HIGHER FANO MANIFOLDS

Carolina Araujo - IMPA

Geometria em Lisboa Seminar - June 1st, 2021

FANO MANIFOLDS

X complex projective manifold

FANO MANIFOLDS

X complex projective manifold

 T_X tangent bundle of X

X complex projective manifold

 T_X tangent bundle of $X \quad \rightsquigarrow \quad -K_X = c_1(T_X) \in H^2(X,\mathbb{Z})$ (the anti-canonical class of X)

X complex projective manifold

 T_X tangent bundle of $X \rightarrow -K_X = c_1(T_X) \in H^2(X,\mathbb{Z})$ (the anti-canonical class of X)

Remark

 $C \subset X \quad \leadsto \quad -K_X \cdot C$

X complex projective manifold

 T_X tangent bundle of $X \rightarrow -K_X = c_1(T_X) \in H^2(X,\mathbb{Z})$ (the anti-canonical class of X)

Remark

 $C \subset X \quad \rightsquigarrow \quad -K_X \cdot C \; = \; rac{1}{2\pi} ig(\; average \; of \; Ricci \; curvature \; of \; X \; along \; C \; ig)$

X complex projective manifold

 T_X tangent bundle of $X \rightarrow -K_X = c_1(T_X) \in H^2(X, \mathbb{Z})$ (the anti-canonical class of X)

Remark

 $C \subset X \quad \leadsto \quad -K_X \cdot C \; = \; rac{1}{2\pi} ig(\; average \; of \; Ricci \; curvature \; of \; X \; along \; C \; ig)$

DEFINITION (THE FANO CONDITION) X is a Fano manifold if $-K_X$ is ample (positive)

X complex projective manifold

 T_X tangent bundle of $X \rightarrow -K_X = c_1(T_X) \in H^2(X, \mathbb{Z})$ (the anti-canonical class of X)

Remark

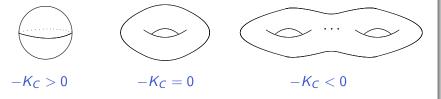
 $C \subset X \quad \leadsto \quad -K_X \cdot C \; = \; rac{1}{2\pi} ig(\; average \; of \; Ricci \; curvature \; of \; X \; along \; C \; ig)$

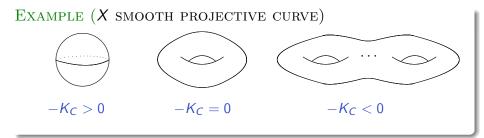
DEFINITION (THE FANO CONDITION) X is a Fano manifold if $-K_X$ is ample (positive)

Remark

$$-K_X$$
 is ample $\implies -K_X \cdot C > 0 \quad \forall C \subset X$

FANO MANIFOLDS





EXAMPLES

- \mathbb{CP}^{n}
- Hypersurfaces of degree $d \leq n$ in \mathbb{CP}^n
- Grassmannians and other rational homogeneous spaces
- Several moduli spaces (of vector bundles)

FANO MANIFOLDS

Remark

Minimal Model Program \rightsquigarrow every projective manifold is built up from varieties with

$$-K_X > 0$$
, $-K_X = 0$ or $-K_X < 0$

FANO MANIFOLDS

Remark

Minimal Model Program \rightsquigarrow *every projective manifold is built up from varieties with*

$$-K_X > 0$$
 , $-K_X = 0$ or $-K_X < 0$

REMARK *The Calabi Problem - Which Fano manifolds admit Kähler-Einstein metrics?*

DEFINITION (THE INDEX OF A FANO MANIFOLD) $i(X) := max\{m \in \mathbb{Z} \mid -K_X = mA, A \in H^2(X, \mathbb{Z})\}$

DEFINITION (THE INDEX OF A FANO MANIFOLD) $i(X) := max\{m \in \mathbb{Z} \mid -K_X = mA, A \in H^2(X, \mathbb{Z})\}$

THEOREM (KOBAYASHI-OCHIAI 1973) • $i(X) \leq \dim(X) + 1$

DEFINITION (THE INDEX OF A FANO MANIFOLD) $i(X) := max \{ m \in \mathbb{Z} \mid -K_X = mA, A \in H^2(X, \mathbb{Z}) \}$

THEOREM (KOBAYASHI-OCHIAI 1973) • $i(X) \le \dim(X) + 1$ & $i(X) = \dim(X) + 1 \iff X \cong \mathbb{CP}^n$

DEFINITION (THE INDEX OF A FANO MANIFOLD) $i(X) := max\{m \in \mathbb{Z} \mid -K_X = mA, A \in H^2(X, \mathbb{Z})\}$

THEOREM (KOBAYASHI-OCHIAI 1973)

- $i(X) \leq \dim(X) + 1$ & $i(X) = \dim(X) + 1 \iff X \cong \mathbb{CP}^n$
- $i(X) = \dim(X) \iff X \cong Q \subset \mathbb{CP}^n$

DEFINITION (THE INDEX OF A FANO MANIFOLD) $i(X) := max\{m \in \mathbb{Z} \mid -K_X = mA, A \in H^2(X, \mathbb{Z})\}$

Theorem (Kobayashi-Ochiai 1973)

