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X complex projective manifold

Tx tangent bundle of X ~ —Kx = c(Tx) € H*(X,Z)

( the anti-canonical class of X )

REMARK

CcX ~ —Kx-C = %( average of Ricci curvature of X along C)

v

DEFINITION (THE FANO CONDITION)

X is a Fano manifold if —Kx is ample ( positive )

REMARK
—Kx is ample — —Kx-C>0 VCCX
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EXAMPLE (X SMOOTH PROJECTIVE CURVE)

- (= =>

—Kc >0 —Kc = —Kc <0

EXAMPLES
o CP"
o Hypersurfaces of degree d < n in CP"
@ Grassmannians and other rational homogeneous spaces

e Several moduli spaces (of vector bundles)
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REMARK

Minimal Model Program ~- every projective manifold is built up from
varieties with

—Kx >0, —Kx=0 or —Kx<0

REMARK

The Calabi Problem - Which Fano manifolds admit Kahler-Einstein
metrics?
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DEFINITION (THE INDEX OF A FANO MANIFOLD)
i(X) == max{meZ ‘ — Kx =mA, Ac H*(X,Z) }

THEOREM (KOBAYASHI-OCHIAI 1973)
o i(X)<dim(X)+1 & i(X)=dim(X)+1 < X =CP"
o i(X)=dim(X) <= X=QcCCP"

THEOREM (FuJiTA 1982)
Classification when i(X) = dim(X) —1 ( del Pezzo manifolds )

THEOREM (MUKAI 1992)
Classification when i(X) = dim(X) —2 ( Mukai manifolds )
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THEOREM (MORI 1979 - FRANKEL'S CONJECTURE)

X compact Kahler manifold with positive sectional curvature <=

X = CP"

THEOREM (MORI 1979 - HARTSHORNE’S CONJECTURE)

X projective manifold with ample tangent bundle <=

X = CP"
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X complex projective manifold

Tx tangent bundle of X ~  chy(Tx) € H**(X,Z)

REMARK

E=L1--BL = Chk(5)=zcl(£,')k

DEFINITION (DE JONG - STARR 2007, A.-CASTRAVET 2012)
X is a k-Fano manifold if chi(Tx) >0 for ie{l,..., k}, ie,
chi(Tx)-Z >0 ¥ZC X with dim(Z) =i
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SPECIAL PROPERTIES OF FANO MANIFOLDS

EXAMPLE (SMOOTH HYPERSURFACES)

Xg = Z(Fg) = { (x0: - :xa) | Fa(x0,...,xa) =0} C CP”

—Kx, = (n+1-d) [H|Xd]

Xqgis Fano <— d<n

d<n—1 = X is covered by lines
d<n = X is covered by conics

d>n+1 = Arational cruve through a general point of X

CONCLUSION

Xyis Fano <= d<n <= Xy is covered by rational curves }
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THEOREM (MORI 1979)

Fano manifolds are covered by rational curves

THEOREM (CAMPANA, KOLLAR-MIYAOKA-MORI 1992 )
Fano manifolds are rationally connected :

Any 2 points of X can be connected by a rational curve

/\/ﬂp 1
x

¥

@ Projective manifolds X with —Kx < 0 do not contain any rational
curve through a general point
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Xy = Z(Fy) = {(XQZ---ZXn) ‘ Fd(xo,...,x,,)zo} c Cp"

Xgis Fano <= d<n <= Xy is rationally connected

THEOREM (TSEN 1936)

B complex algebraic curve

7w : X — B family of hypersurfaces of degree d in CP"

d <n = m admits a holomorphic sections: B —+ X

THEOREM (GRABER-HARRIS-STARR 2003 )
B complex algebraic curve
m: X — B family of rationally connected varieties

= m admits a holomorphic section s : B —+ X
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THEOREM (TSEN - LANG 1936 - 1952 )

B complex algebraic variety of dimension dim(B) = k
m: X — B family of hypersurfaces of degree d in CP"

If d < n, then 7 admits a meromorphic section s : B --» X

PROBLEM
To find intrinsic (geometric) conditions F such that
o For hypersurfaces of degree d in CP" ,  F, <= d“<n
o Projective manifolds satisfying F are covered by rational k-folds

@ The Tsen-Lang Theorem holds if the fibers of 7 satisfy F
(modulo Brauer obstruction)

e We can take F; = (to be Fano) or (to be Rationally Connected)
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PROBLEM

To find intrinsic (geometric) conditions F such that
o For hypersurfaces of degree d in CP", F, <= d“<n
o Projective manifolds satisfying F are covered by rational k-folds
@ The Tsen-Lang Theorem holds if the fibers of 7 satisfy F

DEFINITION
X is a k-Fano manifold if ch;(Tx) >0 for i€ {l,... k}, ie,
Ch,'(Tx) -Z >0 VZ C X with dim(Z) =1

EXAMPLE (SMOOTH HYPERSURFACES)

Xg = Z(Fg) = { (0 :xa) | Falx0s---;xa) =0} C CP"

Xy is k-Fano <= dkK<n
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INSPIRATION FROM TOPOLOGY

