
The essential minimal volume of manifolds

Antoine Song

UC Berkeley

June 2021, IST Lisbon

 



Definitions

Let M be a closed smooth manifold.

MinVol(M) := inf{Vol(M, g); | secg |  1}.

If M>� := {x 2 M; injradg (x) > �},

ess-MinVol(M) := lim
�!0

inf{Vol(M>�, g); | secg |  1}.
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Motivations

Gromov 80’s: “measuring” topology by geometry, definitions of
topological-geometric invariants

Hopf 30’s, Thom 60’s, Yau 90’s: “Given a closed smooth manifold
M, is there a best metric on M?”

Taken literally, the above question is overly optimistic; one needs
to allow certain degenerations of the manifold.

We consider the following problem: realize those invariants by
geometric objects, i.e. find natural maps from sets of topological
spaces to sets of Riemannian spaces.
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Motivations

Examples of positive answers: Uniformization of 2-surfaces,
Geometrization of 3-manifolds, (other results under additional
assumptions like in conformal geometry or Kähler geometry).

Works of Nabutovsky on recognizability of Einstein metrics,
Nabutovsky-Weinberger on local minima of diameter when
| sec |  1.
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Motivations

We will use curvature bound assumptions on the manifold Mn.
Denote by Scal and Sec the scalar and sectional curvature and
recall that

| Sec |  1 ) | Scal |  n(n � 1).

By the solution of the Yamabe problem, it is expected that if gi are
metrics on M such that | Scalgi |  n(n � 1) and

lim
i!1

Vol(M, gi ) = inf{Vol(M, g); | Scalg |  n(n � 1)},

then gi should subsequentially converge to a generalized Einstein
metric space (when non-empty).

Today: focus on the condition | Sec |  1. sec gives intuition about
Ric, and is closely related to Ric in dimension 4.
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Motivations

Today: focus on the condition | Sec |  1. Let g be a metric on M
with | Sec |  1

This condition is more tractable thanks to 2 facts:

I on the “thick part” M>✏, the geometry is bounded,

I the “thin part” M✏ is well described by the collapsing theory
of Cheeger-Fukaya-Gromov.

Here, for ✏ > 0,

M>✏ := {x 2 M; injectivity radius at x > ✏},

M✏ := {x 2 M; injectivity radius at x  ✏}.
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Motivations

M>✏ admits a triangulation with number of vertices bounded by
C✏ Vol(M, g) and degree at each vertex bounded by C✏. In fact by
Cheeger, if gi is a sequence of metrics on M with | Secgi |  1 and
injradgi � ✏, then a subsequence gi converges to a C 1,↵-metric (see
also Peters, Greene-Wu).

M✏ carries an F -structure (Cheeger-Gromov) and an N-structure
(Cheeger-Fukaya-Gromov). These structures generalize respectively
actions by tori and nilpotent Lie groups.
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Motivations

In light of Hopf-Thom-Yau’s question: Is MinVol(M) achieved by a
metric?

Not clear. Note that MinVol behaves in a delicate way with
respect to collapsing.
Gap Conjecture (Gromov): If MinVol(M)  ✏n small enough, then
MinVol(M) = 0.
See work of X.-C. Rong, and Cheeger-Rong.

Our goal is to introduce a natural variant of MinVol which is
achieved by the volume of a minimizer, and study those minimizers
(geometric interpretation, estimates for negatively curved
manifolds, Einstein 4-manifolds and complex surfaces).
It is a “sectional curvature” approach to Hopf-Thom-Yau’s
question.
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Alternative definition for ess-MinVol

We consider a weak closure Mw
| Sec |1(M) of M| Sec |1(M), by

using a weak notion of convergence:

a sequence of metrics gi 2 M| Sec |1(M) weakly converges if for
any � > 0, the �-thick part of (M, gi ) converges in a multi-pointed
Gromov-Haudor↵ sense.

