holography with a landau pole

javier tarrío université libre de bruxelles

arXiv:1611.05808 w/ A. Faedo, D. Mateos and C. Pantelidou

iberian strings, january 19th 2017

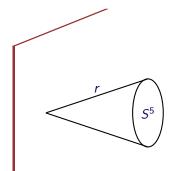
motivation

study gravity duals of UV-incomplete theories, in particular $\mathcal{N}=4$ SYM with N_f quark flavors

arXiv:1611.05808

intro

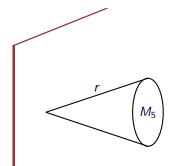
- * $\mathcal{N} = 4$ SYM is a conformal theory; in particular the coupling constant does not run: $\beta = 0$
- * couple it to quark (fundamental) matter: then $\beta \simeq N_f$
- * positive beta function implies a Landau pole and the theory needs UV completion
- * my aim is to study what are the implications of the LP at face value, not to study the UV completion


table of contents

setup

implications of the Landau pole

final comments


SYM theories from type IIB SUGRA

U(N) SYM with 16 supercharges

$$ds^{2} = h^{-1/2} dx_{1,3}^{2} + h^{1/2} (dr^{2} + r^{2} d\Omega_{5}^{2})$$
$$\int_{S^{5}} *F_{5} \sim N_{c}$$

SYM theories from type IIB SUGRA

SYM with other gauge group and less supercharges

$$ds^{2} = h^{-1/2} dx_{1,3}^{2} + h^{1/2} (dr^{2} + r^{2} d\Sigma_{SE}^{2})$$
$$\int_{M_{5}} *F_{5} \sim N_{c}$$

fundamental matter

- * add D7-branes as flavor sources [Karch and Katz '03]
- * to observe the Landau pole backreaction must be included
- * we consider the $N_c \rightarrow \infty$ limit with N_f/N_c kept fixed (a la Veneziano)
- * a continuous distribution of D7-branes helps to simplify the equations [Kiritsis et al. '05]
- $\ast\,$ actually everything is $\mathcal{N}=1$ and one solves BPS eqs. (except at finite temperature later)

a taste of the smeared solution (D3/D7) [Benini et al '06]

* one can consider just the simple ansatz

$$\mathrm{d}s^2 = f_1(\rho) \,\mathrm{d}x_{1,3}^2 + f_2(\rho) \,\mathrm{d}\rho^2 + f_3(\rho) \,\mathrm{d}s_{KE}^2 + f_4(\rho) \,\eta^2 \;,$$

with dilaton and RR forms

$$F_5 \sim N_c (1+*) J \wedge J \wedge \eta$$
, $F_1 \sim N_f \eta$,

* a SUSY solution exists, for example

$$\phi' = -N_f e^{\phi} \quad \Rightarrow \quad e^{\phi} = \frac{1}{N_f \rho}$$

asymptotic geometry

* asymptotically near the boundary one has

$$\mathrm{d}s^2 \simeq r^{-2\theta/3} \left(r^2 \mathrm{d}x_{1,3}^2 + \frac{\mathrm{d}r^2}{r^2} \right) + \text{corrections in } \frac{1}{r}$$

with $\theta = 7/2$, and $e^{\phi} \simeq r^{1/2}/N_f$ and two more scalars

- * this form of the metric is the ultimate responsible of all the UV behaviors of physical quantities
- actually, one can perform holographic renormalization by relating this geometry via analytic continuation in the dimension to an asymptotically-AdS one

table of contents

setup

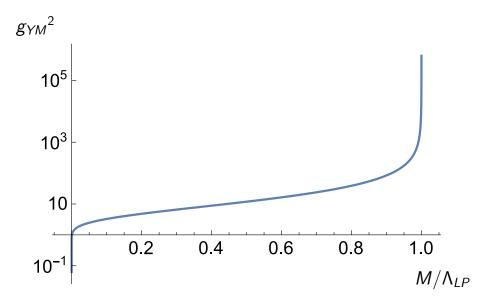
implications of the Landau pole

final comments

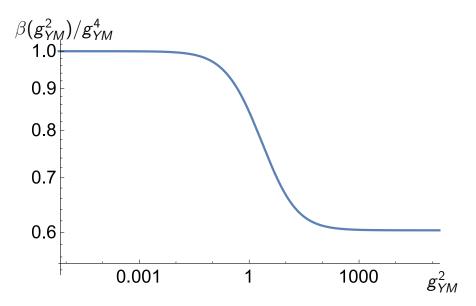
minimum length in the field theory

$$|g_{tt}| = g_{xx} \simeq \left(\frac{r}{L}\right)^{-1/3}$$

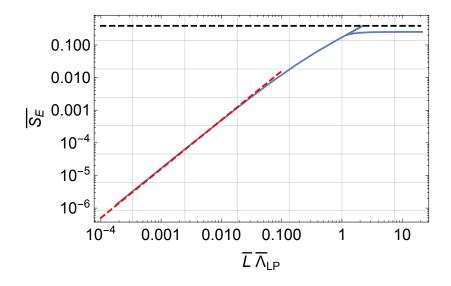
- * near UV an object with fixed proper size in the bulk increases in field theory size
- * near IR this behavior is reversed, as customary in ads/cft
- * maximum of g_{xx} implies a minimum size as we increase the radius (energy scale)
- * this also provides a maximum density of degrees of freedom

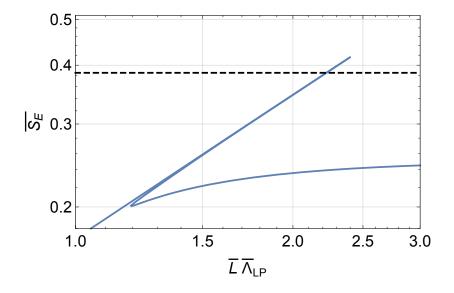

$$n\sim \ell_P^{-3}\sqrt{g_{xx}^3}$$

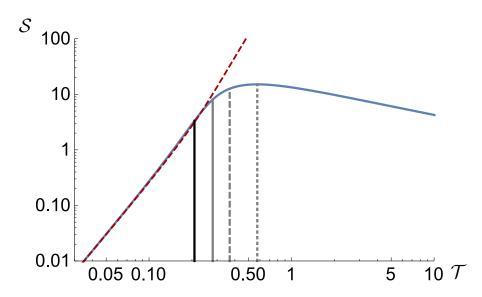
mass of a string

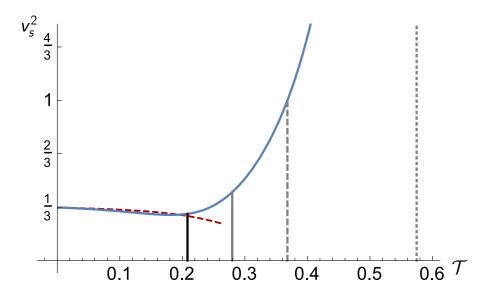

$$M(r) = \frac{1}{2\pi\ell_s^2} \int_0^r \sqrt{-G_{tt} G_{rr}} \mathrm{d}r$$

- $*\,$ at $r \to \infty$ this is the self-energy of a charged particle and in our setup it is finite
- $\ast\,$ maximum mass for an external charge to which the theory can couple


beta function


beta function


entanglement entropy


entanglement entropy

thermodynamics

thermodynamics

table of contents

setup

implications of the Landau pole

final comments

- helps in a bigger program that studies the phase diagram of holographic SYM theories coupled to flavor at finite temperature and chemical potential
- * shows that the holographic implementation of the UV behavior is not ill-defined after all
- * surprises appeared: what is that phase transition in the entanglement entropy?

thank you