7w : X — B fibration of CW complexes with typical fiber F, dim B = k
F——X
B

If Fis (k — 1)-connected , then 7 admits a section s : B — X

F topological space, p € F ~+ loop space €,F
7Tk(F) = Wk_l(QpF)
@ F is k-connected «

mo(F) = m(F) = -+ = m(F) =0

@ F is O-connected «» F is path-connected

F is 1-connected <+ F is simply connected
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INSPIRATION FROM TOPOLOGY

TOPOLOGY <« ALGEBRAIC GEOMETRY

e F topological space < X projective variety
e [0,1] «< CP!
e (k=1) F is path connected <> X is rationally connected

o (k=2) F is simply connected (F path-connected + Q,F
path-connected) <> X rationally connected + H, are rationally
connected 777

e Q,F < H, = {rational curves of minimal degree through x}

e Problem: Q,F ~ Q,.F < H. # H.,
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DEFINITION (DE JONG-STARR)

A complex projective variety X is rationally simply connected if
e X and H, are rationally connected
e Some version of H, , is rationally connected

@ + some technical conditions

PROBLEM

To find intrinsic (geometric) conditions F such that
o For hypersurfaces of degree d in CP", F, < d“<n
o Projective manifolds satisfying F are covered by rational k-folds
@ The Tsen-Lang Theorem holds if the fibers of 7 satisfy F

QUESTION (DE JONG-STARR)

Can one take JF, to be “X is rationally simply connected” ?
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PROBLEM

To find intrinsic (geometric) conditions F such that
o For hypersurfaces of degree d in CP" |,  F, <= d*<n
o Projective manifolds satisfying F are covered by rational k-folds
@ The Tsen-Lang Theorem holds if the fibers of 7 satisfy F

DEFINITION
X is a k-Fano manifold if chj(Tx) >0 for ie{l,..., k}, ie,
chi(Tx)-Z >0 ¥ZC X with dim(Z) =i

QUESTION (A.-CASTRAVET 2012)
Can one take Fy to be “X is k-Fano” 7
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X Fano manifold

H, = {rational curves of minimal degree through x}

1

ci(LYme* (chir1—i(X)) — HQ(L)'{

k
Chk Z
j=0
e X is 2-Fano + dim(Hyx) > 1 = H, is Fano
e X is 3-Fano + dim(Hy) > 2 = Hy is 2-Fano
e X is 2-Fano + (---) = X is covered by rational surfaces
e X is 3-Fano + (---) = X is covered by rational 3-folds
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X Fano manifold

H, = {rational curves of minimal degree through x}

CONJECTURE (A.-CASTRAVET 2012)
X is k-Fano = Hy is (k — 1)-Fano

THEOREM (A., RovAa BEHESHTI, ANA-MARIA CASTRAVET, KELLY
JABBUSCH, SVETLANA MAKAROVA, ENRICA MAZZON, LIBBY TAYLOR,
NIVEDITA VISWANATHAN 2021)

X is 4-Fano + (---) = Hy is 3-Fano

THEOREM (SUZUKI 2020, NAGAOKA 2019)
e X is k-Fano + dim(Hx) > N(k) = Hyx(Hx(...(Hx)...) is Fano
—_— ——
k times

e X is k-Fano + (---) = X is covered by rational k-folds
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EXAMPLES OF 2-FANO MANIFOLDS

e Complete intersections of low degree in (weighted) projective spaces
(d*<n)

e Rational homogeneous spaces of Picard rank 1

A 0—O0—0------ 00 F,00500 G,0o=%0
Bho—0------ 0—00
C,0—0------ o—o=o Fs

@ Some 2-orbit varieties

THEOREM (A.-CASTRAVET 2012)
Classification of 2-Fano Manifolds of index i(X) > dim(X) — 2.

!Dynkin - By Tomruen - Created by me by copying File:Connected Dynkin
Diagrams.svg, CC BY-SA 3.0, commons.wikimedia.org
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EXAMPLES OF 3-FANO MANIFOLDS (2021)

Joint with Roya Beheshti, Ana-Maria Castravet, Kelly Jabbusch, Svetlana
Makarova, Enrica Mazzon, Libby Taylor, Nivedita Viswanathan

e Complete intersections of low degree in (weighted) projective spaces
(d®><n)

@ Rational homogeneous spaces of Picard rank 1: CP"” and Q C CP"

THEOREM

Classification of 3-Fano Manifolds of index i(X) > dim(X) — 2: only
complete intersections of low degree in (weighted) projective spaces
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HiGHER FANO MANIFOLDS

Joint with Roya Beheshti, Ana-Maria Castravet, Kelly Jabbusch, Svetlana
Makarova, Enrica Mazzon, Libby Taylor, Nivedita Viswanathan

PROBLEM

Find examples of 3-Fano manifolds other than complete intersections in
weighted projective spaces

CONJECTURE
X k-Fano and dim(X) = n, with k = [log,(n+1)] = X = CP”"

PROBLEM
For fixed n, find the smallest integer k = k(n) such that:

X k-Fano and dim(X) =n == X is a complete intersections in
weighted projective space




Obrigada!



