Breaking the sound barrier from holography

David Rodríguez Fernández

based on

C. Hoyos, N. Jokela, D. Rodríguez Fernández, A. Vuorinen arXiv: 1511.01002, Phys. Rev. D.94.106008

and

C. Ecker, C. Hoyos, N. Jokela, D. Rodríguez Fernández, A. Vuorinen Work in progress

Iberian Strings 2017. Instituto Superior Técnico, Lisbon/Portugal.

Summary

Motivation

Phenomenological Theoretical

2 Speed of sound from a bottom-up model

Set-up Speed of sound in the probe limit Probe limit, near extremal Probe limit, non-near extremal Backreacted solution

3 Conclusions and future work

Motivation

Speed of sound from a bottom-up model Conclusions and future work

Table of Contents

1 Motivation

Phenomenological Theoretical

Speed of sound from a bottom-up model

Set-up Speed of sound in the probe limit Probe limit, near extremal Probe limit, non-near extremal Backreacted solution

Onclusions and future work

David Rodríguez Fernández Breaking the sound barrier from holography

Phenomenological Theoretical

Phenomenological Motivation

Full phase Diagram of QCD yet unclear ↓↓ Intermediate densities? Neutron Stars

- Not available with CET, pQCD
- Lattice QCD does not work in the $T \ll \mu$ regime
- Phenomenological models must be interpolated

Phenomenological Theoretical

To find a model that can describe **strongly coupled (non perturbative) deconfined matter at those densities**

Caveats

- Baryons are difficult \rightarrow Restrict ourselves to the deconfined phase
- Holography not exact QCD: sistematic uncertainty \rightarrow Universality of the Quark Gluon Plasma

< 🗇 > < 🖃 >

Phenomenological Theoretical

Thermodynamic notions...

- Compress the fluid \implies Increase ε
- *P* also increases \implies Opposes compression \rightarrow large $\frac{\partial P}{\partial \varepsilon} \rightarrow$ "Stiff" fluid

To support **gravitational collapse**, Neutron Stars (NS) must have a **stiff EoS**

- No significant amount of quark matter can exist inside a NS
- 2 $(v_s)_{\rm QGP} > 1/\sqrt{3}$ at those densities

Image: A image: A

Phenomenologica Theoretical

Theoretical Motivation

- No holographic model UV complete found so far that exhibits $v_s > 1/\sqrt{3}$. Universal Bound?
- Lifshitz theories, $v_s^2 = z/(d-1) \implies$ Not-relativistic

3+1-dimensional D-brane intersections

•
$$D4 - D6 \to v_s^2 = 1/2$$

- $D5 D5 \rightarrow v_s = 1$
- D4 D8 (Sakai-Sugimoto model) $\rightarrow v_s^2 = 2/5$

However \rightarrow After compactification to 3+1 dimensions, 4-Dim. dynamics entangled with additional d.o.f. from color branes

Not a bona fide 4-dim. QFT?

< (T) >

Set-up Speed of sound in the probe limit Backreacted solution

Table of Contents

1 Motivation

Phenomenological Theoretical

Speed of sound from a bottom-up model Set-up Speed of sound in the probe limit Probe limit, near extremal

Probe limit, non-near extremal

Backreacted solution

Onclusions and future work

8/26

A 3 b

Set-up Speed of sound in the probe limit Backreacted solution

Set-up

We start from the action

$$S = \frac{1}{16\pi G_5} \int d^5 x \sqrt{-g} \left[R - L^2 F^2 - |D\phi|^2 + V(\phi) \right],$$
$$D_{\mu} = \partial_{\mu} - iqA_{\mu}, \quad V(\phi) = -\frac{12}{L^2} + m^2 |\phi|^2, \quad m^2 = \Delta(\Delta - 4),$$

and

$$dS^{2} = \frac{L^{2}}{r^{2}f(r)}dr^{2} + \frac{r^{2}}{L^{2}}e^{2A}\left(-f(r)dt^{2} + dx^{i}dx^{j}\delta_{ij}\right), \quad A_{\mu}dx^{\mu} = A_{0}(r)dt$$

Absence of scalar field \rightarrow AdS-RN solution (CFT) Scalar field alone cannot yield $v_s^2 > 1/3$ [A.Cherman, T. Cohen, A.Nellore] We combine both!