- $i(X) \leq \dim(X) + 1$ & $i(X) = \dim(X) + 1 \iff X \cong \mathbb{CP}^n$
- $i(X) = \dim(X) \iff X \cong Q \subset \mathbb{CP}^n$

THEOREM (FUJITA 1982) Classification when $i(X) = \dim(X) - 1$ (del Pezzo manifolds)

DEFINITION (THE INDEX OF A FANO MANIFOLD) $i(X) := max \{ m \in \mathbb{Z} \mid -K_X = mA, A \in H^2(X, \mathbb{Z}) \}$

THEOREM (KOBAYASHI-OCHIAI 1973)

- $i(X) \leq \dim(X) + 1$ & $i(X) = \dim(X) + 1 \iff X \cong \mathbb{CP}^n$
- $i(X) = \dim(X) \iff X \cong Q \subset \mathbb{CP}^n$

THEOREM (FUJITA 1982) Classification when $i(X) = \dim(X) - 1$ (del Pezzo manifolds)

THEOREM (MUKAI 1992)

Classification when $i(X) = \dim(X) - 2$ (Mukai manifolds)

Theorem (Mori 1979 - Frankel's conjecture)

X compact Kähler manifold with positive sectional curvature \iff

 $X \cong \mathbb{CP}^n$

Theorem (Mori 1979 - Frankel's conjecture)

X compact Kähler manifold with positive sectional curvature \iff

 $X \cong \mathbb{CP}^n$

THEOREM (MORI 1979 - HARTSHORNE'S CONJECTURE)

X projective manifold with ample tangent bundle \iff

 $X \cong \mathbb{CP}^n$

X complex projective manifold

 T_X tangent bundle of X

X complex projective manifold

 T_X tangent bundle of $X \longrightarrow ch_k(T_X) \in H^{2k}(X,\mathbb{Z})$

X complex projective manifold

 T_X tangent bundle of $X \longrightarrow ch_k(T_X) \in H^{2k}(X,\mathbb{Z})$

Remark

 $\mathcal{E} = \mathcal{L}_1 \oplus \cdots \oplus \mathcal{L}_r \implies ch_k(\mathcal{E}) = \sum c_1(\mathcal{L}_i)^k$

X complex projective manifold

 T_X tangent bundle of $X \longrightarrow ch_k(T_X) \in H^{2k}(X,\mathbb{Z})$

Remark

$$\mathcal{E} = \mathcal{L}_1 \oplus \cdots \oplus \mathcal{L}_r \implies ch_k(\mathcal{E}) = \sum c_1(\mathcal{L}_i)^k$$

DEFINITION (DE JONG - STARR 2007, A.-CASTRAVET 2012) X is a k-Fano manifold if $ch_i(T_X) > 0$ for $i \in \{1, ..., k\}$

X complex projective manifold

 T_X tangent bundle of $X \longrightarrow ch_k(T_X) \in H^{2k}(X,\mathbb{Z})$

Remark

$$\mathcal{E} = \mathcal{L}_1 \oplus \cdots \oplus \mathcal{L}_r \implies ch_k(\mathcal{E}) = \sum c_1(\mathcal{L}_i)^k$$

DEFINITION (DE JONG - STARR 2007, A.-CASTRAVET 2012) X is a k-Fano manifold if $ch_i(T_X) > 0$ for $i \in \{1, ..., k\}$, i.e., $ch_i(T_X) \cdot Z > 0 \quad \forall Z \subset X \text{ with } \dim(Z) = i$

EXAMPLE (SMOOTH HYPERSURFACES)

$$X_d = Z(F_d) = \{ (x_0 : \cdots : x_n) \mid F_d(x_0, \ldots, x_n) = 0 \} \subset \mathbb{CP}^n$$

EXAMPLE (SMOOTH HYPERSURFACES) $X_d = Z(F_d) = \{ (x_0 : \dots : x_n) \mid F_d(x_0, \dots, x_n) = 0 \} \subset \mathbb{CP}^n$ $-K_{X_d} = (n+1-d) [H_{|X_d}]$

EXAMPLE (SMOOTH HYPERSURFACES) $X_d = Z(F_d) = \{ (x_0 : \dots : x_n) \mid F_d(x_0, \dots, x_n) = 0 \} \subset \mathbb{CP}^n$ $-K_{X_d} = (n+1-d) [H_{|X_d}]$ X_d is Fano $\iff d \leq n$

EXAMPLE (SMOOTH HYPERSURFACES) $X_d = Z(F_d) = \{ (x_0 : \dots : x_n) \mid F_d(x_0, \dots, x_n) = 0 \} \subset \mathbb{CP}^n$ $-K_{X_d} = (n+1-d) [H_{|X_d}]$ X_d is Fano $\iff d \leq n$

 $d \le n-1 \implies X$ is covered by lines

EXAMPLE (SMOOTH HYPERSURFACES) $X_d = Z(F_d) = \{ (x_0 : \dots : x_n) \mid F_d(x_0, \dots, x_n) = 0 \} \subset \mathbb{CP}^n$ $-K_{X_d} = (n+1-d) [H_{|X_d}]$ X_d is Fano $\iff d \leq n$

