑟" +⋯│𝜋

𝜋∗: optimal policy (maximizes the expected total reward)

Markov Decision Process

𝑠′

University of Washington



Multi-task Reinforcement Learning
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Autonomous driving on different situations

A class of different but related tasks.
• Each task has a different optimal policy.
• Share the same state space and action space.

University of Washington



Imitation Learning
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Trajectories from the optimal policy 𝜋∗ (expert) are available:
{(𝑠0, 𝜋∗ 𝑠0 )}0&!%

Multi-task Imitation learning:
T source tasks, each task we have 𝑛! samples from experts.
1 target task with 𝑛; samples from the expert.

University of Washington



Representation Learning for Imitation Learning
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Model the optimal policy 𝜋∗:
• Source tasks,t = 1,… , T:

𝜋$∗ 𝑠 = 𝑔$ ℎ 𝑠
• Target task:

𝜋$*∗ 𝑠 = 𝑓 ℎ 𝑠



Representation Learning for Imitation Learning
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Learning representation:

min
!∈ℋ

I
$%&

'

min
(!∈𝒢

I
*%&

+"

ℓ(𝑔$ ℎ 𝒔𝒊𝒕 , 𝝅∗(𝒔𝒊𝒕))

ℓ: loss function

Training for target task:

min
𝒇∈𝒢

I
*%&

+#

ℓ(𝑓 ℎ 𝒔𝒊𝒕𝒂 , 𝝅∗(𝒔𝒊𝒕𝒂))

Representation ℎ(⋅) is fixed



Experiments
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Control the agent towards a target location Control the agent with a target velocity (MuJoCo)

Representation learning helps:
• Beats the baseline for small 𝑛; (# trajectories for target task).
• Increasing # of source tasks (experts) helps.

University of Washington
[Arora D. Kakade Luo Saunshi ICML 2020]



Summary
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When and Why Does Representation Learning Help?
• When: existence of a good representation & diversity of source tasks.
• Why: joint optimization forces to learn a good representation.
• Open Problem: optimization theory for representation learning.

Representation Learning for Other Settings:
• Imitation learning.
• Future directions: reinforcement learning? control?

University of Washington



Thank You



Two-layer Over-parameterized NN
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ℋ: ReLU neural networks. ℎ 𝑥 = 𝜎 𝐵𝑥 .
𝑥 ∈ ℝ% , 𝐵 ∈ ℝ&×% (k very large), 𝜎: ReLU.

Assumption 2: Diversity of Source Tasks for Linear Predictor
𝑤$*∗ is contained in the span of 𝑊∗ = 𝑤!∗, 𝑤;∗, … , 𝑤"∗ ∈ ℝ>×".

Assumption 1: Existence of a Good Representation
There exist a linear representation 𝐵∗ ∈ ℝ>×@, and 𝑤!∗, 𝑤;∗, … , 𝑤"∗ , 𝑤$*∗ ∈ ℝ>:

𝔼 7$,8$ ∼:$ ℓ ⟨𝑤$
∗, 𝜎(𝐵∗𝑥$)⟩, 𝑦$ = 0 ∀𝑡 = 1,… , 𝑇

𝔼 7$%,8$% ∼: ℓ ⟨𝑤$*∗ , 𝜎(𝐵∗𝑥$*)⟩, 𝑦$* = 0

The optimal predictor of the target task is covered by the those of source tasks.



Main Result for Two-layer Over-parameterized NN
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Theorem [Du Hu Kakade Lee Lei, 2020]
Under Assumption 1 &2, we have

𝔼 7$%,8$% ∼: ℓ 𝑓 ℎ 𝑥$* , 𝑦$* = 𝑂 $R(S)
%!"

+ || |1 |'(
%"

where Σ is the covariance of input 𝑥

Without representation learning, directly learning with a two-layer over-parameterized
neural network: 𝑂($R(S)%"

).