Set-up Speed of sound in the probe limit Backreacted solution

The thermodynamical quantities (μ, T) read

$$\lim_{r \to \infty} A_0(r) = \mu, \quad \frac{r_H^2}{4\pi L^2} f'(r_H) e^{A(r_H)} = T,$$

Near the boundary ($\Delta \notin \mathbb{N}$),

$$\phi \sim \left(\frac{L^2}{r}\right)^{4-\Delta} \widetilde{\phi}_{(0,0)} + \frac{L^{2\Delta}}{r^{\Delta}} \phi_{(0,0)} + \cdots, \quad f \sim 1 + \frac{L^8}{r^4} f_{(4,0)} + \cdots$$

from the AdS/CFT dictionary, $\frac{\delta S_{\rm ren}}{\delta \gamma_{\mu\nu}}$ yields $\langle T^{\mu\nu} \rangle$,

Renormalized operators

$$\varepsilon = \langle T^{00} \rangle = -\frac{L^3}{16\pi G_5} \left[3f_{(4,0)} - (\Delta - 2)(\Delta - 4)\widetilde{\phi}_{(0,0)}\phi_{(0,0)} \right]$$

$$P = \langle T^{ii} \rangle = -\frac{L^3}{16\pi G_5} \left[f_{(4,0)} + (\Delta - 2)(\Delta - 4)\widetilde{\phi}_{(0,0)}\phi_{(0,0)} \right]$$

Motivation Speed of sound from a bottom-up model Set-up

1 Probe approximation, $\phi \ll$, $(A, f, A_0) \rightarrow (0, f_{AdSRN}, A_{0AdSRN})$. $v_s = \frac{1}{\sqrt{3}} + \delta v_s$ Analytical $(\mu/T \to \infty)/$ Numerical

2 Backreacted solution. Numerical Maximum v_s ?

Probe limit, near extremal	Probe limit, non-near extremal
 Capture the behavior of the speed of sound when µ ≫ T Black Hole ~ AdS₂ × ℝ³ 	 Chance of examining almost the full (μ, T) spectrum Check whether instabilities
 Analytical solution through the 	arise at finite μ/T
Matching procedure	Resort to numerics
Non probe limit	
	Shooting technique + Newton method
David Rodriguez Fernández	Sreaking the sound barrier from holography 11/26

Set-up Speed of sound in the probe limit Backreacted solution

Probe limit, near extremal

In the probe approximation, the scalar field decouples from the Einstein equations and,

$$f_{\text{AdSRN}} = 1 + rac{Q^2}{r^6} - rac{M}{r^4}, \ A_{0 \text{AdSRN}} = \mu \left(1 - rac{r_H^2}{r^2}\right), \ A_{\text{AdSRN}} = 0$$

with only a single D.O.E. to solve ($\nu=\Delta-2)\text{,}$

$$\phi'' + \left(\frac{5}{r} + \frac{f'}{f}\right)\phi' + \left(\frac{4-\nu^2}{r^2f} + \frac{q^2L^4}{r^4f^2}A_0^2\right)\phi = 0$$

In the near extremal limit, we can apply the Matching procedure and obtain an analytical solution, regular at the horizon, provided

$$\Delta>2+\sqrt{1+\frac{q^2}{2}}\geq 3$$

Set-up Speed of sound in the probe limit Backreacted solution

which agrees with the BF condition in AdS_2

$$m_{\rm eff}^2R_{\rm AdS_2}^2\geq -\frac{1}{4}$$
 by taking $R_{\rm AdS_2}^2=\frac{R^2}{12}, m_{\rm eff}^2=m^2-\frac{q^2}{12R^2}$

Isothermal speed of sound

$$v_s^2 = \frac{\partial P_r}{\partial \epsilon_r} = \frac{\partial_{\mu_r} P_r}{\partial_{\mu_r} \varepsilon_r}$$

with

$$(\varepsilon_r, P_r) = \frac{(\varepsilon, P)}{\frac{L^3}{16\pi G_5} \widetilde{\phi}_{(0,0)}^{\frac{4}{4-\Delta}}}, \quad (\mu_r, t_r) = \frac{(\mu, T)}{\frac{L^3}{16\pi G_5} \widetilde{\phi}_{(0,0)}^{\frac{1}{4-\Delta}}}$$

Speed of sound in the probe limit, near extremal

$$v_s^2 \sim rac{1}{3} \left(1 + 4C_v(\Delta, q)\mu_r^{2(\Delta-4)}
ight) \implies ext{if } C_v > 0, v_s > 1/\sqrt{3}$$

Set-up Speed of sound in the probe limit Backreacted solution

So, there is a region at which $C_v > 0$. If the bound is violated, it will reach $1/\sqrt{3}$ from above.