 $d \le n-1 \implies X$ is covered by lines

 $d \le n \implies X$ is covered by conics

EXAMPLE (SMOOTH HYPERSURFACES) $X_d = Z(F_d) = \{ (x_0 : \dots : x_n) \mid F_d(x_0, \dots, x_n) = 0 \} \subset \mathbb{CP}^n$ $-K_{X_d} = (n+1-d) [H_{|X_d}]$ X_d is Fano $\iff d \le n$

 $d \leq n-1 \implies X$ is covered by lines

 $d \leq n \implies X$ is covered by conics

 $d \ge n+1 \implies
earrow$ rational cruve through a general point of X

EXAMPLE (SMOOTH HYPERSURFACES) $X_d = Z(F_d) = \{ (x_0 : \dots : x_n) \mid F_d(x_0, \dots, x_n) = 0 \} \subset \mathbb{CP}^n$ $-K_{X_d} = (n+1-d) [H_{|X_d}]$ X_d is Fano $\iff d < n$

 $d \leq n-1 \implies X$ is covered by lines

 $d \leq n \implies X$ is covered by conics

 $d \ge n+1 \implies
earrow$ rational cruve through a general point of X

CONCLUSION

 X_d is Fano $\iff d \le n \iff X_d$ is covered by rational curves

Theorem (Mori 1979)

Fano manifolds are covered by rational curves

THEOREM (MORI 1979)

Fano manifolds are covered by rational curves

THEOREM (CAMPANA, KOLLÁR-MIYAOKA-MORI 1992) Fano manifolds are rationally connected :

Any 2 points of X can be connected by a rational curve

Special properties of Fano manifolds

THEOREM (MORI 1979)

Fano manifolds are covered by rational curves

THEOREM (CAMPANA, KOLLÁR-MIYAOKA-MORI 1992) Fano manifolds are rationally connected :

Any 2 points of X can be connected by a rational curve

 Projective manifolds X with −K_X ≤ 0 do not contain any rational curve through a general point

Special properties of Fano manifolds

EXAMPLE (SMOOTH HYPERSURFACES)

$$X_d = Z(F_d) = \{ (x_0:\cdots:x_n) \mid F_d(x_0,\ldots,x_n) = 0 \} \subset \mathbb{CP}^n$$

 X_d is Fano $\iff d \le n \iff X_d$ is rationally connected

SPECIAL PROPERTIES OF FANO MANIFOLDS EXAMPLE (SMOOTH HYPERSURFACES) $X_d = Z(F_d) = \{ (x_0 : \dots : x_n) \mid F_d(x_0, \dots, x_n) = 0 \} \subset \mathbb{CP}^n$ X_d is Fano $\iff d \leq n \iff X_d$ is rationally connected

THEOREM (TSEN 1936)

B complex algebraic curve $\pi : \mathcal{X} \to B$ family of hypersurfaces of degree *d* in \mathbb{CP}^n $d \leq n \implies \pi$ admits a holomorphic section $s : B \to \mathcal{X}$

SPECIAL PROPERTIES OF FANO MANIFOLDS EXAMPLE (SMOOTH HYPERSURFACES) $X_d = Z(F_d) = \{ (x_0 : \dots : x_n) \mid F_d(x_0, \dots, x_n) = 0 \} \subset \mathbb{CP}^n$ X_d is Fano $\iff d \leq n \iff X_d$ is rationally connected

THEOREM (TSEN 1936)

 $\begin{array}{l} B \text{ complex algebraic curve} \\ \pi: \mathcal{X} \to B \text{ family of hypersurfaces of degree } d \text{ in } \mathbb{CP}^n \\ d \leq n \implies \pi \text{ admits a holomorphic section } s: B \to \mathcal{X} \end{array}$

THEOREM (GRABER-HARRIS-STARR 2003)

B complex algebraic curve

 $\pi: \mathcal{X} \to B$ family of rationally connected varieties

 $\implies \pi$ admits a holomorphic section $s: B \to \mathcal{X}$

Theorem (Tsen - Lang 1936 - 1952)

B complex algebraic variety of dimension $\dim(B) = k$

 $\pi: \mathcal{X} \to B$ family of hypersurfaces of degree d in \mathbb{CP}^n

If $d^k \leq n$, then π admits a meromorphic section $s: B \dashrightarrow \mathcal{X}$

Theorem (TSEN - LANG 1936 - 1952)

B complex algebraic variety of dimension $\dim(B) = k$

 $\pi: \mathcal{X} \to B$ family of hypersurfaces of degree d in \mathbb{CP}^n

If $d^k \leq n$, then π admits a meromorphic section $s: B \dashrightarrow \mathcal{X}$

Problem

To find intrinsic (geometric) conditions \mathcal{F}_k such that

• For hypersurfaces of degree d in \mathbb{CP}^n , $\mathcal{F}_k \iff d^k \le n$

Theorem (TSEN - LANG 1936 - 1952)

B complex algebraic variety of dimension $\dim(B) = k$

 $\pi: \mathcal{X} \to B$ family of hypersurfaces of degree d in \mathbb{CP}^n

If $d^k \leq n$, then π admits a meromorphic section $s: B \dashrightarrow \mathcal{X}$