By Cheeger/Gromov, it turns out that

ess-MinVol(M) = inf{Vol(Y , h); (Y , h) 2 Mw
| Sec |1(M)},

and that there exists a weak minimizer (M1, g1) 2 Mw
| Sec |1(M)

with volume equal to ess-MinVol(M).

( ess-MinVol(M) is thus relevant to the generalized
Hopf-Thom-Yau question)
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First comparisons with MinVol

Similarly to MinVol,

ess-MinVol(M) � Cnsimplicial volume(M),

ess-MinVol(M) � Cn e(M).

By definition
ess-MinVol(M)  MinVol(M).

However, ess-MinVol can be arbitrarily smaller than MinVol!
Moreover ess-MinVol does satisfy the gap property: if
ess-MinVol(M)  ✏n then actually ess-MinVol(M) = 0.
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Thickness of minimizing metrics

Theorem 1 (S.)

There is a �n > 0, for a smooth closed manifold M, and a weak
minimizer (M1, g1) 2 Mw

| Sec |1(M) with

Vol(M1, g1) = ess-MinVol(M),

any connected component of M1 contains a point p such that

Vol(Bg1(p, 1), g1) > �n.

It implies that M1 has finitely many components, so actually M1
lives in a strong closure of Ms

| Sec |1(M) of M| Sec |1(M).
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Technically we need to improve a result of Cheeger-Gromov and
prove “✏n-collapsed implies existence of uniform continuous
collapsing”:

if (M, g) is ✏n-collapsed then there is a 1-parameter family of
metrics gt with g0 = g , gt becomes arbitrarily collapsed as t ! 1,
and | Secgt |  C (n, ||g ||3).

We need the N-structures introduced by Cheeger-Fukaya-Gromov.
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Minimizing metrics generalize hyperbolic metrics

In dimension at least 3, we have:

Theorem 2 (S.)

If (X , gX ) has negative curvature SecgX  �1, then

ess-MinVol(X ) � Vol(X , gX )

with equality if and only if X is hyperbolic.

This shows that in some sense, ess-MinVol/minimizers generalize
hyperbolic volume/metrics.
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One issue in the proof is that the di↵erence between
ess-MinVol(M) and MinVol(M) can be arbitrarily large.

We combine Cheeger-Fukaya-Gromov / Paternain-Petean and
Besson-Courtois-Gallot.



One issue in the proof is that the di↵erence between
ess-MinVol(M) and MinVol(M) can be arbitrarily large.

We combine Cheeger-Fukaya-Gromov / Paternain-Petean and
Besson-Courtois-Gallot.



Examples

In dimension 2: By Gauss-Bonnet, for a surface ⌃� of genus �,

ess-MinVol(⌃�) = 2⇡| e(⌃�)|

and if � > 1, the minimizers are exactly the metrics in the closure
of the hyperbolic metrics on ⌃� .

In dimension 3: if M is a closed oriented prime 3-manifold, then

ess-MinVol(M) = volume of hyperbolic part of M.

Proof uses the fact that the Yamabe invariant of M is known:

�(M) := sup
[g ]

inf
g 02[g ]

R
M Scalg 0

Vol(M, g 0)1/3

= �6(volume of hyperbolic part of M)2/3.
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Estimates for Einstein 4-manifolds and complex surfaces

Theorem 3 (S.)

there is a constant C such that if a closed 4-manifold M admits an
Einstein metric, or is a complex surface of nonnegative Kodaira
dimension, then

C�1 e(M)  ess-MinVol(M)  C e(M).

For an Einstein 4-manifold M, the proof treats the thicker part of
M using Cheeger-Naber, then the thinner part using
Cheeger-Fukaya-Gromov.
For complex surfaces, we use the Enriques-Kodaira classification
and Aubin-Yau’s theorem.
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Geometric interpretation in dimension 4:
ess-MinVol(M)  C if and only if there is a bounded curvature
metric on M divided into a part covered by F -structures, and a
part with bounded geometry and volume . C .

Conjecture: For any closed N4 and any genus � > 1,

ess-MinVol
�
N](S2 ⇥ ⌃�)

�
� C�.
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