(日)

Set-up Speed of sound in the probe limit Backreacted solution

Probe limit, non-near extremal

This time, we numerically solve the scalar equation imposing regularity at the horizon and shoot toward the boundary

Speed of sound in the probe limit, Non-near extremal

 $t_r = 0.1$, $t_r = 1$. Curves in between have intermediate values separated by $\Delta t_r = 0.1$ steps, $q \approx 10^{-5}$, $\Delta = 3.1$.

Set-up Speed of sound in the probe limit Backreacted solution

Conformal deviation as a function of μ_r in logarithmic scale

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Set-up Speed of sound in the probe limit Backreacted solution

Stability of the solution

We care for physical solutions \rightarrow Check stability!

Stability against formation of an homogeneous condensate Why?

Is usually the first kind of instability

1

At $\mu = 0$

- State dual to a thermal state of a CFT \implies Stable
- \nexists regular+normalizable solution at $\omega = 0$

• \exists regular+normalizable solutions at $\omega \in \mathbb{C}^-$

Set-up Speed of sound in the probe limit Backreacted solution

As we increase μ

- The mode will migrate to the upper complex plane \mathbb{C}^+ , until
- A $\omega = 0$ normalizable+regular solution will \exists (massless mode)
- Further increase $\mu \implies \exists \mbox{ mode at } \mathbb{C}^+$

\exists Unstable quasinormal mode

First moment when $\widetilde{\phi}_{(0,0)}=0$ at a certain μ

 \Downarrow

Onset of the instability!

・ 同 ト ・ ヨ ト ・ ヨ

Set-up Speed of sound in the probe limit Backreacted solution

Ratio non-normalizable/normalizable coefficients as a function of $\mathcal{Q} \propto \mu_r/t_r$, $\Delta = 3,1.$ q=0.5, q = 1, q = 4, q = 5, $q = 1,64 \rightarrow$ critical value at which the first instability appears.

19/26

Set-up Speed of sound in the probe limit Backreacted solution

Backreacted solution

 ϕ not restricted to be small \implies Full EOMS

Near the boundary,

$$\phi \sim \left(\frac{L^2}{r}\right)^{4-\Delta} \widetilde{\phi}_{(0,0)} + \frac{L^{2\Delta}}{r^{\Delta}} \phi_{(0,0)}, \quad f \sim 1 + \frac{L^8}{r^4} f_{(4,0)},$$
$$A \sim 0, \quad A_0 \sim \mu + \frac{L^4}{r^2} A_{0(2,0)}$$

Near the horizon,

$$\phi \sim \phi_H^{(0)}, \quad f \sim f_H^{(1)}(r - r_H), \quad A \sim A_H^{(0)} + A_H^{(1)}(r - r_H),$$

 $A_0 \sim A_0_H^{(1)}(r - r_H)$

20/26

We can employ the shooting technique + Newton method to find the set of constants

$$\left\{\widetilde{\phi}_{(0,0)}, \phi_{(0,0)}, \underline{f}_{(4,0)}, \underline{A}_{0(2,0)}, \phi_{H}^{(0)}, f_{H}^{(1)}, A_{H}^{(0)}, \underline{A}_{0}^{(1)}\right\}$$

at a given (T, μ)

It is necessary to consider some initial vector

Solutions from probe limit at mild (μ_r, t_r)

Still to examine stability \rightarrow Fluctuations at $k^{\mu} \neq 0$ Quasinormal modes & transport coefficients? Work in progress!

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 戸

Set-up Speed of sound in the probe limit Backreacted solution

Set-up Speed of sound in the probe limit Backreacted solution

Maximum speed of sound

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Table of Contents

Motivation

Phenomenological Theoretical

2 Speed of sound from a bottom-up model

Set-up Speed of sound in the probe limit Probe limit, near extremal Probe limit, non-near extremal Backreacted solution

3 Conclusions and future work

24/26

Conclusions and future work

- We have found examples of consistent UV complete relativistic theories that can have a speed of sound larger than its conformal value.
- Mixed phases?
- Further models? \to Find the largest possible speed of sound \implies We can qualitatively describe the "deconfined portion" of a NS
- If one can find an holographic model that fits with the deconfined portion of a NS, one can study its transport phenomena

THANK YOU!

★ ∃ → < ∃</p>

26/26