Problem

- For hypersurfaces of degree d in \mathbb{CP}^n , $\mathcal{F}_k \iff d^k \le n$
- Projective manifolds satisfying \mathcal{F}_k are covered by rational k-folds

Theorem (TSEN - Lang 1936 - 1952)

B complex algebraic variety of dimension $\dim(B) = k$

 $\pi: \mathcal{X} \to B$ family of hypersurfaces of degree d in \mathbb{CP}^n

If $d^k \leq n$, then π admits a meromorphic section $s: B \dashrightarrow \mathcal{X}$

Problem

- For hypersurfaces of degree d in \mathbb{CP}^n , $\mathcal{F}_k \iff d^k \le n$
- Projective manifolds satisfying \mathcal{F}_k are covered by rational k-folds
- The Tsen-Lang Theorem holds if the fibers of π satisfy \mathcal{F}_k

Theorem (TSEN - Lang 1936 - 1952)

B complex algebraic variety of dimension $\dim(B) = k$

 $\pi:\mathcal{X}\to B$ family of hypersurfaces of degree d in \mathbb{CP}^n

If $d^k \leq n$, then π admits a meromorphic section $s: B \dashrightarrow \mathcal{X}$

Problem

- For hypersurfaces of degree d in \mathbb{CP}^n , $\mathcal{F}_k \iff d^k \le n$
- Projective manifolds satisfying \mathcal{F}_k are covered by rational k-folds
- The Tsen-Lang Theorem holds if the fibers of π satisfy F_k (modulo Brauer obstruction)

Theorem (TSEN - LANG 1936 - 1952)

B complex algebraic variety of dimension $\dim(B) = k$

 $\pi: \mathcal{X} \to B$ family of hypersurfaces of degree d in \mathbb{CP}^n

If $d^k \leq n$, then π admits a meromorphic section $s: B \dashrightarrow \mathcal{X}$

Problem

To find intrinsic (geometric) conditions \mathcal{F}_k such that

- For hypersurfaces of degree d in \mathbb{CP}^n , $\mathcal{F}_k \iff d^k \le n$
- Projective manifolds satisfying \mathcal{F}_k are covered by rational k-folds
- The Tsen-Lang Theorem holds if the fibers of π satisfy F_k (modulo Brauer obstruction)

• We can take $\mathcal{F}_1 = (\text{to be Fano})$

Theorem (TSEN - LANG 1936 - 1952)

B complex algebraic variety of dimension $\dim(B) = k$

 $\pi: \mathcal{X} \to B$ family of hypersurfaces of degree d in \mathbb{CP}^n

If $d^k \leq n$, then π admits a meromorphic section $s: B \dashrightarrow \mathcal{X}$

Problem

To find intrinsic (geometric) conditions \mathcal{F}_k such that

- For hypersurfaces of degree d in \mathbb{CP}^n , $\mathcal{F}_k \iff d^k \le n$
- Projective manifolds satisfying \mathcal{F}_k are covered by rational k-folds
- The Tsen-Lang Theorem holds if the fibers of π satisfy F_k (modulo Brauer obstruction)

• We can take $\mathcal{F}_1 =$ (to be Fano) or (to be Rationally Connected)

Problem

- For hypersurfaces of degree d in \mathbb{CP}^n , $\mathcal{F}_k \iff d^k \le n$
- Projective manifolds satisfying \mathcal{F}_k are covered by rational k-folds
- The Tsen-Lang Theorem holds if the fibers of π satisfy \mathcal{F}_k

Problem

To find intrinsic (geometric) conditions \mathcal{F}_k such that

- For hypersurfaces of degree d in \mathbb{CP}^n , $\mathcal{F}_k \iff d^k \le n$
- Projective manifolds satisfying \mathcal{F}_k are covered by rational k-folds
- The Tsen-Lang Theorem holds if the fibers of π satisfy \mathcal{F}_k

DEFINITION

X is a k-Fano manifold if $ch_i(T_X) > 0$ for $i \in \{1, ..., k\}$, i.e., $ch_i(T_X) \cdot Z > 0 \quad \forall Z \subset X \text{ with } \dim(Z) = i$

Problem

To find intrinsic (geometric) conditions \mathcal{F}_k such that

- For hypersurfaces of degree d in \mathbb{CP}^n , $\mathcal{F}_k \iff d^k \le n$
- Projective manifolds satisfying \mathcal{F}_k are covered by rational k-folds
- The Tsen-Lang Theorem holds if the fibers of π satisfy \mathcal{F}_k

DEFINITION

X is a k-Fano manifold if
$$ch_i(T_X) > 0$$
 for $i \in \{1, ..., k\}$, i.e.,
 $ch_i(T_X) \cdot Z > 0 \quad \forall Z \subset X \text{ with } \dim(Z) = i$

EXAMPLE (SMOOTH HYPERSURFACES)

$$X_d = Z(F_d) = \{ (x_0:\cdots:x_n) \mid F_d(x_0,\ldots,x_n) = 0 \} \subset \mathbb{CP}^n$$

Problem

To find intrinsic (geometric) conditions \mathcal{F}_k such that

- For hypersurfaces of degree d in \mathbb{CP}^n , $\mathcal{F}_k \iff d^k \le n$
- Projective manifolds satisfying \mathcal{F}_k are covered by rational k-folds
- The Tsen-Lang Theorem holds if the fibers of π satisfy \mathcal{F}_k

DEFINITION

X is a k-Fano manifold if
$$ch_i(T_X) > 0$$
 for $i \in \{1, ..., k\}$, i.e.,
 $ch_i(T_X) \cdot Z > 0 \quad \forall Z \subset X \text{ with } \dim(Z) = i$

EXAMPLE (SMOOTH HYPERSURFACES)

$$X_d = Z(F_d) = \{ (x_0 : \dots : x_n) \mid F_d(x_0, \dots, x_n) = 0 \} \subset \mathbb{CP}^n$$
$$X_d \text{ is } k\text{-Fano} \iff d^k \leq n$$

 $\pi: X \to B$ fibration of CW complexes with typical fiber F, dim B = k

 $\pi: X \to B$ fibration of CW complexes with typical fiber F, dim B = k

If F is (k-1)-connected , then π admits a section $s:B \to X$

 $\pi: X \to B$ fibration of CW complexes with typical fiber F, dim B = k

If *F* is (k-1)-connected , then π admits a section $s: B \to X$

• F topological space, $p \in F$

 $\pi: X \to B$ fibration of CW complexes with typical fiber F, dim B = k

If *F* is (k-1)-connected , then π admits a section $s: B \to X$

• F topological space, $p \in F \iff$ loop space $\Omega_p F$

 $\pi: X \to B$ fibration of CW complexes with typical fiber F, dim B = k

If F is (k-1)-connected , then π admits a section $s:B \to X$

- F topological space, $p \in F \iff$ loop space $\Omega_p F$
- $\pi_k(F) = \pi_{k-1}(\Omega_p F)$

 $\pi: X \to B$ fibration of CW complexes with typical fiber F, dim B = k

If F is (k-1)-connected , then π admits a section $s:B \to X$

• F topological space, $p \in F \iff$ loop space $\Omega_p F$

•
$$\pi_k(F) = \pi_{k-1}(\Omega_p F)$$

F is *k*-connected ↔

$$\pi_0(F) = \pi_1(F) = \cdots = \pi_k(F) = 0$$

 $\pi: X \to B$ fibration of CW complexes with typical fiber F, dim B = k

If F is (k-1)-connected , then π admits a section $s:B \to X$

• F topological space, $p \in F \iff$ loop space $\Omega_p F$

•
$$\pi_k(F) = \pi_{k-1}(\Omega_p F)$$

F is *k*-connected ↔

$$\pi_0(F) = \pi_1(F) = \cdots = \pi_k(F) = 0$$

• F is 0-connected \leftrightarrow F is path-connected

 $\pi: X \to B$ fibration of CW complexes with typical fiber F, dim B = k

If F is (k-1)-connected , then π admits a section $s:B \to X$

• F topological space, $p \in F \iff$ loop space $\Omega_p F$

•
$$\pi_k(F) = \pi_{k-1}(\Omega_p F)$$

F is *k*-connected ↔

$$\pi_0(F) = \pi_1(F) = \cdots = \pi_k(F) = 0$$

- F is 0-connected \leftrightarrow F is path-connected
- F is 1-connected \leftrightarrow F is simply connected

$\mathsf{TOPOLOGY} \ \leftrightarrow \ \mathsf{ALGEBRAIC} \ \mathsf{GEOMETRY}$

• F topological space \leftrightarrow X projective variety

- F topological space \leftrightarrow X projective variety
- $[0,1] \leftrightarrow \mathbb{CP}^1$

- F topological space \leftrightarrow X projective variety
- $[0,1] \leftrightarrow \mathbb{CP}^1$
- (k=1) F is path connected $\leftrightarrow X$ is rationally connected

- F topological space \leftrightarrow X projective variety
- $[0,1] \leftrightarrow \mathbb{CP}^1$
- (k=1) F is path connected $\leftrightarrow X$ is rationally connected
- (k=2) *F* is simply connected (*F* path-connected + $\Omega_{p}F$ path-connected) \leftrightarrow

- F topological space \leftrightarrow X projective variety
- $[0,1] \leftrightarrow \mathbb{CP}^1$
- (k=1) F is path connected $\leftrightarrow X$ is rationally connected
- (k=2) *F* is simply connected (*F* path-connected + $\Omega_p F$ path-connected) $\leftrightarrow X$ is rationally connected + ???

$\mathsf{TOPOLOGY} \ \leftrightarrow \ \mathsf{ALGEBRAIC} \ \mathsf{GEOMETRY}$

- F topological space \leftrightarrow X projective variety
- $[0,1] \leftrightarrow \mathbb{CP}^1$
- (k=1) F is path connected $\leftrightarrow X$ is rationally connected
- (k=2) *F* is simply connected (*F* path-connected + $\Omega_p F$ path-connected) $\leftrightarrow X$ is rationally connected + ???

• $\Omega_p F \leftrightarrow ???$

- F topological space \leftrightarrow X projective variety
- $[0,1] \leftrightarrow \mathbb{CP}^1$
- (k=1) F is path connected $\leftrightarrow X$ is rationally connected
- (k=2) *F* is simply connected (*F* path-connected + $\Omega_p F$ path-connected) $\leftrightarrow X$ is rationally connected + ???
- $\Omega_p F \leftrightarrow H_x = \{ \text{rational curves of minimal degree through } x \}$

- F topological space \leftrightarrow X projective variety
- $[0,1] \leftrightarrow \mathbb{CP}^1$
- (k=1) F is path connected $\leftrightarrow X$ is rationally connected
- (k=2) *F* is simply connected (*F* path-connected + $\Omega_p F$ path-connected) $\leftrightarrow X$ rationally connected + H_x are rationally connected ???
- $\Omega_p F \leftrightarrow H_x = \{ \text{rational curves of minimal degree through } x \}$

- F topological space \leftrightarrow X projective variety
- $[0,1] \leftrightarrow \mathbb{CP}^1$
- (k=1) F is path connected $\leftrightarrow X$ is rationally connected
- (k=2) *F* is simply connected (*F* path-connected + $\Omega_p F$ path-connected) $\leftrightarrow X$ rationally connected + H_x are rationally connected ???
- $\Omega_p F \leftrightarrow H_x = \{ \text{rational curves of minimal degree through } x \}$
- Problem: $\Omega_p F \sim \Omega_{p,q} F$

- F topological space \leftrightarrow X projective variety
- $[0,1] \leftrightarrow \mathbb{CP}^1$
- (k=1) F is path connected $\leftrightarrow X$ is rationally connected
- (k=2) *F* is simply connected (*F* path-connected + $\Omega_p F$ path-connected) $\leftrightarrow X$ rationally connected + H_x are rationally connected ???
- $\Omega_p F \leftrightarrow H_x = \{ \text{rational curves of minimal degree through } x \}$
- Problem: $\Omega_p F \sim \Omega_{p,q} F \leftrightarrow H_x \not\simeq H_{x,y}$

DEFINITION (DE JONG-STARR)

A complex projective variety X is rationally simply connected if

- X and H_x are rationally connected
- Some version of $H_{x,y}$ is rationally connected
- + some technical conditions

DEFINITION (DE JONG-STARR)

A complex projective variety X is rationally simply connected if

- X and H_x are rationally connected
- Some version of $H_{x,y}$ is rationally connected
- + some technical conditions

Problem

To find intrinsic (geometric) conditions \mathcal{F}_k such that

- For hypersurfaces of degree d in \mathbb{CP}^n , $\mathcal{F}_k \iff d^k \le n$
- Projective manifolds satisfying \mathcal{F}_k are covered by rational k-folds
- The Tsen-Lang Theorem holds if the fibers of π satisfy \mathcal{F}_k

DEFINITION (DE JONG-STARR)

A complex projective variety X is rationally simply connected if

- X and H_x are rationally connected
- Some version of $H_{x,y}$ is rationally connected
- + some technical conditions

Problem

To find intrinsic (geometric) conditions \mathcal{F}_k such that

- For hypersurfaces of degree d in \mathbb{CP}^n , $\mathcal{F}_k \iff d^k \le n$
- Projective manifolds satisfying \mathcal{F}_k are covered by rational k-folds
- The Tsen-Lang Theorem holds if the fibers of π satisfy \mathcal{F}_k

QUESTION (DE JONG-STARR)

Can one take \mathcal{F}_2 to be "X is rationally simply connected" ?

HIGHER FANO CONDITIONS

Problem

To find intrinsic (geometric) conditions \mathcal{F}_k such that

- For hypersurfaces of degree d in \mathbb{CP}^n , $\mathcal{F}_k \iff d^k \le n$
- Projective manifolds satisfying \mathcal{F}_k are covered by rational k-folds
- The Tsen-Lang Theorem holds if the fibers of π satisfy \mathcal{F}_k

HIGHER FANO CONDITIONS

Problem

To find intrinsic (geometric) conditions \mathcal{F}_k such that

- For hypersurfaces of degree d in \mathbb{CP}^n , $\mathcal{F}_k \iff d^k \le n$
- Projective manifolds satisfying \mathcal{F}_k are covered by rational k-folds
- The Tsen-Lang Theorem holds if the fibers of π satisfy \mathcal{F}_k

DEFINITION

X is a k-Fano manifold if $ch_i(T_X) > 0$ for $i \in \{1, ..., k\}$, i.e., $ch_i(T_X) \cdot Z > 0 \quad \forall Z \subset X \text{ with } \dim(Z) = i$

HIGHER FANO CONDITIONS

Problem

To find intrinsic (geometric) conditions \mathcal{F}_k such that

- For hypersurfaces of degree d in \mathbb{CP}^n , $\mathcal{F}_k \iff d^k \le n$
- Projective manifolds satisfying \mathcal{F}_k are covered by rational k-folds
- The Tsen-Lang Theorem holds if the fibers of π satisfy \mathcal{F}_k

DEFINITION

X is a
$$k$$
-Fano manifold if $ch_i(T_X) > 0$ for $i \in \{1, \dots, k\}$, i.e.,

 $ch_i(T_X) \cdot Z > 0 \quad \forall Z \subset X \text{ with } \dim(Z) = i$

QUESTION (A.-CASTRAVET 2012) Can one take \mathcal{F}_k to be "X is k-Fano" ?

X Fano manifold

X Fano manifold

$$ch_k(H_x) = \sum_{j=0}^k \frac{(-1)^j B_j}{j!} c_1(L)^j \pi_* e^* (ch_{k+1-j}(X)) - \frac{1}{k!} c_1(L)^k$$

X Fano manifold

$$ch_k(H_X) = \sum_{j=0}^k \frac{(-1)^j B_j}{j!} c_1(L)^j \pi_* e^* (ch_{k+1-j}(X)) - \frac{1}{k!} c_1(L)^k$$

• X is 2-Fano
$$+ \dim(H_x) \ge 1 \Rightarrow H_x$$
 is Fano

X Fano manifold

$$ch_k(H_X) = \sum_{j=0}^k \frac{(-1)^j B_j}{j!} c_1(L)^j \pi_* e^* (ch_{k+1-j}(X)) - \frac{1}{k!} c_1(L)^k$$

• X is 2-Fano + dim
$$(H_x) \ge 1 \Rightarrow H_x$$
 is Fano

• X is 3-Fano + dim
$$(H_x) \ge 2 \Rightarrow H_x$$
 is 2-Fano

X Fano manifold

$$ch_k(H_X) = \sum_{j=0}^k \frac{(-1)^j B_j}{j!} c_1(L)^j \pi_* e^* (ch_{k+1-j}(X)) - \frac{1}{k!} c_1(L)^k$$

• X is 2-Fano + dim
$$(H_x) \ge 1 \Rightarrow H_x$$
 is Fano

- X is 3-Fano + dim $(H_x) \ge 2 \implies H_x$ is 2-Fano
- X is 2-Fano $+ (\cdots) \Rightarrow X$ is covered by rational surfaces

X Fano manifold

$$ch_k(H_X) = \sum_{j=0}^k \frac{(-1)^j B_j}{j!} c_1(L)^j \pi_* e^* (ch_{k+1-j}(X)) - \frac{1}{k!} c_1(L)^k$$

• X is 2-Fano + dim
$$(H_x) \ge 1 \Rightarrow H_x$$
 is Fano

- X is 3-Fano + dim $(H_x) \ge 2 \Rightarrow H_x$ is 2-Fano
- X is 2-Fano $+ (\cdots) \Rightarrow X$ is covered by rational surfaces
- X is 3-Fano $+ (\cdots) \Rightarrow X$ is covered by rational 3-folds

X Fano manifold

 $H_x = \{$ rational curves of minimal degree through $x\}$

$$ch_k(H_X) = \sum_{j=0}^k \frac{(-1)^j B_j}{j!} c_1(L)^j \pi_* e^* (ch_{k+1-j}(X)) - \frac{1}{k!} c_1(L)^k$$

• X is 2-Fano + dim
$$(H_x) \ge 1 \Rightarrow H_x$$
 is Fano

- X is 3-Fano + dim $(H_x) \ge 2 \Rightarrow H_x$ is 2-Fano
- X is 2-Fano $+ (\cdots) \Rightarrow X$ is covered by rational surfaces
- X is 3-Fano $+ (\cdots) \Rightarrow X$ is covered by rational 3-folds

Conjecture (A.-Castravet 2012) X is k-Fano \Rightarrow H_x is (k - 1)-Fano

 $H_x = \{$ rational curves of minimal degree through $x\}$

Conjecture (A.-Castravet 2012)

X is k-Fano \Rightarrow H_x is (k-1)-Fano

 $H_x = \{$ rational curves of minimal degree through $x\}$

CONJECTURE (A.-CASTRAVET 2012) X is k-Fano \Rightarrow H_x is (k - 1)-Fano

THEOREM (A., ROYA BEHESHTI, ANA-MARIA CASTRAVET, KELLY JABBUSCH, SVETLANA MAKAROVA, ENRICA MAZZON, LIBBY TAYLOR, NIVEDITA VISWANATHAN 2021)

X is 4-Fano + $(\cdots) \Rightarrow H_x$ is 3-Fano

 $H_x = \{$ rational curves of minimal degree through $x\}$

CONJECTURE (A.-CASTRAVET 2012) X is k-Fano \Rightarrow H_x is (k - 1)-Fano

THEOREM (A., ROYA BEHESHTI, ANA-MARIA CASTRAVET, KELLY JABBUSCH, SVETLANA MAKAROVA, ENRICA MAZZON, LIBBY TAYLOR, NIVEDITA VISWANATHAN 2021)

X is 4-Fano + $(\cdots) \Rightarrow H_x$ is 3-Fano

THEOREM (SUZUKI 2020, NAGAOKA 2019) • X is k-Fano + dim $(H_x) \ge N(k) \Rightarrow \underbrace{H_x(H_x(\dots(H_x)))}_{k \text{ times}} \dots$ is Fano

 $H_x = \{$ rational curves of minimal degree through $x\}$

CONJECTURE (A.-CASTRAVET 2012) X is k-Fano \Rightarrow H_x is (k - 1)-Fano

THEOREM (A., ROYA BEHESHTI, ANA-MARIA CASTRAVET, KELLY JABBUSCH, SVETLANA MAKAROVA, ENRICA MAZZON, LIBBY TAYLOR, NIVEDITA VISWANATHAN 2021)

X is 4-Fano + $(\cdots) \Rightarrow H_x$ is 3-Fano

Theorem (Suzuki 2020, Nagaoka 2019)

• X is k-Fano + dim
$$(H_x) \ge N(k) \Rightarrow H_x(H_x(\dots(H_x))\dots)$$
 is Fano

k times

• X is k-Fano + (···) \Rightarrow X is covered by rational k-folds

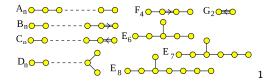
Examples of 2-Fano Manifolds

• Complete intersections of low degree in (weighted) projective spaces $\left(d^2 \leq n \right)$

¹Dynkin - By Tomruen - Created by me by copying File:Connected Dynkin Diagrams.svg, CC BY-SA 3.0, commons.wikimedia.org

Examples of 2-Fano Manifolds

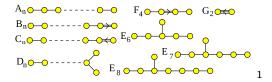
- Complete intersections of low degree in (weighted) projective spaces $\left(d^2 \leq n \right)$
- Rational homogeneous spaces of Picard rank 1



¹Dynkin - By Tomruen - Created by me by copying File:Connected Dynkin Diagrams.svg, CC BY-SA 3.0, commons.wikimedia.org

Examples of 2-Fano Manifolds

- Complete intersections of low degree in (weighted) projective spaces $\left(d^2 \leq n \right)$
- Rational homogeneous spaces of Picard rank 1



Some 2-orbit varieties

THEOREM (A.-CASTRAVET 2012) Classification of 2-Fano Manifolds of index $i(X) \ge \dim(X) - 2$.

¹Dynkin - By Tomruen - Created by me by copying File:Connected Dynkin Diagrams.svg, CC BY-SA 3.0, commons.wikimedia.org

Joint with Roya Beheshti, Ana-Maria Castravet, Kelly Jabbusch, Svetlana Makarova, Enrica Mazzon, Libby Taylor, Nivedita Viswanathan

Joint with Roya Beheshti, Ana-Maria Castravet, Kelly Jabbusch, Svetlana Makarova, Enrica Mazzon, Libby Taylor, Nivedita Viswanathan

• Complete intersections of low degree in (weighted) projective spaces ($d^3 \leq n$)

Joint with Roya Beheshti, Ana-Maria Castravet, Kelly Jabbusch, Svetlana Makarova, Enrica Mazzon, Libby Taylor, Nivedita Viswanathan

- Complete intersections of low degree in (weighted) projective spaces ($d^3 \leq n$)
- Rational homogeneous spaces of Picard rank 1: \mathbb{CP}^n and $Q \subset \mathbb{CP}^n$

Joint with Roya Beheshti, Ana-Maria Castravet, Kelly Jabbusch, Svetlana Makarova, Enrica Mazzon, Libby Taylor, Nivedita Viswanathan

- Complete intersections of low degree in (weighted) projective spaces ($d^3 \leq n$)
- Rational homogeneous spaces of Picard rank 1: \mathbb{CP}^n and $Q \subset \mathbb{CP}^n$

Theorem

Classification of 3-Fano Manifolds of index $i(X) \ge \dim(X) - 2$: only complete intersections of low degree in (weighted) projective spaces

Joint with Roya Beheshti, Ana-Maria Castravet, Kelly Jabbusch, Svetlana Makarova, Enrica Mazzon, Libby Taylor, Nivedita Viswanathan

Joint with Roya Beheshti, Ana-Maria Castravet, Kelly Jabbusch, Svetlana Makarova, Enrica Mazzon, Libby Taylor, Nivedita Viswanathan

Problem

Find examples of 3-Fano manifolds other than complete intersections in weighted projective spaces

Joint with Roya Beheshti, Ana-Maria Castravet, Kelly Jabbusch, Svetlana Makarova, Enrica Mazzon, Libby Taylor, Nivedita Viswanathan

Problem

Find examples of 3-Fano manifolds other than complete intersections in weighted projective spaces

CONJECTURE $X \text{ } k\text{-Fano and } \dim(X) = n, \text{ with } k = \lceil \log_2(n+1) \rceil \implies X \cong \mathbb{CP}^n$

Joint with Roya Beheshti, Ana-Maria Castravet, Kelly Jabbusch, Svetlana Makarova, Enrica Mazzon, Libby Taylor, Nivedita Viswanathan

Problem

Find examples of 3-Fano manifolds other than complete intersections in weighted projective spaces

Conjecture

X k-Fano and dim(X) = n, with $k = \lceil \log_2(n+1) \rceil \implies X \cong \mathbb{CP}^n$

Problem

For fixed *n*, find the smallest integer k = k(n) such that:

X k-Fano and dim $(X) = n \implies X$ is a complete intersections in weighted projective space

Obrigada!